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Sparsity Constrained Rank-One Matrix Approximation ≡ PCA

Principal Component Analysis solves

min{‖A−xxT‖2
F : ‖x‖2 = 1, x ∈ Rn} ⇔ max{xT Ax : ‖x‖2 = 1, x ∈ Rn}, (A ∈ Sn

+)

Sparse Principal Component Analysis solves

max{xT Ax : ‖x‖2 = 1, ‖x‖0 ≤ k, x ∈ Rn}, k ∈ [1, n] sparsity

‖x‖0 counts the number of nonzero entries of x

Difficulties:
1 Maximizing a Convex objective.
2 Hard Nonconvex Constraint ‖x‖0 ≤ k.

Current Approaches:
1 SDP Convex Relaxations [D’aspremont-El Ghaoui-Jordan-Lankcriet 07]
2 Approximation/Modified formulations [Many....]
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Sparse PCA via Penalization/Relaxation/Approximation
The problem of interest is the difficult sparse PCA problem as is

max{xT Ax : ‖x‖2 = 1, ‖x‖0 ≤ k, x ∈ Rn}
Literature has focused on solving various modifications:

l0-penalized PCA
max {xT Ax − s‖x‖0 : ‖x‖2 = 1}, s > 0

Relaxed l1-constrained PCA (‖x‖1 ≤
√
‖x‖0‖x‖2, ∀x)

max {xT Ax : ‖x‖2 = 1, ‖x‖1 ≤
√

k}

Relaxed l1-penalized PCA
max {xT Ax − s‖x‖1 : ‖x‖2 = 1}

Approximate-Penalized: Uses concave approximation of ‖x‖0

max {xT Ax − sϕp(|x‖) : ‖x‖2 = 1} ϕp(x) ' ‖x‖0, p → 0+.

SDP-Convex Relaxation max{tr(AX) : tr (X) = 1,X � 0, ‖X‖1 ≤ k}
Convex relaxations can be computationally expensive for very large problems
and will not be discussed here.
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Quick Highlight of Simple Algorithms on ”Modified Problems”
Type Iteration Per-Iteration References

Complexity

l1-constrained xj+1
i =

sgn(((A+σ2 )xj )i )(|((A+σ2 )xj )i |−λ
j )+√∑

h
(|((A+σ2 )xj )h|−λj )2

+

O(n2), O(mn) Witten et al. (2009)

l1-constrained xj+1
i =

sgn((Axj )i )(|(Axj )i |−sj )+√∑
h
(|(Axj )h|−sj )2

+

where O(n2), O(mn) Sigg-Buhman (2008)

sj is (k + 1)-largest entry of vector |Axj |

l0-penalized zj+1 =

∑
i
[sgn((bT

i zj )2−s)]+(bT
i zj )bi

‖
∑

i
[sgn((bT

i zj )2−s)]+(bT
i zj )bi‖2

O(mn) Shen-Huang (2008),

Journee et al. (2010)

l0-penalized xj+1
i =

sgn(2(Axj )i )(|2(Axj )i |−sϕ′p (|x
j
i |))+√∑

h
(|2(Axj )h|−sϕ′p (|x

j
h|))

2
+

O(n2) Sriperumbudur et al. (2010)

l1-penalized yj+1 = argmin
y
{
∑

i

‖bi − xj yT bi‖
2
2 + λ‖y‖2

2 + s‖y‖1} Zou et al. (2006)

xj+1 =
(
∑

i
bi bT

i )yj+1

‖(
∑

i
bi bT

i )yj+1‖2

l1-penalized zj+1 =

∑
i
(|bT

i zj |−s)+sgn(bT
i zj )bi

‖
∑

i
(|bT

i zj |−s)+sgn(bT
i zj )bi‖2

O(mn) Shen-Huang (2008),

Journee et al. (2010)

Table : Cheap sparse PCA algorithms for modified problems.
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A Plethora of Models/Algorithms Revisited

All previous listed algorithms have been derived from various disparate
approaches/motivations to solve modifications of SPCA:

Nonsmooth reformulations
Expectation Maximization
Majoration-Mininimization techniques
DC programming
... etc...

Q1: Are all these algorithms different? ...Any connection?

Our problem of interest is the difficult sparse PCA problem ”as is”

max{xT Ax : ‖x‖2 = 1, ‖x‖0 ≤ k, x ∈ Rn}

Q2: Is is possible to derive a simple/cheap scheme to tackle directly the
sparse PCA problem as is?
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Answers

All the previously listed algorithms are a particular realization of a
”Father Algorithm”: ConGradU
(based on the well-known Conditional Gradient Algorithm)

ConGradU CAN be applied directly to the original problem!
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The Conditional Gradient/Frank-Wolfe Algorithm

[Frank-Wolfe’56, Rubinov’64, Levitin-Polyak’66, Canon-Cullum’ 68,
Dunn’79,....]
♣ Classic Conditional Gradient Algorithm solves

max {F (x) : x ∈ C}

F : Rn → R is continuously differentiable
C is nonempty, convex compact subset of Rn

via the following iteration for all j ≥ 0:

x0 ∈ C , x j+1 = x j + αj(pj − x j)

with
pj = argmax {〈x − x j ,∇F (x j)〉 : x ∈ C}

where αj ∈ (0, 1] is a stepsize (exact/or via line search).

♠ Here in SPCA :
F is convex, possibly nonsmooth; (through equiv. reformulations)
C is compact but nonconvex
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Maximizing a Convex function over a Compact Nonconvex set

ConGradU – Conditional Gradient with a Unit Step Size

x0 ∈ C , x j+1 ∈ argmax{〈x − x j ,F ′(x j)〉 : x ∈ C}

Notes:
1 Mangasarian (96) considered it for C a polyhedral set.

2 F is not assumed to be differentiable and F ′(x) is a subgradient of F at x .
3 The algorithm is useful when max{〈x − x j ,F ′(x j)〉 : x ∈ C} is simple to

solve

A Basic Convergence Result
(a) The sequence F (x j) is monotonically increasing and

lim
j→∞

γ(x j) = 0, where γ(x) := max{〈u − x ,F ′(x)〉 : u ∈ C}.

(b) If F is assumed continuously differentiable, then every limit point of the se-
quence {x j} converges to a stationary point.
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The Original l0-constrained PCA via ConGradU

Applying ConGradU directly to

max{xT Ax : ‖x‖2 = 1, ‖x‖0 ≤ k, x ∈ Rn}

results in the iteration

x j+1 = argmax{x jT Ax : ‖x‖2 = 1, ‖x‖0 ≤ k}, j = 0, 1, . . .

Thus, the main step consists of maximizing a linear function on
intersection of two nonconvex sets

x ∈ C1 ∩ C2 with C1 := {x : ‖x‖2 = 1}, C2 := {x : ‖x‖0 ≤ k}

It turns out that this problem is very simple!
In fact, thanks to C1: x j+1 = argmin

x∈C1∩C2

‖x − AT x j‖2 = PC1∩C2(A
T x j)...and...

Thanks to the ”hard” constraint C2...Projection on intersection ”easy”...!

PC1∩C2(A
T x j) ≡ PC1 ◦ [PC2(A

T x j)]
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A Simple Key Result

A Simple Key Result Given 0 6= a ∈ Rn,

max
x
{aT x : ‖x‖2 = 1, ‖x‖0 ≤ k} = ‖Tk(a)‖2, with solution x∗ = Tk(a)

‖Tk(a)‖2

(Tk(a))i =

{
ai , for k largest entries (in absolute values) of a;
0, otherwise.

Definition Tk : Rn → Rn is the best k-sparse approximation of a

Tk(a) := argmin
x
{‖x − a‖2

2 : ‖x‖0 ≤ k}

Despite the nonconvex constraint, very easy to compute. In case k largest
entries are not uniquely defined, we select the smallest possible indices, with
w.l.o.g, a ∈ Rn such |a1| ≥ . . . ≥ |an|.

Computing Tk(·) only requires determining the k th largest number of a vector
of n numbers which can be done in O(n) time (Blum 73) and zeroing out the
proper components in one more pass of the n numbers.
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l0-constrained PCA via ConGradU

The iteration for ConGradU results in

x j+1 = argmax {x jT Ax : ‖x‖2 = 1, ‖x‖0 ≤ k} = Tk(Ax j)

‖Tk(Ax j)‖2
, j = 0, . . .

Convergence: Since the objective is continuously differentiable, by
previous result, we have here that every limit point of the sequence {x j}
converges to a stationary point.
Complexity: O(kn) or O(mn).

The original l0-constrained problem can be solved using ConGradU with
the same complexity as when applied to solving modified problems!
Penalized/modified problems require tuning a tradeoff penalty
parameter to get the desired sparsity. This can be computationally very
expensive, and is not needed in our scheme.
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Back to Q1 – ....All via ConGradU

All currently known cheap schemes are particular realization of ConGradU
Novel Schemes can be derived via ConGradU

All we need is a simple toolbox...
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Answer to Q1: A Simple ToolBox

All previously listed algorithms are particular realizations of ConGradU.
Proposition 1 Given a ∈ Rn, s > 0,

max
‖x‖2=1

{〈a, x〉2 − s‖x‖0} =
n∑

i=1

(a2
i − s)+, x∗i =

ai [sgn(a2
i − s)]+√∑n

j=1 a2
j [sgn(a2

j − s)]+
.

Proposition 2 For a ∈ Rn, w ∈ Rn
++, and W = diag(w)

max
‖x‖2≤1

{〈a, x〉 − ‖Wx‖1} = ‖Sw (a)‖, x∗ = Sw (a)/‖Sw (a)‖2.

Sw (a) = (|a| − w)+sgn(a). (Soft Threshold)
Proposition 3 Given a ∈ Rn, we have

max{〈a, x〉 : ‖x‖2 ≤ 1, ‖x‖1 ≤ k, x ∈ Rn} = min{λk+‖Sλe(a)‖2 : λ ∈ R+}

Moreover, if λ solves the one-dimensional dual, then an optimal solution

x∗(λ) = Sλe(a)/‖Sλe(a)‖2, (e ≡ (1, . . . , 1) ∈ Rn).
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Proposition 2 For a ∈ Rn, w ∈ Rn
++, and W = diag(w)

max
‖x‖2≤1

{〈a, x〉 − ‖Wx‖1} = ‖Sw (a)‖, x∗ = Sw (a)/‖Sw (a)‖2.

Sw (a) = (|a| − w)+sgn(a). (Soft Threshold)

Proposition 3 Given a ∈ Rn, we have

max{〈a, x〉 : ‖x‖2 ≤ 1, ‖x‖1 ≤ k, x ∈ Rn} = min{λk+‖Sλe(a)‖2 : λ ∈ R+}

Moreover, if λ solves the one-dimensional dual, then an optimal solution

x∗(λ) = Sλe(a)/‖Sλe(a)‖2, (e ≡ (1, . . . , 1) ∈ Rn).
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Nonsmooth Convex Reformulations

D’aspremont et al. (08), Journee et al. (10)

l0-penalized PCA problem: max{xT Ax − s‖x‖0 : ‖x‖2 ≤ 1, x ∈ Rn}

Exploiting A PSD A := BT B with B ∈ Rm×n, yields

max{‖Bx‖2
2 − s‖x‖0 : ‖x‖2 ≤ 1, x ∈ Rn}.

The objective is neither concave nor convex. Using the simple fact
‖Bx‖2

2 = max‖z‖2≤1{〈z,Bx〉2}, the problem is equivalent to

max
‖x‖2≤1

max
‖z‖2≤1

{〈z,Bx〉2 − s‖x‖0} = max
‖z‖2≤1

max
‖x‖2≤1

{〈BT z, x〉2 − s‖x‖0}.

Now, the inner minimization in x can be solved (use P1):

max
x∈Rn

{‖Bx‖2
2 − s‖x‖0 : ‖x‖2 ≤ 1} = max

z∈Rm
{

n∑
i=1

[〈bi , z〉2 − s]+ : ‖z‖2 ≤ 1}

where bi ∈ Rm is the i th column of B.
Since the objective function f (z) :=

∑
i [〈bi , z〉2 − s]+ is now clearly convex, we

can apply ConGradU, recovering the alg. of Journee et al. (10).
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More Examples on NSO Reformulation

Similarly, for the l1-penalized PCA problem one can show:

max{xT Ax − s‖x‖1 : ‖x‖2 = 1, x ∈ Rn} = max
z∈Rm

{
n∑

i=1

(|bT
i z| − s)2

+ : ‖z‖2 ≤ 1}

We can now apply ConGradU to the convex objective f (z) =
∑

i [|b
T
i z| − s]2+,

and for which our convergence results for the nonsmooth case hold true.

This recovers exactly the other algorithm of Journee et al. (2010).

ConGradU is Very Flexible
Tackling more general problems......
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A General Class of Problems

(G) max
x
{f (x) + g(|x |) : x ∈ C}

f : Rn → R is convex,
g : Rn

+ → R is convex differentiable and montonote decreasing
C ⊆ Rn is a compact set.

Here |x | := (|x1|, . . . , |xn|)T ; monotone decreasing means componentwise.

Useful for handling penalized/approximate problems.
Note: the composition g(|x |) is not necessarily convex ...But after a
simple transformation we can show that CondGradU can be applied to
(G), and produces the following simple scheme.
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A Simple Scheme for Solving (G)

(G) max
x
{f (x) + g(|x |) : x ∈ C}

A-weighted l1-norm maximization problem:

x0 ∈ C , x j+1 = argmax{〈aj , x〉 −
∑

i

w j
i |xi | : x ∈ C}, j = 0, . . . ,

where w j := −g ′(|x j |) > 0 and aj := f ′(x j) ∈ Rn.

For penalized/approximate penalized SPCA, C is a unit ball, and above admits
a closed form solution thanks to P2 seen before:

x j+1 =
Sw j (f ′(x j))

‖Sw j (f ′(x j))‖ , j = 0, . . .
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Example I – A Novel Direct Approach for l1-penalized SPCA via (G)

max{xT Ax − s‖x‖1 : ‖x‖2 = 1, x ∈ Rn}, (s > 0)

Using our results, applying ConGradU reduces to

x j+1 =
Sse(Aσx j)

‖Sse(Aσx j)‖2
, e ≡ (1, . . . , 1)

and Sw (a) = argmin
x
{1

2‖x − a‖2
2 + ‖Wx‖1} = (|a| − w)+sgn(a).

This approach can handle matrices A that are not positive semidefinite (by
taking σ > 0,Aσ := A + σIn).
In fact, any other convex f (·) can be used!
Allows for stronger convergence results than when applying the conditional
gradient method to the nonsmooth equivalent reformulation.
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Example II : The Approximate l0-penalized PCA Problem

max{xT Ax − s‖x‖0 : ‖x‖2 = 1, x ∈ Rn}, (s > 0).

Approximations of the l0 norm by some nicer continuous functions have
been considered in various contexts, e.g., machine learning [Mangasarian
(96), West (03)]; ... Compressed sensing [Borwein-Luke (11)] .
Naturally emerged from very well-known mathematical approximations of
the step and sign functions Bracewell (2000). Formally, we want to replace
the problematic expression sgn (|t|) by some nicer function

‖x‖0 =

n∑
i=1

sgn (|xi |) = lim
p→0

n∑
i=1

ϕp(|xi |)

where ϕp : R+ → R+ is an appropriately chosen smooth concave functions,
monotone increasing and normalized such that ϕp(0) = 0, ϕ′p(0) > 0.

The resulting approximate l0-penalized PCA is in the form (G):

max{xT Ax − s
n∑

i=1

ϕp(|xi |) : ‖x‖2 = 1, x ∈ Rn}, (s > 0, p > 0).
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Examples of Concave ϕp(·), p > 0 Approximations for ‖x‖0

1 ϕp(t) = (2/π) tan−1(t/p),
2 ϕp(t) = log(1 + t/p)/ log(1 + 1/p),
3 ϕp(t) = (1 + p/t)−1,
4 ϕp(t) = 1− e−t/p . A nice feature:it also lower bounds l0,∑n
i=1 ϕp(|xi |) ≤ ‖x‖0, ∀x ∈ Rn.
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Figure : The left plot ϕp(t) for fixed p = .05. The right plot how concave
approximation 1− e−t/p converges to the indicator function as p → 0.
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Some Simulations – Random Matrices -[For more see the paper]

Our goal is to solve very large sparse PCA problems. The largest
dimension we approach is n = 50000.
However, the ConGradU algorithm applied to l0-constrained PCA has a
very cheap O(mn) iterations and is limited only by storage of a data
matrix.
Thus, on larger computers, extremely large-scale sparse PCA problems
(much larger than those solved even here) are also feasible.

We here consider random data matrices F ∈ Rm×n with Fij ∼ N(0, 1/m).
The experiments consider n = 10 (m = 6) and n = 5000, 10000, 50000
(each with m = 150), each using 100 simulations.
We consider l0-constrained PCA with k = 2, . . . , 9 for n = 10 and
k = 5, 10, . . . , 250 for the remaining tests.
The svdTime is the time required to compute the principal eigenvector of
F T F which is used to compute an initial solution for l0-constrained PCA.
Comparison of ConGradU: with l0, l1 penalized version(GPower of Journee
et al.) and EM for l1-constrained.
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Average Time to Produce Sparse Eigenvectors of F T F
A = F T F with F ∈ Rm×n with Fij ∼ N(0, 1/m)
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Summary and Extensions
Problem structures beneficially exploited to build one very simple scheme
ConGradU:

Encompasses all currently known cheap methods for sparse PCA..and
more..
Can be applied just as easily to solve the original l0-constrained problem
All of the cheap algorithms give similar performance. When desired
sparsity is known, our novel scheme appears as the cheapest
Caveat: None of currently known algorithms provide certificate/bounds to
global optimality for the original SPCA.

Our tools can be easily used to produce novel simple algorithms for tackling
directly other similar problems, (details in our paper). For example:

1 Sparse Singular Value Decomposition:

max {xT By : ‖x‖2 = 1, ‖y‖2 = 1, ‖x‖0 ≤ k1, ‖y‖0 ≤ k2}
2 Sparse Canonical Correlation Analysis:

max {xT BT Cy : xT BT Bx = 1 yT CT Cy = 1, ‖x‖0 ≤ k1, ‖y‖0 ≤ k2}
3 Sparse PCA with other convex objectives f (·) or/and additonal ”simple”

constraints:
max {f (x) : ‖x‖2 = 1, ‖x‖0 ≤ k, x ∈ C}
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For More Details, Results....

R. Luss and M. Teboulle. Conditional Gradient Algorithms for Rank-One
Matrix Approximations with a Sparsity Constraint.

SIAM Review, (2013). In Press

Thank you for listening!
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