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Abstract

In this paper, we address the problem of testing goodness-of-fit for discrete dis-
tributions, where we focus on the geometric distribution. We define new likelihood-
based goodness-of-fit tests using the beta-geometric distribution and the type I dis-
crete Weibull distribution as alternative distributions. The tests are compared in
a simulation study, where also the classical goodness-of-fit tests are considered for
comparison. Throughout the paper we consider conditional testing given a minimal
sufficient statistic under the null hypothesis, which enables the calculation of exact p-
values. For this purpose, a new method is developed for drawing conditional samples
from the geometric distribution and the negative binomial distribution. We also ex-
plain briefly how the conditional approach can be modified for the binomial, negative
binomial and Poisson distributions. It is finally noted that the simulation method
may be extended to other discrete distributions having the same sufficient statistic,
by using the Metropolis-Hastings algorithm.
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1 Introduction

Let X1, X2, . . . , Xn be a random sample from a distribution F . Goodness-of-fit testing is

concerned with how well a family of distributions F fits the data as a probability model.

The null hypothesis is F ∈ F and the alternative hypothesis is F /∈ F . In-depth literature

on this topic includes D’Agostino and Stephens (1986). In the literature of goodness-of-fit

testing, most of the work has been focused on continuous distributions, i.e. F a family

of continuous distributions. For discrete distributions, the main interest has been in the

Poisson distribution which plays a special role in probability theory. Goodness-of-fit tests

for the Poisson distribution go at least back to Fisher (1950) and Rao and Chakravarti

(1956). More recent studies of the Poisson distribution are Spinelli and Stephens (1997)

and Rueda et al. (1991).

Common alternatives to the Poisson distribution are the negative binomial distribution

and its special case, the geometric distribution. The latter distribution is of particular

interest since it is the discrete counterpart of the exponential distribution, and is hence an

important distribution with various applications, for example in survival analysis, reliability

analysis and queuing theory. Bracquemond et al. (2002) presented a comprehensive study

of different goodness-of-fit test statistics for the geometric distribution and a comparison

between them in a simulation study. Another paper considering tests for the geometric

distribution is Ozonur et al. (2013). The present paper will mainly be concerned with

goodness-of-fit testing for the geometric distribution, although several ideas considered can

easily be modified to cover other discrete distributions.

Traditional goodness-of-fit tests, both in the continuous and discrete distribution cases,

are the Kolmogorov-Smirnov, Cramér-von Mises and Anderson-Darling tests, see for exam-

ple D’Agostino and Stephens (1986). Various methods are used for finding critical values,

typically based on standard asymptotic techniques or parametric bootstrapping. There are,

however, also other methods or tricks available, often used to tailor goodness-of-fit testing

for specific models.

One such “trick”, which will be the main tool in the present paper, is to condition on

sufficient statistics under the null hypothesis model to be tested. Such approaches go back
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to the 1950s. More specifically, Fisher (1950) obtained in this way exact versions of the chi-

squared test and an alternative test based on the dispersion for the Poisson distribution,

using the fact that the sum of the observations is a sufficient statistic in this case. As

a follow-up, Rao and Chakravarti (1956) used the same idea to derive an exact test for

the Poisson case based on a likelihood ratio statistic (see Section 3.3.1). Conditioning

on sufficient statistics has also been used recently in Beltrán-Beltrán and O’Reilly (2019)

and Puig and Weiß (2020). While the just cited papers have considered models with one

unknown parameter under the null hypothesis, Heller (1986) did goodness-of-fit testing for

the two-parameter negative binomial distribution, assuming both parameters are unknown.

Then she conditioned on the sum of the observations in order to eliminate the probability

parameter and then using an asymptotic approach having only one unknown parameter.

Often, the sufficient statistic under the null model is easy to find, but still the calculation

of critical values or p-values for the conditional tests can be problematic. Usually it will

be necessary to sample from the conditional distributions given the sufficient statistic.

For goodness-of-fit testing in continuous distributions, and in particular in models where

there are more than one parameter, this may however not be straightforward. For possible

approaches, see Lindqvist and Taraldsen (2005), Lindqvist et al. (2020), Lockhart et al.

(2007).

For the most common discrete distributions, like the binomial and the Poisson distribu-

tion, it is straightforward and well known how to do conditional sampling (González-Barrios

et al., 2006). How to perform conditional sampling for the geometric distribution and the

negative binomial distribution is, apparently, less studied. González-Barrios et al. (2006)

derive the conditional distribution for this case, but does not advice a way of simulating

from it. In Section 3.1 we show how this can be done by using the so called “bars and

stars” framework of Feller (1968). It is believed that the associated algorithm is new in

goodness-of-fit studies of the geometric distribution. An extension to the negative binomial

distribution is given in the Appendix. Another way of obtaining conditional samples in

discrete distributions is suggested by Beltrán-Beltrán and O’Reilly (2019), based on the so

called Rao-Blackwell distribution.
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The most important ingredient of a goodness-of-fit test is of course the test statistic. The

three standard tests, the Kolmogorov-Smirnov, the Cramér-von Mises and the Anderson-

Darling test, are already mentioned. These are examples of tests based on the empirical

distribution function of the data. While the Kolmogorov-Smirnov statistic considers the

maximal difference between the null model and the empirical distribution of the data, the

two other tests are based on the corresponding integrated squared difference. A well known

fact is that the Anderson-Darling statistic differs from the Cramér-von Mises statistic

in that it gives more weight to extreme values of the observations. There are in the

literature also considered other test statistics that are known to be large when the null

hypothesis model does not hold, but without connection to particular alternative models.

Examples are chi-squared tests and tests based on Fisher’s index of dispersion, which is the

ratio of the variance to the mean, and is well known to be 1 for the Poisson distribution.

Closely related to these tests are the tests derived by Kyriakoussis et al. (1998) based

on characterizations of the Poisson, binomial and negative binomial distributions by their

power-series representations (see Section 3.3.2).

The above tests are essentially not tailored for specific alternative distributions. There

might in applications be of importance, however, to have tests that are particularly powerful

for given alternative distributions. One purpose of the present paper is to investigate how

well the standard goodness-of-fit tests for the geometric distribution will do compared to

tests tailored for specific alternatives.

A classical problem is to test the Poisson distribution versus models for over-dispersion,

such as the negative binomial distribution. The above cited paper by Puig and Weiß (2020)

gives another example. These authors considered testing of the Poisson distribution versus

alternatives with log-convex probability generating functions, shown to have important

applications in biodosimetry.

Weinberg and Gladen (1986)) considered human fecundability data, using the geometric

distribution to model the number of menstrual cycles required to achieve pregnancy. It

is then reasonable to believe that the parameter p of the geometric distribution varies

between couples. The cited authors showed how to model this variation by means of
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beta distributions, which leads to counts following a so called beta-geometric distribution.

Subsequently, Paul (2005) studied goodness-of-fit testing for the geometric distribution by

testing versus the alternative being the beta-geometric distribution, using a score test and

a likelihood ratio test. We return to this in Section 3.3.2.

In reliability, a classical problem is to test the null hypothesis of an exponential distribu-

tion versus the alternative of a Weibull distribution. This may be done in a straightforward

manner using a likelihood ratio test. In the discrete case, this would mean to test the geo-

metric distribution versus some kind of discrete Weibull distribution. We will consider this

problem in Section 3.3.3, using the so called type I discrete Weibull distribution, see for

example Bracquemond and Gaudoin (2003).

As a final comment on the use of conditional testing, one might ask what is possibly

lost in power by such an approach when compared to unconditional ones. We have not

pursued this problem, but refer to Lockhart et al. (2009) who concluded from a particular

study that calculated p-values from conditional tests are highly correlated with p-values

found by parametric bootstrapping. An apparent advantage with the conditional tests is,

moreover, that these tests are exact, while the bootstrap based tests are not exact (albeit

almost so).

In the second section, we introduce how conditional tests are used in goodness-of-fit

testing with discrete null hypothesis. We also cover how the p-values and powers are

calculated with Monte Carlo methods in that setting. In the third section we present our

method for drawing conditional simulations from the geometric distribution. It is based on

the so-called stars and bars representation, introduced by Feller (1968). In the same section,

we also introduce some classical test statistics and define new likelihood based tests. In

the end of the section, there are two examples where the data is simulated from the beta-

geometric and the discrete Weibull distribution of type I and we calculate the conditional

p-values for both cases. The fourth section consists of the power study and simulated type

I errors. In the fifth section we consider a real life data set and use previously mentioned

methods to test if the geometric distribution fits the data. The sixth section consists of

conclusions and a brief outline for possible future work in this subject. The last section is
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the appendix. There are proofs, algorithm descriptions, method for the negative binomial

and parameterizations of the distributions we used. References are at the very end of this

paper.

In the following we shall let N = {1, 2, . . .} and N0 = {0, 1, 2, . . .}. A sample of

random variables Y1, Y2, . . . , Yn is denoted shortly in its vector form by a bold letter,

Y = (Y1, Y2, . . . , Yn). Bold P is reserved for the probability function to differentiate it

from other functions. Notation for different distributions and the parametrizations are

specified in the appendix.

2 Conditional Tests in Goodness-of-Fit Testing for Dis-

crete Distributions

2.1 Calculation of Conditional p-values by Monte Carlo Simula-

tion

For illustration we focus on goodness-of-fit testing for the geometric distribution. Suppose

X = (X1, . . . , Xn) is a random sample from a population with values in N0. The null and

alternative hypotheses are as follows.

H0 : The random sample is from a population which has the geometric distribution,

H1 : The random sample is not from a population which has the geometric distribution.

Let D = D(X) be a test statistic such that large values of D are supposed to indicate

deviations from H0. Suppose that, under the null hypothesis, T = T (X) is a sufficient

statistic. Algorithm 2 in the Appendix calculates, by Monte Carlo simulation, the condi-

tional p-value of the test from the formula

pcond = P(D(X) ≥ D(xobs) | T (X) = t)

where xobs is the observed value of X and t is the observed value of T (X). For the Monte

Carlo simulation one therefore needs a way of simulating from the conditional distribution
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of X given T (X) = t. In the next Section we show how this can be done in the case of the

geometric distribution.

2.2 Calculation of Test Power of Conditional Tests

To calculate the power of a goodness-of-fit test for a given alternative distribution and for

a given significance level α, we proceed as follows. Draw a large number M data sets from

the alternative distribution. For the i-th such set, calculate the conditional p-value, pcondi

by Algorithm 2, i = 1, 2, . . . ,M . The Monte Carlo power of the test can then be calculated

as

β(α) ≈
∑M

i=1 I(pcondi ≤ α)

M
.

Power calculations require a large number of iterations. Let K be the number of iter-

ations used to calculate each conditional p-value. If M is the number of data sets drawn

to calculate the power, then in total we are doing M times K iterations. The number of

data sets M is chosen to be as large as possible depending on computational capabilities.

We chose M = 1000.

It should be noted that since we are dealing with discrete distributions, for a given

data set x with T (x) = t, there are only finitely many possible data sets in the conditional

distribution of X given T (X) = t. This means that, although we fix a significance level α

and are guaranteed a size of the test that is ≤ α, the size may be strictly less than α. This

problem is of course of less concern if n is large.

3 Goodness-of-fit Testing in the Geometric Distribu-

tion

3.1 Conditional Sampling from the Geometric Distribution

Let X1, X2, . . . , Xn be iid random variables, such that Xi ∼ Geom(p) for all i = 1, 2, . . . , n,

i.e.,

P(Xi = x) = p(1− p)x for x = 0, 1, 2, . . .
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Then T (X) =
∑n

i=1Xi = t is a sufficient statistic. The conditional distribution of X given

T (X) = t is calculated as

P(X = x | T (X) = t) = P(X1 = x1, X2 = x2, . . . , Xn = xn |
n∑
i=1

Xi = t)

=
P(X1 = x1, X2 = x2, . . . , Xn = xn,

∑n
i=1Xi = t)

P(
∑n

i=1Xi = t)

=


P(X1 = x1, X2 = x2, . . . , Xn = xn)

P(
∑n

i=1Xi = t)
, if

∑n
i=1Xi = t

0, if
∑n

i=1Xi 6= t

.

If we restrict the support to be S = {(x1, x2, . . . , xn) :
∑n

i=1 xi = t, x1, x2, . . . , xn ∈ N0},

we get

P(X = x | T (X) = t) =
pn(1− p)

∑n
i=1 xi

pn(1− p)t
(
t+n−1
n−1

)
=

1(
t+n−1
n−1

) . (1)

As the conditional probability (1) does not depend on x ∈ S, the distribution of X | T (X) =

t) is uniform on S, i.e., on the set of all possible ways that n non-negative integers sum

to t. Feller (1968) introduced a representation of such sums through the so called “stars

and bars” framework. To construct one such sum, we lay down t stars and put n− 1 bars

between them. The sum is constructed by counting the number of stars between the bars,

letting the first element be the number of stars in front of the first bar, and letting the last

one be the number to the right of the last bar. For example, for t = 8 and n = 4, Figure 1

represents the sum 1 + 0 + 3 + 4 = 8.

Figure 1: Stars and Bars Representation

The following lemma states that the representation gives rise to any possible sum and

conversely. The proof is given in Appendix.
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Lemma 1 For t, n ∈ N, let

L1 =

{
(x1, x2, . . . , xn) :

n∑
i=1

xi = t, x1, x2, . . . , xn ∈ N0

}
and

L2 = {(k1, k2, . . . , kn−1) : k1 < k2 < . . . < kn−1 < t+ n, k1, . . . , kn−1 ∈ N} .

Define a transformation φ : L2 → L1, such that

φ(k1, k2, . . . , kn−1) =

= (k1− 1, (k2− 2)− (k1− 1), . . . , (kn−1− (n− 1))− (kn−2− (n− 2)), t− (kn−1− (n− 1))).

Then φ is a bijection between the sets L2 and L1.

Example 1 The kj in L2 are the positions of the bars in the stars and bars representation.

For example, the stars and bars representation of n = 4 and t = 1 + 0 + 3 + 4 = 8 in Figure

1, correspond to

k1 = 2, k2 = 3, k3 = 7.

Lemma 2 Let t, n ∈ N. The set{
(x1, x2, . . . , xn) :

n∑
i=1

xi = t, x1, x2, . . . , xn ∈ N0

}

has
(
t+n−1
n−1

)
elements.

The proof of Lemma 2 can be found in Feller (1968). In fact, it also follows from (1).

Algorithm RandomKSubsets from Wilf (1999) is a method for drawing the so-called

bars k1, . . . , kn−1 uniformly from L2. We have modified it by making recursive calls into

iterative ones. This allows the algorithm to be used with large values of n and t more

efficiently and there are no issues with recursion depth limitations. It is described by

Algorithm 1 in Appendix, where a proof of its correctness is also given (Lemma 3).

Algorithm 1 gives us a sample k1, . . . , kn−1 and the last step is to transform it back into

an element from L1. We use the previously defined function φ for it and

φ(k1, k2, . . . , kn−1) ∼ X | T (X) = t.
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3.2 Standard Goodness-of-fit Test Statistics for Discrete Distri-

butions

The following is a general setup for calculation of test statistics for the most common

goodness-of-fit tests, with focus on the geometric distribution. The setup essentially follows

the one of Spinelli and Stephens (1997) who in particular studied the performance for the

Poisson distribution.

Let x1, x2 . . . , xn be the observed sample and t =
∑n

i=1 xi the sufficient statistic. Maxi-

mum likelihood estimator for the geometric distribution is given by

p̂ =
n

t+ n
.

In order to avoid trivial cases, we will assume t > 0 and hence 0 < p̂ < 1. Now, define

for j = 0, 1, 2, . . .,

oj = #{i : xi = j} = observed number of values j for the sample

p̂j = p̂(1− p̂)j = probability of value j in geometric distribution

êj = np̂j = estimated expected number of values j for the sample

From this define, for k = 0, 1, 2, . . .,

Ẑk =
k∑
j=0

(oj − êj) ≡ Ok − Êk

Ĥk =
k∑
j=0

p̂j

where Ok =
∑k

j=0 oj is the observed number of values ≤ k in the sample and Êk = nĤk is

its estimated expected value.
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Further, define

Mu
0 = min{j : oj′ = 0 for all j′ > j}

Mu
1 = min{j : pj′ < 10−3/n for all j′ > j}

Mu = max{M0,M1}

M l
0 = max{j : oj′ = 0 for all j′ < j}

M l
1 = max{j : pj′ < 10−3/n for all j′ < j}

M l = min{M0,M1}

3.2.1 The Cramér-von Mises Test

The Cramér-von Mises test statistic is defined by

W 2 =
1

n

Mu∑
M l

Ẑ2
i p̂i.

3.2.2 The Anderson-Darling Test

The Anderson-Darling test statistic is defined by

A2 =
1

n

Mu∑
Ml

Ẑ2
i p̂i

Ĥi(1− Ĥi)
.

3.2.3 The Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test statistic should ideally be defined as maxk=1,2,... |Zk|. As

shown by Bracquemond et al. (2002), the maximum will always occur for a k ≤ Mu
0 , so

that we define

KS = max
k=0,1,2,...,Mu

0

|Zk|.

To see this, recall that Ẑk = Ok − Êk. Now Ok = n for k ≥ Mu
0 , while Êk < n and Êk is

increasing in k. Hence, for k ≥M0, |Zk| = Zk and is decreasing.
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3.3 Likelihood Based Tests

In the present subsection we study tests that are derived with the aim of having high

power against given alternative distributions. The main tool is here to consider likelihood

functions.

3.3.1 Test Versus Heterogeneous Geometric Observations

In this subsection we follow the idea of Rao and Chakravarti (1956), who considered the

Poisson distribution where we consider the geometric distribution.

Suppose X1, X2, . . . , Xn are independent and geometrically distributed, but with differ-

ent parameters pi. The log likelihood for data x1, x2, . . . , xn would then be

`(p1, p2, . . . , pn) =
n∑
i=1

(log(pi) + xi log(1− pi)),

which is maximized by p̂i = 1/(1 + xi) for i = 1, 2, . . . , n. The relevant null hypothesis is

now

H0 : p1 = p2 = . . . = pn = p.

The log likelihood under the null hypothesis is then `(p, . . . , p) = n log(p) + t log(1 − p)

where t =
∑n

i=1 xi, which is maximized by p̂ = n/(n+ t).

The likelihood ratio statistic can therefore be written

`(p̂1, p̂2, . . . , p̂n)− `(p̂, . . . , p̂)

=
n∑
i=1

[
log

(
1

1 + xi

)
+ xi log

(
xi

1 + xi

)]
− n log

(
n

n+ t

)
− t log

(
t

n+ t

)
=

n∑
i=1

[xi log(xi)− (xi + 1) log(xi + 1)]− n log

(
n

n+ t

)
− t log

(
t

n+ t

)
Since we consider conditional tests given

∑n
i=1Xi = t, we may exclude the last terms above,

which after rewriting the first sum gives the test statistic

CR =
n∑
i=1

[xi log(xi)− (xi + 1) log(xi + 1)] =

Mu
0∑

j=M l
0

oj
(
j log j − (j + 1) log(j + 1)

)
where we use 0 log 0 = 0.
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3.3.2 The Beta-Geometric Distribution

In the previous subsection we considered the alternative hypothesis that the observations

were geometrically distributed, but with possibly different parameters pi. Suppose now

that these pi are drawn independently from the beta distribution.

Thus, for a single observation X we assume that it is geometrically distributed with

parameter p, where p is generated from the beta-distribution with parameters α > 0 and

β > 0. Let B(α, β) be the beta function, defined by

B(α, β) =

∫ 1

0

pα−1(1− p)β−1dp =
Γ(α)Γ(β)

Γ(α + β)
.

Then it is seen that the unconditional distribution of X is what has been named the

beta-geometric distribution,

P(X = x) =

∫ 1

0

p(1− p)x p
α−1(1− p)β−1

B(α, β)
dp =

B(α + 1, β + x)

B(α, β)
(2)

for x = 0, 1, 2, . . .. As suggested by Paul (2005), a useful reparametrization is

π =
α

α + β
, θ =

1

α + β
. (3)

With this parametrization it is seen that θ = 0 corresponds to the geometric distribution

with p = π. Tests for the null hypothesis of geometric distribution can hence be derived

by testing

H0 : θ = 0 vs. θ > 0.

Using the reparametrization (3), we find from (2), noting that α = π/θ, β = (1− π)/θ and

using properties of the gamma function,

P(X = x) =
α
∏x

j=1(β + x− j)∏x
j=0(α + β + x− j)

=
π
∏x−1

j=0 (1− π + jθ)∏x
j=0(1 + jθ)

(4)

for x = 0, 1, . . .. (Note that the formula also holds for x = 0, giving P(X = 0) = π, since

an empty product by convention equals 1.)

The log-likelihood for data x1, x2, . . . , xn with values in N0 is hence, see also Paul (2005),

`(x; π, θ) = n log π +
n∑
i=1

xi−1∑
j=0

log(1− π + jθ)−
n∑
i=1

xi∑
j=0

log(1 + jθ) (5)
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Differentiating with respect to θ and π give, respectively,

∂`

∂θ
=

n∑
i=1

xi−1∑
j=0

j

1− π + jθ
−

n∑
i=1

xi∑
j=0

j

1 + jθ
,

∂`

∂π
=

n

π
−

n∑
i=1

xi−1∑
j=0

1

1− π + jθ
.

Letting θ = 0 in the expression for ∂`
∂θ

gives the score statistic for testing H0 : θ = 0,

namely

S =
n∑
i=1

xi−1∑
j=0

j

1− π
−

n∑
i=1

xi∑
j=0

j =
π
∑n

i=1 x
2
i − (2− π)

∑n
i=1 xi

2(1− π)
. (6)

The score test in general rejects H0 : θ = 0 for large values of |S|. Indeed, it can be

shown from the rightmost expression in (6) that, under H0 where the Xi are geometrically

distributed with probability p = π, we have E(S) = 0. Paul (2005) replaced π by the

maximum likelihood estimate p̂ under H0, and divided the expression in (6) by an estimate

of the standard deviation of S under H0, which is
√
n/p̂. The resulting statistic then has

an asymptotically standard normal distribution under H0.

Let now m1 = (1/n)
∑n

i=1 xi and m2 = (1/n)
∑n

i=1 x
2
i be the first and second empirical

moments, respectively, from the data x. Replacing π by p̂ = n/(t + n) = 1/(1 + m1) we

can write the right hand side of (6) as

n

m2

1+m1
−
(

2− 1
1+m1

)
m1

2(1− 1
1+m1

)
= n

m2 −m1 − 2m2
1

2m1

.

Since we consider conditional testing given t, or equivalently given m1, we may use the test

statistic.

SB = m2 −m1 − 2m2
1. (7)

Actually, we could also have deleted the other terms involving m1. We keep them, however,

due to the fact that the sign of SB is of some importance, as explained below.

Note now that, since θ ≥ 0 is a model restriction, the maximum of (5) may occur at

the boundary point where θ = 0. But for θ = 0, (5) is simply the log likelihood of the

geometric distribution and is hence maximized by π = p̂. Thus if SB > 0, then we know

that the maximum of (5) is not at a boundary point with θ = 0, and must hence be at a
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point (π, θ) with θ > 0. This point may hence presumably be found by using the partial

derivatives derived above. If, instead, SB < 0, then the maximum likelihood estimate is

likely to be at the point (p̂, 0).

It follows from the above that if SB < 0, then the numerical value is uninteresting,

because it corresponds to parameter values outside of the parameter set and intuitively

to parameters for which we would not reject the null hypothesis. We therefore suggest

to replace SB by SB0 = max(0, SB) and call this the score test statistic for the null

hypothesis θ = 0.

Paul (2005) considered the score test and in addition the likelihood ratio test based on

the log likelihood (5) and standard asymptotics (taking into account the fact that the null

hypothesis is on the boundary of the parameter space). He further noted that the likelihood

ratio test, as well as the score test, are rather liberal (non-conservative) as regards the size.

He therefore found that a bootstrap test might be preferable.

Singh et al. (2014) considered both maximum likelihood estimation and moment esti-

mation of α and β. The moment estimators are obtained as follows. First, define

µ1 ≡ E(X) =
β

α− 1
for α > 1,

µ2 ≡ E(X2) =
β(α + 2β)

(α− 1)(α− 2)
for α > 2.

Solving for α and β we get

α =
2(µ2 − µ2

1)

µ2 − µ1 − 2µ2
1

,

β = µ1(α− 1).

The moment estimators α̃ and β̃ for α and β are obtained by substituting the empirical mo-

ments m1 and m2 for µ1 and µ2, respectively. This leads to an estimator for the parameter

θ which can be expressed by

θ̃ = (α̃ + β̃)−1 =
m2 −m1 − 2m2

1

2m2 −m2
1 +m1m2

.

It is noticeable that the numerator of θ̃ equals SB (see (7)). Thus θ̃ and SB have the

same sign (since the denominator above is always positive). As already noted, this sign is
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of importance for maximum likelihood estimation based on (5). Note, on the other hand,

that in a conditional test using θ̂ we cannot ignore the denominator of θ̃, since it contains

m2.

As a final note in this subsection, the test statistic SB0 appears to be essentially identi-

cal to the one for the geometric distribution which is derived in Kyriakoussis et al. (1998).

These authors derived test statistics from characterizations of distributions given by power-

series distribution laws, which include Poisson, binomial, and the negative binomial distri-

bution. Their general goodness-of-fit test statistic is

ĉ =
1
n

∑n
i=1Xi(Xi − 1)(
1
n

∑n
i=1Xi

)2 =
m2 −m1

m2
1

(8)

and their test for the geometric distribution rejects the null hypothesis if a normalized

version of

|ĉ− 2| = |m2 −m1 − 2m2
1|

m2
1

is large, where the normalization leads to an asymptotically standard normal distribution

under H0. Since the normalization is a function of m1 only, and the denominator of (8)

can be deleted, using their statistic in a conditional testing we in fact end up with the test

statistic |SB|.

Example

Suppose we have observed the data in Table 1, which are simulated from the beta-geometric

distribution with n = 100, π = 0.4, θ = 0.125.

Using the described test statistics for testing the null hypothesis of a geometric distri-

bution, we obtained the conditional p-values given in Table 2. We note that also the three

standard tests are able to detect the deviation from the geometric distribution here, while

p-values are remarkably lower for the tests derived above that are tailored for detecting

deviations in the direction of a beta-geometric distribution. In fact, the same low p-values

are obtained for tests versus the discrete Weibull distribution that will be studied below.

Maximum likelihood estimates for π and θ in the beta-geometric distribution can be

calculated using the R-package VGAM, giving π̂ = 0.4274, θ̂ = 0.1166. These estimates are
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used to calculate the estimated expected counts in Table 1. It is remarkable that these are

much closer to the observed values than the ones estimated from the geometric distribution.

j oj êgj êbj

0 42 35.4 42.7

1 24 22.8 21.9

2 11 14.8 12.2

3 8 9.5 7.3

4 4 6.2 4.6

5 4 4.0 3.0

6 0 2.6 2.1

7 1 1.7 1.4

8 0 1.1 1.0

9 2 0.7 0.8

10 2 0.4 0.6

11 0 0.3 0.4

12 0 0.2 0.3

13 0 0.1 0.3

14 0 0.1 0.2

15 1 0.0 0.2

16 1 0.0 0.1

Table 1: Data simulated from the beta-geometric distribution with n = 100, π = 0.4, θ =

0.125. The column oj gives the number of observations xi that resulted in xi = j. The two

last columns give the estimated expected frequencies under a geometric distribution and

beta-geometric distribution, respectively.
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Statistic W 2 A2 KS CR SB SB0 θ̂ |SW | SWL SWU

pcond 0.034 0.028 0.059 0.009 0.004 0.004 0.004 0.005 0.004 0.996

Table 2: Conditional p-values obtained by simulating 10000 data sets from the conditional

distribution

3.3.3 The discrete Weibull distribution of type I

Let for x = 0, 1, 2, . . .,

P(X = x) = qx
β − q(x+1)β (9)

where 0 < q < 1 and β > 0. This is the probability distribution of the type I Weibull dis-

tribution, which was introduced by Nakagawa and Osaki (1975). We denote it by W(q, β).

The geometric distribution with parameter p is now a special case obtained when q = 1−p

and β = 1.

The R-package DiscreteWeibull contains routines for this distribution, including simu-

lation of data and estimation of parameters.

The discrete hazard rate of a random variable with values in the (nonnegative) integers

can be defined by (Barlow et al., 1963) λ(x) = P(X = x | X ≥ x). From (9) we get

λ(x) =
P(X = x)

P(X ≥ x)
=
qx

β
i − q(xi+1)β

qx
β
i

= 1− q(x+1)β−xβ

which is seen to be increasing in x if β > 1 and decreasing in x if β < 1, and constant equal

to p when β = 1, which corresponds to the geometric distribution.

Suppose now we have data x1, x2, . . . , xn with values in N0. Testing the null hypothesis

that the data come from the geometric distribution, is now equivalent to testing H0 : β = 1

vs. H1 : β 6= 1, or possibly the one-sided versions of the alternative. The testing can be

done by a likelihood ratio test. It follows from (9) that the log-likelihood for the sample

x1, x2, . . . , xn from the type I Weibull distribution is given by

`(q, β) =
n∑
i=1

ln
(
qx

β
i − q(xi+1)β

)
.
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The likelihood ratio test statistic can be computed by calculating the maximum likelihood

estimates of q and β, and of p, which is the parameter under the null hypothesis model.

Details are given by Vila et al. (2019), while computations can be done using the R-package

DiscreteWeibull.

A score test can be derived in a way similar to what we did in Section 3.3.2 for the beta-

geometric distribution. First, the partial derivative with respect to β of the log-likelihood

function `, is given by

∂`

∂β
=

n∑
i=1

qx
β
i xβi ln(q) ln(xi)− q(xi+1)β(xi + 1)β ln(q) ln(xi + 1)

qx
β
i − q(xi+1)β

The score statistic of H0 can then be found by letting β = 1, which leads to

∂`

∂β
|β=1 =

ln(q)

1− q

n∑
i=1

(xi ln(xi)− q(xi + 1) ln(xi + 1)) . (10)

It can now be checked that if the xi are from the geometric distribution with parameter

p, the expected value of (10) is 0 (noting that q = 1 − p). The standard approach is now

to estimate q by 1− p̂ (from the geometric distribution) and divide (10) by the estimated

standard deviation, in order to obtain a test statistic which is standard normally distributed

under the null hypothesis. We shall, however, consider conditional testing, conditioning on∑n
i=1Xi or, equivalently, on p̂, and we may hence use the test statistic

SW =
n∑
i=1

[(1− p̂)(xi + 1) ln(xi + 1)− xi ln(xi)] .

where p̂ = n/(n +
∑

i xi). If xi = 0, we shall let xi ln(xi) = 0. Note that we have changed

the order of the terms inside the sum as compared to (10). This is because ln(q) < 0 and

will lead to a statistic SW with the same sign as ∂`
∂β
|β=1. Then for the two-sided alternative,

β 6= 1, we should use the statistic |SW | as the test statistic. A more powerful test can

then be defined for the two one-sided alternatives, by using SWU = SW if the alternative

is β > 1 and SWL = −SW for the alternative β < 1, and reject in both cases for high

values of the test statistic.

The resemblance between the statistics SW and CR is striking. In fact, CR is obtained

from SW by letting p̂ = 0 and switching the sign. Simulations and p-value calculations in

the following will indicate the possible difference between their merits.
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Example

Suppose we have observed the data in Table 3, which are simulated from a type I discrete

Weibull distribution with n = 50, q = 0.8, β = 1.4 using the R-package DiscreteWeibull.

Using all the tests considered so far in the paper, we obtained the conditional p-values

given in Table 4. We note that also the three standard tests are able to detect the deviation

from the discrete Weibull distribution here, while p-values are remarkably lower for the tests

|SW | and SWL, which are tailored for detecting deviations in the direction of the discrete

Weibull distribution. It should be noted, however, that the test based on CR as well as

the tests versus the beta-geometric distribution are useless for these data. The reason for

this last fact is that the beta-geometric distribution always increases the variance of the

data as compared to the geometric distribution, while the discrete Weibull with β > 1

decreases the variance (a property well known for the continuous Weibull distribution).

Thus a beta-geometric distribution would have difficulties fitting these data.

Maximum likelihood estimates for π and θ are calculated as q̂ = 0.7239, β̂ = 1.267

using the R-package DiscreteWeibull. These estimates are used to calculate the estimated

expected counts in Table 3. Again, these are much closer to the observed values than the

ones estimated from the geometric distribution.
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j oj êgj êbj

0 13 18.0 13.8

1 14 11.5 13.2

2 10 7.4 9.3

3 8 4.7 5.9

4 1 3.0 3.5

5 1 1.9 2.0

6 0 1.2 1.1

7 2 0.8 0.6

8 1 0.5 0.3

Table 3: Data simulated from a type I Weibull distribution with n = 50, q = 0.8, β = 1.4.

The column oj gives the number of observations xi that resulted in xi = j. The two last

columns give the estimated expected frequencies under a geometric distribution and type

I Weibull distribution, respectively.

Statistic W 2 A2 KS CR SB SB0 θ̂ |SW | SWL SWU

pcond 0.072 0.078 0.124 0.962 0.890 1.0 0.890 0.083 0.956 0.044

Table 4: Conditional p-values obtained by simulating 10000 data sets from the conditional

distribution. Two-sided (one-sided) testing using |SW | (SWU) means that the alternative

hypothesis is β 6= 1 (β > 1). The statistics SB and SB0 can only be used to detect an

increased variance compared to the geometric distribution. Here the test statistic SB is

negative, which makes these tests meaningless.
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4 Computer Simulations

4.1 Power Study

We did a power study with various sample sizes, alternative distributions and all previously

defined test statistics with significance level α = 0.1. In some cases we disregarded sample

sizes n = 5 or n = 100 if the powers were too close to the significance level or 1. We

used 1000 iterations to calculate each conditional p-value and another 1000 iterations to

calculate the power. These numbers were chosen to make sure each power calculation takes

less than half an hour of computation time.
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Alternative Sample size W 2 A2 KS CR SB0 |SW | SWL SWU

Pois(0.5)
n = 25 0.231 0.238 0.208 0.002 0.001 0.225 0.002 0.329

n = 100 0.736 0.734 0.705 0.000 0.000 0.763 0.000 0.851

Pois(1)

n = 5 0.119 0.119 0.110 0.008 0.008 0.122 0.008 0.134

n = 25 0.613 0.605 0.543 0.000 0.001 0.618 0.000 0.730

n = 100 0.996 0.996 0.992 0.000 0.000 0.998 0.000 0.999

Pois(2)
n = 5 0.332 0.321 0.163 0.003 0.003 0.339 0.003 0.395

n = 25 0.963 0.965 0.914 0.000 0.000 0.966 0.000 0.985

Bin(5, 0.3)
n = 5 0.418 0.410 0.294 0.000 0.000 0.403 0.000 0.432

n = 25 0.986 0.985 0.972 0.000 0.000 0.990 0.000 0.996

NB(5, 0.5)
n = 5 0.531 0.466 0.434 0.000 0.001 0.538 0.000 0.672

n = 25 0.997 0.998 0.986 0.000 0.000 1.000 0.000 1.000

NB(3, 0.7)
n = 25 0.395 0.393 0.339 0.001 0.002 0.407 0.001 0.526

n = 100 0.875 0.875 0.834 0.000 0.000 0.906 0.000 0.945

BG(2, 5)
n = 5 0.161 0.170 0.137 0.267 0.269 0.158 0.274 0.025

n = 100 0.565 0.565 0.514 0.676 0.705 0.608 0.706 0.007

BG(2, 2)
n = 5 0.122 0.132 0.108 0.205 0.201 0.125 0.207 0.018

n = 25 0.558 0.570 0.504 0.705 0.688 0.611 0.717 0.001

W(0.7, 0.8)
n = 25 0.320 0.338 0.282 0.503 0.432 0.353 0.492 0.006

n = 100 0.749 0.759 0.679 0.874 0.792 0.792 0.882 0.000

W(0.5, 1.5)
n = 25 0.428 0.431 0.385 0.000 0.001 0.438 0.000 0.567

n = 100 0.948 0.943 0.937 0.000 0.000 0.960 0.000 0.984

Table 5: Conditional power calculations with significance level α = 0.1.

As usual for a wide choice of alternative distributions, there is no best test against all

alternatives. From standard tests, W 2 has slightly higher powers with small sample sizes.

For larger sample sizes, A2 and W 2 are almost identical. Maximal type test KS has slightly

lower powers than the other standard tests. Tests CR, SB, SB0, θ̂, SWL and SWU are
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sensitive to the alternative distribution the data comes from. This makes them situational

and they lack the versatility of the standard tests. For example, CR, SB, SB0, θ̂ and SWL

outperform the standard tests when the data comes from BG or W distributions. SWU

outperforms other tests for Pois, Bin and NB distributions. |SW | is more versatile and

has almost identical powers to the standard quadratic tests. Likelihood based tests need a

versatile comparative alternative distribution to perform well. Type I Weibull distribution

fits this role, as we can see from |SW | powers. Test SWL is for the case where β < 1 and

SWU for β > 1. Under those conditions, they outperform |SW |.

4.2 Type I Errors

The type I error is defined to be the probability of falsely rejecting the null hypothesis if

it is actually true. We simulated this scenario by drawing samples under the null hypoth-

esis, from the geometric distribution with parameter p for various sample sizes n. If the

conditional p-value came out lower than the significance level, we had made a type I error.

We used 1000 iterations to calculate each conditional p-value and another 1000 iterations

to calculate the type I error.
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α = 0.05

Parameter Sample size W 2 A2 KS CR SB0 |SW | SWL SWU

p = 0.25

n = 5 0.048 0.047 0.035 0.037 0.035 0.044 0.037 0.039

n = 25 0.055 0.054 0.047 0.048 0.052 0.052 0.049 0.050

n = 100 0.056 0.056 0.055 0.054 0.056 0.057 0.056 0.053

p = 0.5

n = 5 0.027 0.026 0.018 0.018 0.017 0.023 0.017 0.020

n = 25 0.066 0.065 0.056 0.050 0.048 0.064 0.051 0.055

n = 100 0.042 0.045 0.036 0.050 0.049 0.039 0.059 0.050

p = 0.75

n = 5 0.002 0.002 0.000 0.001 0.001 0.001 0.001 0.001

n = 25 0.032 0.030 0.027 0.032 0.027 0.029 0.031 0.017

n = 100 0.045 0.045 0.040 0.046 0.040 0.046 0.041 0.043

α = 0.1

p = 0.25

n = 5 0.070 0.066 0.057 0.080 0.081 0.073 0.079 0.073

n = 25 0.105 0.113 0.096 0.111 0.118 0.103 0.112 0.106

n = 100 0.101 0.092 0.087 0.104 0.101 0.103 0.097 0.107

p = 0.5

n = 5 0.042 0.040 0.038 0.035 0.037 0.039 0.035 0.038

n = 25 0.101 0.108 0.071 0.095 0.089 0.110 0.098 0.107

n = 100 0.123 0.116 0.117 0.105 0.104 0.109 0.105 0.115

p = 0.75

n = 5 0.006 0.006 0.005 0.002 0.002 0.006 0.002 0.006

n = 25 0.062 0.060 0.060 0.059 0.057 0.070 0.057 0.032

n = 100 0.101 0.102 0.090 0.097 0.095 0.095 0.098 0.078

Table 6: Type I errors for various sample sizes, parameter p-values, test statistics and

significance levels α.

Some of the type I errors are slightly above the significance level but this is explained

by Monte Carlo errors from calculating the p-value and the error. This is because of the

discreteness of the data. If the parameter is p = 0.75, the samples consist largely of 0-s

and if the sample size is small, we often get only 0-s. In that case t = 0 and it is a singular
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case.

We left out θ̂ and SB from the power study and type I error study because they had

identical powers for all alternatives and SB0 should be preferred over SB.

5 Real Life Data

In this section we use real life data from Bracquemond et al. (2002). The data consist of

numbers of inspections between discovery of defects in an industrial process. Conditional

samples are used to calculate the distribution of goodness-of-fit test statistics following the

recipe from Section 2. Conditional p-values are reported to decide if we should reject or

not reject the null hypothesis, that the data comes from the geometric distribution.

In order to have the data on the form considered in this paper, we have subtracted 1

from each observation.

Value 0 1 2 3 4 ≥ 5

Observed frequency 6 4 3 3 2 10

Expected frequency, geometric 3.9 3.3 2.9 2.5 2.1 13.3

Expected freqquency, beta-geometric 5.0 3.9 3.1 2.5 2.0 11.5

Expected frequency, discrete Weibull 6.0 3.6 2.7 2.2 1.8 11.7

Table 7: Real life data. Observed and estimated expected frequencies for three different

models.

The data is given in Table 7. Note that the data xi ≥ 5 are lumped together in the

table for illustrative purposes. The observed values for these 10 observations are 6. 8, 10,

12, 13, 16, 17, 25, 28, and are used in the simulations and calculations.

Conditional p-values for the various tests are given in Table 8, calculated with 10000

Monte Carlo samples from the conditional distribution.
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Statistic W 2 A2 KS CR SB SB0 θ̂ |SW | SWL SWU

pcond 0.107 0.117 0.315 0.042 0.134 0.134 0.134 0.110 0.047 0.953

Table 8: Conditional p-values obtained by simulating 10000 data sets from the conditional

distribution.

The standard tests as well as the tests versus beta-geometric distribution still indicate

the possibility of a geometric distribution, having p-values > 0.10, while the hypothesis of

geometric distribution is in fact rejected at 5% significance level by the CR test and the

one-sided test versus the type I discrete Weibull distribution with β < 1. This possibility

of the Weibull distribution is also indicated by the fitted expected frequencies as shown in

Table 7.

The VGLM R-package gives the maximum likelihood estimates for the beta-geometric

model given by

π̂ = 0.1772

θ̂ = 0.0502

p̂ = 0.1378 (geometric distribution)

Also, the VGLM R-package gives a p-value for a likelihood ratio test verus the beta-

geometric to be 0.3276. This is higher than the values for SB and SB0, e.g. The reason

might be that the asymptotic chi-square distribution of the likelihood ratio is not appro-

priate for these data.

The DiscreteWeibull R-package estimates a type I Weibull model giving q̂ = 0.784, β̂ =

0.794, indicating a decreasing hazard rate, which corresponds well to the above rejection

of the one-sided test versus β < 1.

6 Conclusion and Future Work

In this paper we studied goodness-of-fit tests for discrete distributions obtained by con-

ditioning on the sufficient statistic under the null hypothesis. We developed in particular
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a method to draw conditional samples from the geometric distribution. These samples

are used for calculation of p-values for various goodness-of-fit tests. In addition to con-

sidering standard goodness-of-fit tests, we derived new likelihood based test statistics for

testing of the geometric distribution versus heterogeneity, as well as versus discrete Weibull

distributions with both increasing and decreasing hazard.

A power study was conducted to check how the tests perform against data from different

alternative distributions. Our simulations suggested that the two-sided test versus the type

I discrete Weibull distributions was able to detect bad fit for data from various alternative

distributions. The power results for this test, |SW |, were in fact generally similar to the

ones obtained for the standard quadratic goodness-of-fit tests.

The tests versus heterogeneous geometric distributions, CR and SB0, are doing well

for alternatives of this kind, as one should expect, and then usually much better than

the standard tests. The tests for heterogeneity are, however, mostly inferior versus other

alternatives. The reason is presumably that heterogeneity leads to increased variance as

compared to the geometric distribution. On the other hand, Weibull distributions with

decreasing hazard lead to an increased variance.

Real life data from Bracquemond et al. (2002) was considered and it was tested whether

the geometric distribution is a good fit. The calculated p-values suggested that the geo-

metric distribution might not be a good fit according to some of the tests.

For further work, a general method could be described for the case where T (X) =∑n
i=1Xi is sufficient for the family of distributions under the null hypothesis. This is the

case for the power series distributions where the probability distribution is of the form, see

Kyriakoussis et al. (1998) or González-Barrios et al. (2006),

P(X = x) =
a(x)θx

η(θ)
for x = 0, 1, 2, . . . (11)

where a(x) ≥ 0, θ > 0, η(θ) =
∑∞

y=0 a(y)θy. The Poisson, binomial, negative binomial and

geometric distributions are all of this kind. It can be shown from (11) (González-Barrios

et al., 2006) that for samples X = (X1, X2, . . . , Xn) from this distribution, we have

P(X = x | T (X) = t) ∝
n∏
i=1

a(xi) when
n∑
i=1

xi = t.
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Conditional samples with a given sum t can hence be obtained by the Metropolis-Hastings

algorithm using samples from the conditional geometric distribution as proposals.
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Appendix

Proof of Lemma 1

Proof: The function is defined correctly, because for any (k1, k2, . . . , kn−1) ∈ L2

k1−1+(k2−2)− (k1−1)+ . . .+(kn−1− (n−1))− (kn−2− (n−2))+ t− (kn−1− (n−1)) = t

and k1−1, (k2−2)−(k1−1), . . . , t−(kn−1−(n−1)) ∈ N0, as 0 < k1 < k2 < . . . < kn−1 < t+n.

Let us assume that (k1, k2, . . . , kn−1), (v1, v2, . . . , vn−1) ∈ L2, such that

φ(k1, k2, . . . , kn−1) = φ(v1, v2, . . . , vn−1).

This implies that

k1 + 1 = v1 + 1⇒ k1 = v1,

(k2 − 2)− (k1 − 1) = (v2 − 2)− (v1 − 1)⇒ k2 = v2,

. . .

(kn−1 − (n− 1))− (kn−2 − (n− 2)) = (vn−1 − (n− 1))− (vn−2 − (n− 2))⇒ kn−1 = vn−1,

and we can conclude that φ is injective.

Let us fix an element (x1, x2, . . . , xn) ∈ L1, then

φ

(
x1 + 1, x1 + x2 + 2, . . . ,

n−1∑
i=1

xi + (n− 1)

)
= (x1, x2, . . . , xn)

and

0 < x1 + 1 < x1 + x2 + 2 < . . . <
n−1∑
i=1

xi + n− 1 < t+ n,

which implies that φ is surjective. Injectivity and surjectivity imply that φ is bijective. �

Lemma 3 Let n, t ∈ N and (k1, . . . , kn−1) ∈ L2 be an arbitrary sample drawn according to

algorithm 1. Then it is drawn uniformly, i.e.

P(k1, . . . , kn−1) =
1(

n+t−1
n−1

)
for each (k1, . . . , kn−1) ∈ L2. The probability follows from Lemma 2.
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Proof: The task is to distribute t stars and n − 1 bars randomly on the positions

1, 2, . . . , t + n − 1. We start from the right. Then the probability of placing a bar in

position t+ n− 1 is n−1
t+n−1 . Then we proceed conditionally to the left and multiply proba-

bilities of placing bars or stars in order to calculate probabilities of a given configuration.

More precisely, let (k1, k2, . . . , kn−1) be an arbitrary sample drawn according to Algo-

rithm 1. We want to calculate

P(k1, . . . , kn−1). (12)

We know that the algorithm accepted n− 1 integers (i.e., placements kj of the bars) in the

process. Also, let V denote the number of integers that were not accepted. In total the

algorithm ran V +n−1 iterations. The probability (2) is a product of V +n−1 probabilities.

Let us look at the denominator and nominator separately. In the denominator we have

(t+ n− 1) · (t+ n− 2) · . . . · (t− V − 1). (13)

In the numerator we have

(n− 1) · (n− 2) · . . . · 2 · 1 = (n− 1)! (14)

from the accepted integers. In the numerator there is also

t · (t− 1) · . . . · (t− V − 1) (15)

from the integers that were not accepted. Combining (13), (14) and (15) we get

P(k1, k2, . . . , kn−1) =
(n− 1)!t(t− 1) · · · (t− V − 1)

(t+ n− 1) · · · (t− V − 1)

=
(n− 1)!t(t− 1) · · · (t− V − 1)(t− V − 2) · · · 2 · 1

(t+ n− 1) · · · (t− V − 1)(t− V − 2) · · · 2 · 1

=
(n− 1)! t!

(t+ n− 1)!

=
1(

t+n−1
n−1

) .
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�
Data: t and n

Result: k1, . . . , kn−1

initialization;

N = 0 ; // number of accepted integers

V = 0 ; // number of not accepted integers

I = t+ n− 1 ; // integer to consider

while N < n− 1 do

Draw p ∼ U [0, 1];

if p < (n− 1−N)/(t+ n− 1−N − V ) then

kn−1−N = I ; // integer I was accepted

N = N + 1;

I = I − 1;

Continue

end

if p ≥ (n− 1−N)/(t+ n− 1−N − V ) then

V = V + 1 ; // integer I was not accepted

I = I − 1;

Continue

end

end

Algorithm 1: Draw k1, . . . , kn−1 Uniformly
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Data: Integer V , Data set x, sufficient statistic T (x) = t and test statistic D

Result: pcond

initialization;

count = 0;

for 1 to V do

Draw y ∼ X | T (X) = t ;

if D(y) ≥ D(x) then

count = count + 1;

end

end

pcond = count/V

Algorithm 2: Monte Carlo Conditional p-value

Conditional Sampling from the Negative Binomial Distribution

Let Y1 ∼ NB(r1, p), Y2 ∼ NB(r2, p), . . . , Yn ∼ NB(rn, p) be independent random variables,

where the parameters r1, . . . , rn are assumed to be known. Then T (Y) =
∑n

i=1 Yi is

a sufficient statistic for p. In this subsection, we will show how the algorithm for the

geometric distribution in Section 2.1 can be used to draw samples from the conditional

distribution Y | T (Y) = t.

Note first that an argument like the one leading to (1) gives the following expression:

P(Y1 = y1, . . . , Yn = yn|
n∑
i=1

Yi = t) =

∏n
i=1

(
yi−ri−1

yi

)(
t+R−1

t

)
where R =

∑n
i=1 ri.

The following shows that we can sample from this conditional distribution by using the

algorithm for the geometric distriburion. Note first that we can write for i = 1, . . . , n,

Yi =

ri∑
j=1

Xij
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where Xij, i = 1, . . . , n; j = 1, . . . , ri are i.i.d. from Geom(p). Then

P(Y = y | T (Y) = t) = P(Y1 = y1, Y2 = y2, . . . , Yn = yn | T (Y1, Y2, . . . , Yn) = t)

= P

(
r1∑
j=1

X1j = y1, . . . ,

rn∑
j=1

Xnj = yn

∣∣∣ n∑
i=1

ri∑
j=1

Xij = t

)

=
∑

(xij):
∑
j x1j=y1,

,...,

,
∑
j xnj=yn

P

(
Xij = xij : i = 1, . . . , n, j = 1, . . . , ri

∣∣∣ ∑
i,j

Xij = t

)
.

It follows from this that we can use the method for drawing samples from the conditional

geometric distribution to draw condtional samples in the negative binomial case. More

precisely, we can first draw a sample x1, x2, . . . xR, where R = r1 + r2 + . . . + rn, from

the conditional distribution of X1, X2, . . . , XR | T (X) = t, where Xi ∼ Geom(p) for i =

1, 2, . . . , R and let

y1 =

r1∑
i=1

xi, y2 =

r1+r2∑
i=r1+1

xi, . . . , yn =
R∑

i=r1+...+rn−1+1

xi.

We end up with a sample y from the desired conditional distribution Y | T (Y) = t.

For simulation in practice, notice that Algorithm 1 with input t and R gives numbers

k1, k2, . . . , kR−1. Using the transformation φ in Lemma 1, it is then seen that we have

y1 = kr1 − r1

y2 = kr1+r2 − kr1 − r2
...

yi = kr1+...+ri − kr1+...+ri−1
− ri

...

yn−1 = kr1+...+rn−1 − kr1+...+rn−2 − rn−1

yn = t− kr1+...+rn−1 +R− rn.
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Some discrete distributions

X ∼ NB(r, p) P(X = x) =
(
x+r−1
x

)
(1− p)xpr, x = 0, 1, 2, . . .

X ∼ Pois(λ) P(X = x) = λxe−λ

x!
, x = 0, 1, 2, . . .

X ∼ Geom(p) P(X = x) = p(1− p)x, x = 0, 1, 2, . . .

X ∼ Bin(n, p) P(X = x) =
(
n
x

)
px(1− p)n−x, x = 0, 1, 2, . . . , n

X ∼ Ber(p) P(X = x) = px(1− p)1−x, x = 0, 1

X ∼ W(q, β) P(X = x) = qx
β − q(x+1)β , x = 0, 1, 2, . . .

X ∼ Mult(t, π1, π2, . . . , πn) P(X = x) =
n!π

x1
1 π

x2
2 ···π

xn
n

x1!x2!···xn! ,
∑n

i=1 xi = t

X ∼ BG(α, β) P(X = x) = B(α+1,x+β)
B(α,β)

, x = 0, 1, 2, . . .

Table 9: Distributions
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