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Abstract

We investigate the conditional full support (CFS) property, introduced in Guasoni et
al. (2008a), for Gaussian processes with stationary increments. We give integrability
conditions on the spectral measure of such a process which ensure that the process has
CFS or not. In particular, the general results imply that, for a process with spectral density
f such that f (λ) ∼ c1λ

pe−c2λ
q

for λ → ∞ (with necessarily p < 1 if q = 0), the CFS
property holds if and only if q < 1.
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1. Introduction

In mathematical finance there has lately been considerable interest in pushing beyond the
by now classical setting of asset prices modelled by semimartingales; cf. e.g. Delbaen and
Schachermayer (2006) and the references therein. New approaches that either restrict the class
of allowed trading strategies or introduce transaction costs allow, e.g. for the use of fractional
Brownian motion to model (log) prices; cf. Bender et al. (2008) Guasoni et al. (2008a), and
Jarrow et al. (2009). The results of Guasoni et al. (2008a), (2008b) show that when transaction
costs are introduced, a satisfactory arbitrage theory can be built up using continuous price
processes that only satisfy a mild condition on their conditional support (we will give a precise
definition below).

To understand the scope of the newly developed theories, it has become important to
investigate the conditional support properties for classes of stochastic processes. Guasoni et
al. (2008a) proved that the fractional Brownian motion with arbitrary Hurst parameter has the
desired property. This was recently generalized in Cherny (2008), who proved the conditional
full support (CFS) property for a class of Gaussian processes that can be written as a moving
average with respect to ordinary Brownian motion.

In the present paper we focus on the class of continuous, centered Gaussian processesXwith
stationary increments, starting at 0, i.e.X0 = 0. We will briefly call such a process a continuous
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Gaussian si-process. It is a classical fact that with each such process we can associate a spectral
measure. This is a symmetric Borel measure µ on the line such that

EXsXt =
∫

R

(eiλs − 1)(e−iλt − 1)

λ2 µ(dλ) (1.1)

for all s, t ≥ 0 (cf. Doob (1953)). If µ admits a Lebesgue density, we call this the spectral
density of the process. The prime example is the fractional Brownian motion with Hurst index
H ∈ (0, 1), which has spectral density

f (λ) = sin(πH)�(1 + 2H)

2π
|λ|1−2H dλ;

see, e.g. Samorodnitsky and Taqqu (1994, pp. 318–325). The continuous moving average
processes considered in Cherny (2008) are particular examples of continuous Gaussian si-
processes. Included in this class are the continuous Gaussian si-processes with spectral densities
of the form

f (λ) = λ2|K̂(λ)|2,
where K̂ is the Fourier transform of a function K ∈ L2[0,∞). We use this connection in the
proof of our main theorem.

The CFS property of a process indexed by a time interval [0, T ] roughly means that, given the
information up to some time t ∈ [0, T ], the process can go anywhere after time t with positive
probability. To give the precise definition, let X = (Xt : t ∈ [0, T ]) be a continuous stochastic
process defined on a probability space (�,F ,P). Let (Ft ) be its natural filtration. The process
is said to have CFS if, for all t ∈ [0, T ], the conditional law of (Xu : u ∈ [t, T ]) given Ft
almost surely has support CXt [t, T ], where Cx[t, T ] is the space of continuous functions f on
[t, T ] satisfying f (t) = x. Equivalently, this means that, for all t ∈ [0, T ], f ∈ C0[t, T ], and
ε > 0,

P
(

sup
u∈[t,T ]

|Xu −Xt − f (u)| < ε

∣∣∣ Ft
)
> 0

almost surely. According to Lemma 2.9 of Guasoni et al. (2008a), the CFS condition is in fact
equivalent to the seemingly stronger condition that is obtained by replacing the deterministic
times t in the definition by stopping times.

The goal of this paper is to give spectral conditions for a Gaussian si-process to have CFS.
It turns out that we can give rather precise conditions on the tails of the spectral density. The
results quantify the intuitively reasonable statement that a Gaussian si-process has CFS if and
only if the tails of its spectral measure are heavy enough. The sufficient tail condition for CFS
is very mild and easy to verify in concrete cases, thus providing a wide class of processes
potentially suitable for asset price modelling in the context of Guasoni et al. (2008a), (2008b).

2. Results

Our main result gives integrability conditions on the spectral measure of a Gaussian si-
process which ensure that the process has the CFS property or not.

Being a symmetric Borel measure on the line, the spectral measureµ of a Gaussian si-process
can always be written as µ(dλ) = f (λ) dλ+ µs(dλ) with f a nonnegative, symmetric, Borel
measurable function and µs a symmetric Borel measure orthogonal to the Lebesgue measure.
As usual, we call f the density of the absolutely continuous part of µ.
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Theorem 2.1. Let X = (Xt : t ∈ [0, T ]) be a continuous Gaussian si-process with spectral
measure µ. Let f be the density of the absolutely continuous part of µ.

(i) If, for some λ0 > 0, ∫ ∞

λ0

log f (λ)

λ2 dλ > −∞

then X has CFS.

(ii) If, for some a, λ0 > 0, ∫ ∞

λ0

eaλµ(dλ) < ∞

then X does not have CFS.

To illustrate the sharpness of this result, suppose for instance that, for c1, c2 > 0, p ∈ R,
and q ≥ 0, the spectral density f of the continuous Gaussian si-process X satisfies

f (λ) ∼ c1λ
pe−c2λ

q

(2.1)

as λ → ∞ (with necessarily p < 1 if q = 0). Then by combining parts (i) and (ii) of
Theorem 2.1, we see that the CFS property holds if and only if q < 1. Taking q = 0 and
p = 1 − 2H forH ∈ (0, 1), this confirms the result of Guasoni et al. (2008a) which states that
the fractional Brownian motion with Hurst parameterH ∈ (0, 1) has CFS. In fact, any Gaussian
si-process with a spectral density with a power tail has CFS. Another concrete example is the
integrated Ornstein–Uhlenbeck process, which corresponds to q = 0 and p = −2.

Processes with q ∈ (0, 1) are in some sense peculiar. On the one hand, they are ‘very
predictable’ in the sense that their sample paths are infinitely often differentiable. Indeed, since
the spectral measure has a finite second moment in this case, the si-process can be written as
the integral of a stationary Gaussian process with the same spectral measure (cf. Doob (1953,
p. 558)). Since the spectral measure has in fact finite moments of all orders if q > 0, the latter
stationary process has derivatives of all orders; see again Doob (1953, Section XI.9). On the
other hand, for q ∈ (0, 1), the Gaussian si-process with spectral density (2.1) does have CFS.
So in the context of Guasoni et al. (2008a), (2008b), modelling log prices with such a smooth
process does not introduce arbitrage opportunities. This is of course completely different from
what happens in classical theory.

The proof of Theorem 2.1 employs Theorem 1.1 of Cherny (2008) on Brownian moving
averages: the moving average process

Xt =
∫ t

−∞
(K(t − s)−K(−s)) dBs, (2.2)

where B is a standard Brownian motion, andK vanishes on the negative half-line and satisfies∫
R

(K(t − s)−K(−s))2 ds < ∞

for all t ≥ 0, has CFS. Conversely, our Theorem 2.1 also implies CFS for some moving
averages.

Corollary 2.1. A continuous Brownian moving average process X = (Xt : t ∈ [0, T ]) as in
(2.2), with K ∈ L2[0,∞) a nontrivial kernel, has CFS.
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It should be noted that Theorem 1.1 of Cherny (2008) is more general than Corollary 2.1.
Cherny considered nontrivial kernels K that satisfy the less restrictive condition that

∫
(K(t −

s) − K(−s))2 ds < ∞ for all t ≥ 0. Theorem 2.1(i) and Cherny’s result should be seen as
complementing each other. Some processes have tractable spectral measures, or are in fact
defined through their spectrum, while a moving average representation might not exist or is
untractable. In such cases Theorem 2.1 can be used to investigate the CFS property. Cherny’s
result is appropriate for situations where a moving average representation is known to exist,
while the spectral measure may be untractable.

3. Proof of the main result

3.1. Auxiliary lemmas

The two lemmas presented in this subsection are used in the proof of Theorem 2.1, but are
also useful in their own right. They state that the CFS property is preserved by an equivalent
change of measure and by adding an independent continuous process.

Lemma 3.1. LetX = (Xt : t ∈ [0, T ]) and Y = (Yt : t ∈ [0, T ]) be two continuous processes.
If the laws of X and Y are equivalent, then X has CFS if and only if Y has CFS.

Proof. Consider the canonical space (�,F ) of continuous functions on [0, T ]. On (�,F ),
let PX and PY be the distributions of the processes X and Y , respectively. It suffices to show
that, for every sub-σ -field G ⊆ F and A ∈ F , it holds that PX(A | G) > 0, PX-almost surely
if and only if PY (A | G) > 0, PY -almost surely. This is straightforward to verify and left to the
reader.

The next lemma states that, for independent continuous processes X and Y , the process
X + Y inherits the CFS property from X. This is a consequence of the fact that, conditionally
on Y , the process X + Y is a CFS process offset by a continuous function (the path Y ).
Hence, conditionally on Y , the process X + Y has CFS. By standard properties of conditional
expectations, this is then true unconditionally as well.

Lemma 3.2. Let X = (Xt : t ∈ [0, T ]) and Y = (Yt : t ∈ [0, T ]) be two independent
continuous processes. If X has CFS then X + Y has CFS as well.

Proof. Define Z = X + Y , and let (Ft ) be the natural filtration of Z. Let (F X
t ) and (F Y

t )

be the filtration generated by the processes X and Y , respectively.
Fix t ∈ [0, T ], f ∈ C0[t, T ], and ε > 0. By the tower property of conditional expectations,

P
(

sup
u∈[t,T ]

|Zu − Zt − f (u)| < ε

∣∣∣ Ft
)

= E
(

P
(

sup
u∈[t,T ]

|Zu − Zt − f (u)| < ε

∣∣∣ F X
t ∨ F Y

T

) ∣∣∣ Ft
)
.

By independence, the inner conditional probability equals �((f (u) − (Yu − Yt ))u∈[t,T ], t),
where, for g ∈ C0[t, T ],

�(g, t) = P
(

sup
u∈[t,T ]

|Xu −Xt − g(u)| < ε

∣∣∣ F X
t

)
.

Hence, since X has CFS, the inner probability is strictly positive almost surely. By the strict
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positivity of the conditional expectation operator, it also follows that

P
(

sup
u∈[t,T ]

|Zu − Zt − f (u)| < ε

∣∣∣ Ft
)
> 0

almost surely.

3.2. Proof of Theorem 2.1

We begin with the proof of part (i) and Corollary 2.1. First observe that X can be written
as the sum of two independent continuous Gaussian si-processes, one with spectral density f
and one with a singular spectral measure µs . In view of Lemma 3.2 it suffices to show that
the process with spectral density f has CFS. Therefore, we proceed without loss of generality
under the assumption that µ is absolutely continuous, i.e. that µs = 0.

The condition on f implies that f (λ) > 0 for almost every λ outside [−λ0, λ0]. Since
changing f on a Lebesgue null set does not change the law of the si-process, we may assume
that f is strictly positive outside [−λ0, λ0]. Now define a new spectral density g : R → R by

g(λ) =
{
f (λ), |λ| > λ0,

λ2, |λ| ≤ λ0.

Let Y be a Gaussian si-process with spectral density g. By construction, it holds that∫
R

log g(λ)

1 + λ2 dλ > −∞.

Since the spectral densities f and g are equal outside a bounded set, TheoremA.1 inAppendixA
then implies that the laws of (Xt : t ∈ [0, T ]) and (Yt : t ∈ [0, T ]) are equivalent. Hence, by
Lemma 3.1, it suffices to prove that the process (Yt : t ∈ [0, T ]) with spectral density g has
CFS.

It follows from the assumption on f and the construction of g that∫
R

g(λ)

λ2 dλ < ∞

and ∫
R

log g(λ)/λ2

1 + λ2 dλ > −∞.

Indeed, note that sincef is a density, it has a finite integral outside [λ0, λ0], andg(λ) = λ2 inside
[λ0, λ0]. Hence, by TheoremA.3 inAppendixA, we have the representation g(λ)/λ2 = |ψ(λ)|2
for a Hardy function ψ ∈ H

2+ satisfying ψ(λ) = ψ(−λ); cf. Dym and McKean (1976, p. 38).
By the Paley–Wiener theorem for Hardy functions (see Theorem A.2 in Appendix A) we have
ψ = K̂ for some real valued K ∈ L2[0,∞). We conclude that g(λ) = λ2|K̂(λ)|2. But this
implies that the process Y with spectral density g can be realized as the moving average

Yt = 2π
∫ t

−∞
(K(t − s)−K(−s)) dBs, (3.1)

where B is a Brownian motion. Indeed, it follows from the Parseval relation that∫
R

K(t − s)eiλs ds = eiλt K̂(λ).
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So, for the moving average (3.1), we have

E YsYt =
∫

R

(eiλs − 1)(e−iλt − 1)|K̂(λ)|2 dλ,

which means that (3.1) indeed has spectral density λ2|K̂(λ)|2.
Finally, by Theorem 1.1 of Cherny (2008), the moving average process (Yt : t ∈ [0, T ]) has

CFS, which completes the proof of part (i) and Corollary 2.1.
The idea of the proof of statement (ii) is the following heuristic. A process with exponentially

decaying spectral density has very smooth, even analytic, paths. Therefore, it is enough to
observe the realized path on any interval [0, ε] to have complete knowledge of the whole
realized path.

More rigorously, we note that, by the condition of the theorem and the fact thatµ is a spectral
measure and, hence,

∫
(1 + λ2)−1µ(dλ) < ∞, we have∫

R

ea|λ|µ(dλ) < ∞. (3.2)

It follows that the polynomials lie dense in the space L2(µ) of functions on the line that are
square integrable with respect to µ; cf. e.g. Parthasarathy (2005, Proposition 6.4.1). Now let
(�,F ,P) be the underlying probability space on which the process X is defined, and let (Ft )
be its natural filtration. Then the spectral representation (1.1) defines a Hilbert space isometry
between the linear span H of the collection of random variables {Xt : t ≥ 0} in L2(�,F ,P)
and the linear span L of the collection of functions {et : t ≥ 0} in L2(µ), where

et (λ) = eiλt − 1

iλ
.

This isometry S : H → L is called the spectral isometry and is determined by the fact that
S(Xt ) = et for every t ≥ 0. Relation (3.2) implies that µ has finite moments of all orders.
The process X is therefore infinitely often differentiable in the mean-square sense; cf. Doob
(1953, pp. 535–537 and 558). Denoting the kth derivative by X(k) we have X(k)t ∈ H for all
k ∈ N and t ≥ 0. By repeatedly differentiating (1.1) we see that, for the image of X(k)t under
the spectral isometry, it holds that

(S(X
(k)
t ))(λ) = (iλ)k−1eiλt

for k ∈ N and t ≥ 0. Since the polynomials are dense in L, it follows that the random variables
{X(k)0 : k ∈ N} span the whole space H . In particular, every variableXt is an L2-limit of linear
combinations of random variables of the form X

(k)
0 . Since these variables are Fs-measurable

for every s > 0, this shows that Fs = Ft for all 0 < s < t . In other words, the process
X is completely determined by what happens immediately after time 0. It follows that, for
t ∈ (0, T ), the support of (Xu : u ∈ [t, T ]) given Ft equals the support of (Xu : u ∈ [t, T ])
given FT . The latter is obviously almost surely degenerate, which implies that the process does
not have CFS. This completes the proof of part (ii).

Appendix A

For the convenience of the reader, we collect in this appendix some known facts that we
used in the proof of our main theorem about the equivalence of Gaussian si-processes and about
Hardy functions.



Conditional full support of Gaussian processes with stationary increments 567

A.1. Equivalence of Gaussian si-processes

Let X be a continuous Gaussian si-process with spectral measure µ (as defined in the
introduction), defined on a probability space (�,F ,P). For every t > 0, let Ht be the closure
in L2(�,F ,P) of the linear span of the random variables {Xs : 0 ≤ s ≤ t} and let Lt be the
closure in L2(µ) of the linear span of the collection of functions {es : s ∈ [0, t]}, where

et (λ) = eiλt − 1

iλ
.

The spectral representation (1.1) implies that we have a Hilbert space isometry between HT

and LT , determined by the identification Xt ↔ et .
Krein’s alternative, a central result in the theory of stationary and si-processes, implies that,

for every T > 0, the space LT is either a reproducing kernel Hilbert space (RKHS) of entire
functions or LT = L2(µ); cf. Dym and McKean (1976, Section 6.4). We use the following
sufficient condition for the former case. See, e.g. Dym and McKean (1976, Exercise 5, p. 247).

Lemma A.1. Let f be the Lebesgue density of the absolutely continuous part of the spectral
measure µ of the Gaussian si-process X. If∫

R

log f (λ)

1 + λ2 dλ > −∞ (A.1)

then, for every T > 0, LT is an RKHS of entire functions.

Now suppose that µ is absolutely continuous, and let f be the spectral density of X, i.e.
the Lebesgue density of µ. Let Y be a second Gaussian si-process with absolutely continuous
spectral measure, with spectral density g. The following theorem essentially states that, for the
equivalence of si-processes, we have to consider only the spectral measure outside a bounded
set. For a proof, see van Zanten (2007, Theorem 5.1).

Theorem A.1. Suppose that the spectral density f of X satisfies (A.1) and that f is strictly
positive outside a bounded set. Then iff = g outside a bounded set, the laws of (Xt : t ∈ [0, T ])
and (Yt : t ∈ [0, T ]) are equivalent for every T > 0.

A.2. Hardy functions

Hardy functions play an important role in the theory of stationary and si-processes. We
recall a few facts needed in the proof of Theorem 2.1.

Definition A.1. A functionh that is analytic in the complex upper half-plane C
+ = {a+ib : a ∈

R, b > 0} is said to belong to the Hardy class H
2+ if

‖h‖2+ = sup
b>0

√∫
R

|h(a + ib)|2 da < ∞.

The Paley–Wiener theorem for Hardy functions asserts that the Hardy functions are exactly
the Fourier transforms of functions that vanish on the negative half-line. See, e.g. Section 2.3
of Dym and McKean (1976), or Theorem 19.2 of Rudin (1987).

Theorem A.2. If h ∈ H
2+ then there exists a function f ∈ L2[0,∞) such that

h(z) =
∫ ∞

0
eizxf (x) dx

for all z ∈ C
+. Moreover, ‖f ‖2

L2[0,∞)
= 2π‖h‖2

2+.
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For a Hardy function h ∈ H
2+ and b > 0, we define hb ∈ L2(R) by hb(a) = h(a + ib).

The preceding theorem implies that, for a function f ∈ L2[0,∞), the function hb converges
in L2(R) to a function h0+ as b ↓ 0, given by

h0+(a) =
∫ ∞

0
eiaxf (x) dx.

The function h0+ in fact completely determines h and satisfies the bound

∫
R

log |h0+(λ)|2
1 + λ2 dλ > −∞;

cf. Section 2.6 of Dym and McKean (1976).
The following result gives a converse statement. See, e.g. Dym and McKean (1976, p. 38).

Theorem A.3. Let f be a nonnegative, integrable function on R. If∫
R

log f (λ)

1 + λ2 dλ > −∞

then f = |h0+|2 for some Hardy function h ∈ H
2+. If f is symmetric then h0+(λ) = h0+(−λ)

for all λ ∈ R.
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