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Conditional Hyper-Network for Blind
Super-Resolution with Multiple Degradations

Guanghao Yin∗, Wei Wang∗, Zehuan Yuan, Wei Ji, Dongdong Yu, Shouqian Sun, Tat-Seng Chua, Changhu Wang

Abstract—Although the single-image super-resolution (SISR)
methods have achieved great success on the single degradation,
they still suffer performance drop with multiple degrading effects
in real scenarios. Recently, some blind and non-blind models
for multiple degradations have been explored. However, these
methods usually degrade significantly for distribution shifts
between the training and test data. Towards this end, we
propose a novel conditional hyper-network framework for super-
resolution with multiple degradations (named CMDSR), which
helps the SR framework learn how to adapt to changes in
the degradation distribution of input. We extract degradation
prior at the task-level with the proposed ConditionNet, which
will be used to adapt the parameters of the basic SR network
(BaseNet). Specifically, the ConditionNet of our framework first
learns the degradation prior from a support set, which is
composed of a series of degraded image patches from the same
task. Then the adaptive BaseNet rapidly shifts its parameters
according to the conditional features. Moreover, in order to
better extract degradation prior, we propose a task contrastive
loss to shorten the inner-task distance and enlarge the cross-
task distance between task-level features. Without predefining
degradation maps, our blind framework can conduct one single
parameter update to yield considerable improvement in SR
results. Extensive experiments demonstrate the effectiveness of
CMDSR over various blind, and even several non-blind methods.
The flexible BaseNet structure also reveals that CMDSR can be
a general framework for a large series of SISR models. Our code
is available at https://github.com/guanghaoyin/CMDSR.

Index Terms—Blind Super-resolution, Hyper-network, Meta-
learning, Multi-degradation Shift.

I. INTRODUCTION

Single image super-resolution (SISR) has posed a long-
standing challenge in low-level vision with numerous im-
portant applications. It is an ill-posed problem that aims
to restore a High-Resolution (HR) image by adding the
missing high-frequency information from a Low-Resolution
(LR) image. Since the pioneering method by SRCNN [1],
deep learning approaches [2]–[8] have exhibited impressive
performance. However, most existing methods focus on a fixed
degradation, i.e, bicubic down-sampling or single Gaussian
blurring. Such fixed settings really limit their generalization
ability. In addition to down-sampling, unknown blurring and
noise may also be introduced during the acquisition of LR
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Fig. 1. SR results (×4) with anisotropic Gaussian blur and AWGN (Severe
degradation). Without anisotropic blur kernel for training, our CMDSR out-
performs all the blind cascaded schemes, even better than non-blind method,
SRMD [12], which was trained with anisotropic Gaussian blur.

images. When the data distributions at test time mismatch the
training distributions (referred to as distribution shift [9], [10]),
these learning-based models will suffer severe performance
drop [11].

In recent years, several non-blind and blind super-resolution
methods for multiple degradations have been proposed. The
non-blind methods [12]–[15] usually take the ground truth
(GT) degradation maps as an additional input to establish
the LR-HR mapping. Although the non-blind models have
achieved satisfactory performance with the guidance of prede-
fined information, the problem with unknown realistic degra-
dation largely limits their usage in real-world applications. Be-
sides, the blind methods [16]–[19] only consider the blur and
down-sampling in the degradation mode. Then, the cascaded
schemes with blind denoising, blur estimation and SR methods
are organized to restore the multi-degraded LR image [12],
[20], [21]. However, each stage has a negative impact on
each other, (i.e, the denoiser will make the LR image more
blurred and lead to kernel mismatch, increasing the difficulty
of deblurring, as seen in Fig. 4). Recently, there are some
new attempts for blind SR. Several CycleGAN [22] based
methods [21], [23]–[25] learn from unpaired LR-HR images,
but they are more difficult to train. ZSSR [17] explores the
zero-shot solution for the first time, where the CNN learns
the mapping from the LR image and its downscaled versions
(self-supervision). But it requires thousands of self-training
iterations for each LR image. Recently, two optimization based
meta-learning strategies, MZSR [26] and MLSR [27], have
been proposed to accelerate the self-training steps from 1000
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Fig. 2. Conditional feature extraction at task-level. There is a prior knowledge
that degraded LR images from the same task have common degradation
patterns (i.e, blur kernel width σG, noise level σN ), which are different
between different tasks. Therefore, we attempt to learn degradation prior at
task-level and use the extracted conditional features to adapt the SR model to
a new task.

to 10. But they have limitations when dealing with large scale
factor because the self-downsampled image cannot provide
enough information. Moreover, all those blind and non-blind
methods cannot handle the degradation shift problem. When
degradation distribution shifts between the training and test
data, those SOTAs usually degrade significantly.

To address the problems above, our work tries to explore the
following two challenges at the same time: (1) Can we propose
a blind framework to effectively handle multiple degradations,
especially when the accurate degradation estimation is very
difficult? (2) Is it possible to overcome the distribution shift
with an adaptive model, which can learn how to adapt its
parameters to the unknown degraded LR images?

In this paper, we propose a conditional hyper-network for
blind SR with multiple degradations (CMDSR) to largely
overcome the aforementioned two challenges. For the first
challenge, there is a prior knowledge which inspires us to
handle it at task-level. As shown in Fig. 2, the LR images
with different degradations obey different distributions. Al-
though the accurate estimation of degradation is hard, images
from the same task may contain similar implicit features to
describe their common degradation patterns. Therefore, we
group these LR images into different tasks and extract the
degradation priors at task-level to describe the degradation
patterns. Throughout this article, we define a group of LR
patches with the same degradation pattern as a support set.
For the second challenge, we use the distribution information
extracted from the support set to make SR network adaptively
adjust its parameters according to the distribution changes,
such that our framework can handle distribution shifts.

Specifically, our CMDSR consists of two parts: the BaseNet
and ConditionNet. As shown in Fig. 3, the shallow Condi-
tionNet learns the feature representations of different tasks.
Then, BaseNet multiplies its convolution weights with modu-
lated conditional features in channel-wise. Finally, the adapted
BaseNet restores the LR image. Inspired by recent contrastive
learning [28], [29], we propose a task contrastive loss to
decrease the distances of the conditional features from the
same task and increase the distances of the conditional features
from different tasks. Algorithm 1 presents the training stage,

where BaseNet and ConditionNet are alternately optimized
with different steps and loss functions. Algorithm 2 presents
the test stage, where the extracted degradation prior from
ConditionNet adapts BaseNet to handle distribution shift.

Since the shallow ConditionNet only uses the small size of
support patches (i.e, 48×48), the time and computation cost of
conditional feature extraction will be very little compared with
BaseNet reconstruction. Without designing new complicated
SR network, the proposed framework simply uses 10 res-
blocks as BaseNet (called SRResNet-10) and achieves superior
performance with blind methods. For complicated degrada-
tions, CMDSR even outperforms the non-blind models. It
should be noted that our framework has no strict restrictions
on the BaseNet structure. The ablation experiments in Table X
demonstrates that CMDSR can be extended to other SISR
models. To the best of our knowledge, the proposed CMDSR
is the first hyper-network framework for blind SISR with
multiple degradations.

In summary, our overall contribution is three-fold:
1) We present the first blind hyper-network framework to

adaptively handle distribution shifts for the SISR task
with multiple degradations in task-level.

2) We propose an unsupervised task contrastive loss to
extract more discriminative task-level features.

3) Our proposed framework is hot-pluggable, efficient and
flexible. We can replace the modules with stronger
models for better performance. Hence, our framework
can be applied as a general super-resolution framework.

II. RELATED WORK

Blind Single-Image Super-Resolution. Compared with
typical SISR models [1], [2], [4], [5] which are tailored to
specific single downsampler, blind SISR is a more challenging
task, which assumes that the blur kernels are unavailable at
test time. Previous methods usually combine the well-designed
kernel-estimation and typical SISR methods. Michaeli et
al. [16] mined the internal patch recurrence to estimate the blur
kernel. Bell et al. [19] proposed KernelGAN to learn the blur
kernel distribution. In order to relieve the mismatch between
the estimated kernel and the real kernel, IKC [18] iteratively
trained the estimation and correction networks. Although the
accuracy of estimated kernel is largely improved, it remains
very challenging for severe degradation. Inspired by zero-shot
and self-supervised learning, ZSSR [17] efficiently exploited
the internal recurrence of information inside an image. But
this image-specific model requires self-training for each LR
image, which is time-comsuming and cannot be applied to
deep structure.

Multiple Degradations. Few attention has been paid to
SISR with multiple degradations despite its important for
real applications. Based on the perspective from maximum
a posteriori (MAP) framework, existing non-blind methods
(such as SRMD [12] and UDVD [15]) concatenate LR image,
predefined blur kernel and noise maps as the input. Thus, SR
result closely depends on both the LR image and degradation
patterns. The blind schemes [12], [21] are usually based on the
sequential combinations of denoising [30], blur estimation [19]
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Fig. 3. Overall scheme of our proposed CMDSR. Left: Network structures of ConditionNet and BaseNet. ConditionNet extracts conditional feature f (i)c from
input support set. BaseNet adapts its parameters to task i according to the modulated features. Right: Loss functions optimization. BaseNet and ConditionNet
are alternately trained by different loss configurations. It should be noted that although we simply use SRResNet-10 as BaseNet, CMDSR has no strict
restrictions on the BaseNet structure and can be conveniently extended to other SR models without changing their structures.

and SR models [17]. Besides, CBSR [20] adapted a cascaded
architecture, which can be jointly end-to-end learned from
training data. All these methods will degrade for distribu-
tion shifts. Recently, the unpaired SISR methods [21], [23]
conducted the domain transfer between the clean and real
degraded domains. But it remains challenging to train a stable
model for various shifts.

Meta-Learning. Meta-learning, commonly known as learn-
ing how to learn, refers to the process of improving a learning
algorithm over multiple learning episodes. As pointed out
by [31], [32], diverse meta-learning methods can be cate-
gorized into three groups: (1) Metric based methods [33]–
[35] perform non-parametric learning in the metric space,
which are largely restricted to the popular; (2) Optimization
based methods [31], [36]–[39] use gradient descent to solve
the optimization problem of meta-learner. A most famous
example is MAML [37], which learns the transferable initial
parameters, such that few gradient updates lead to performance
improvement. And MTL [38] that leverages the advantages
of transfer and meta learning. Recently, [39] proposes the
Adaptive Risk Minimization to handle group distribution shift
for image classification; (3) Network based methods [40]–[42]
that use network to learn across tasks and rapidly updates its
parameters to a new task.

There are few explorations of meta-learning for SISR.
Recently, two gradient based meta-learning models have been
proposed. They are the MZSR [26] and MLSR [27], which
both employed the typical MAML framework [37] to acceler-
ate the self-supervised training. Nevertheless, for large scale
factors, the size of self-downsampled LRs on image becomes
too small to provide enough information, which which limits
their applications to real scenarios.

III. PROPOSED METHOD

A. CMDSR Setting

Our work focuses on blind SISR with multiple degradations,
including blur, noise and down-sampling, which may simul-
taneously happen in a real-world case [11]. The degradation
process is formulated as:

ILR = (IHR ⊗ k) ↓s +n, (1)

where ILR, IHR, k, ⊗, ↓s and n respectively denote LR,
HR image, blur kernel, convolution, decimation with scaling
factor of s. and Gaussian noise. In this paper, we use the
configuration in Eq. (1). to synthesize the LR images for
training.

The key goal of our work is to develop a framework that
can adapt and generalize in the face of degradation shift using
only a small number of examples. To accomplish this, we need
to find the representation that can describe the degradation
prior of the LR image and guide the model to adapt to this
degradation pattern. As explained in Section I, we observe
that the LR images from the same task are degraded with the
same pattern. This inspires us to deal with this problem in
task-level, rather than in image-level. Therefore, we present a
new approach to mine the implicit task-level semantics with
different tasks. The extracted feature can be further used as a
context prior to adapt the parameters of SR model.

In our framework, we provide two settings to access the
training data: (1) The training data should be grouped into
different tasks. We consider the multi-degradation distribution
p(T ) over training tasks {T1, T2, ...}. For task Ti, it consists of
LR-HR pairs, where LR images {x(i)1 , ..., x

(i)
m } are synthesized

from HR images {y(i)1 , ..., y
(i)
m } with ith degradation config-

uration. (2) ConditionNet extracts task-level feature from n
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LR patches (named support set) belonging to the same task,
Xi = {x(i)1 , ..., x

(i)
n } and BaseNet restores the single LR input

x
(i)
j . With these settings, our framework can treat the training

data at task-level.

B. Networks of CMDSR

Our framework consists of ConditionNet and BaseNet,
which are shown in Fig. 3. It should be noted that our
framework has no strict restrictions on the BaseNet structure.
In this paper, the backbone of BaseNet is simply designed as
SRResNet-10, which consists of 10 res-blocks.

First, ConditionNet, denoted as Fc, extracts the conditional
feature f (i)c , which describes the degradation pattern i of the
input support set X(i). It is formulated as:

f (i)c = Fc(X
(i);φ) = Fc(x

(i)
1 , ..., x(i)n ;φ), (2)

where φ is the parameters of ConditionNet and n denotes the
size of support size at each step. In order to extract the task-
level feature, we design a shallow ConditionNet with 2 average
pooling layers and 4 convolution layers followed with ReLU
and keep the input sample size unchanged during the training
and test phrase. The internal channels of convolution layers
are cin ∗ n, 64, 64, 128, 128.

Then, BaseNet, denoted as Fsr, adapts its original parame-
ters θ to θ′ with the conditional feature f (i)c . Since our model
aims to be a general framework, we use depth-wise scaling
to adapt convolutions without changing the CNN structures.
Specifically, we adapt the parameters of 20 conv-layers of
internal 10 res-blocks. We use 20 full-connected layers to
generate adaptive coefficients with f

(i)
c as input. The FC

modulation layers change the number of f
(i)
c channels to

match convolution weights and also adjusts f (i)c for each conv-
layer. Then, the modulated features multiply with the weight
of convolution in depth-wise manner:

w′pq = wpq ∗ f
′(i)
pq , (3)

where wpq and w′pq are the original and adapted weights, f
′(i)
pq

is the modulated variable corresponding to the qth channel of
pth conv-layer. Finally, the adapted BaseNet restores the input
LR image x(i)j to the SR image ŷ(i)j . The whole process of
BaseNet is formulated as:

ŷ
(i)
j = Fsr(x

(i)
j , f (i)c ; θ) = Fsr(x

(i)
j ; θ′). (4)

C. Loss Functions

Owing to the fact that ConditionNet and BaseNet serve
different purposes, they have different sensitivity to learning
rate and loss functions. Hence, we optimize them alternately
with different learning rates and optimization objectives. Con-
ditionNet is trained after every t steps of BaseNet training.
The details of loss functions are listed as follows.

Reconstruction Loss for BaseNet. Similar to most SISR
models [2]–[5], we adopt a supervised reconstruction loss to
calculate the L1 distance between HR image and output SR
image of BaseNet in pixel-wise,

Lres = E(IHR,ILR)∼p(T ) ‖ IHR − Fsr(ILR; θ) ‖1 . (5)

Combined Unsupervised Task Contrastive Loss and
Supervised Reconstruction Loss for ConditionNet. As the
prior knowledge explained before, our ConditionNet should
output the conditional features, which are similar to those from
the same degradation and dissimilar to others from different
degradations. Instead of matching an input to a fixed target,
recent works of contrastive learning [28], [29] measure the
similarities of sample pairs in a representation space. Inspired
by them, we propose a task contrastive loss, which shortens
the inner-task distance and enlarges the cross-task distance
between different conditional features.

For the inner-task loss, we sample two support sets from
the same task, each containing n LR patches, represented as
Xi, X

′
i . And ConditionNet Fc(· ;θ) extracts features f (i)c1 , f (i)c2

from Xi, X ′i . The inner-task loss is calculated as:

Linner = EXi,X′
i∼px(Ti) ‖ Fc(Xi; θ)− Fc(X ′i; θ) ‖2

= EXi,X′
i∼px(Ti) ‖ f

(i)
c1 − f

(i)
c2 ‖

2 . (6)

For the cross-task loss, we resample n LR images from
another task, denoted as support set Xj , which show different
degradation distribution from Xi. Also, ConditionNet Fc(· ;θ)
extracts conditional features f (i)c , f (j)c from Xi, Xj . Then, the
cross-task loss can be calculated as

Lcross = EXi∼px(Ti),Xj∼px(Tj),i6=j ‖ Fc(Xi; θ)− Fc(Xj ; θ) ‖2

= EXi∼px(Ti),Xj∼px(Tj),i6=j ‖ f
(i)
c − f (j)c ‖2 . (7)

Finally, we use the Logarithm and Exponential transformations
to combine Linner and Lcross. These transformations can
smoothly optimize ConditionNet to shorten the inner-task
distance and enlarge the cross-task distance. When Linner is
small and Lcross is large, the combined Lcon will be close to
0. The task contrastive loss is formulated as:

Lcon = ln(1 + e−Lcross) + ln(1 + eLinner ). (8)

During experiments, we find that if we only train Condi-
tionNet by the task contrastive loss in an unsupervised way,
the output feature may not be entirely beneficial for the gener-
alization of SISR (as shown in Table VI). To make a balance
between task-level feature extraction and SR reconstruction,
we combine the reconstruction loss Lres in Eq. (5) and task
contrastive loss Lcon in Eq. (8) with coefficient λ to constraint
ConditionNet, which is formulated as:

Lcom = Lcon + λ ∗ Lres (9)

D. CMDSR Algorithm

Training Stage. Algorithm 1 shows the training procedure
of CMDSR model. ConditionNet and BaseNet are alternately
trained until they converge. In line 4, k tasks are randomly
sampled from degradation distribution p(T ) for each step.
In Line 3-9, BaseNet is adapted and supervised with HR-
LR pairs. In Line 10-18, for every t0 steps, ConditionNet is
optimized with the combined unsupervised Lcon of Line 16
and supervised Lres of line 7.

Testing Stage. Algorithm 2 shows the training procedure
of CMDSR model. For test support set X , we can randomly
sample patches from other LR images, which have the same
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Algorithm 1: CMDSR Training
Data: Distribution over tasks: p(T )
Input: ConditionNet and BaseNet parameters: φ, θ
Input: Task size: k, support size: n, update step: t0,

loss coefficient: λ, learning rates: α, β
1 for t = 1, 2, ... do
2 Randomly sample k tasks Ti ∼ p(T );
3 foreach Ti do
4 Random crop n LR-HR patches from n LR-HR

images of Ti as (Xi, Yi) ∼ p(Ti);
5 Use all n LR patches of Xi as the support set

to extract conditional feature f (i)c :
f
(i)
c = Fc(Xi;φ) = Fc(xi1 , ..., xin ;φ);

6 Compute adapted parameters θ′i of BaseNet:
Fsr(· ; θ′i) = Fsr(f

(i)
c ; θ);

7 Evaluate the reconstruction loss in Eq. (5):
L
(i)
res =

∑n
j=1 L1(Fsr(xij ; θ′i), yij );

8 end
9 Update BaseNet with reconstruction loss:

θ ← θ − α∇θ
∑k
i=1 L

(i)
res;

10 if (t Mod t0) = 0 then
11 Resample n LR patches for k support sets from

k tasks Ti of line 4: X ′i ∼ px(Ti);
12 Resample n LR patches for k support sets from

another k tasks Tj : Xj ∼ px(Tj), j 6= i;
13 foreach Ti, Tj , j 6= i do
14 Evaluate inner-task loss as Eq. (6):

L
(i)
inner = L2(Fc(Xi; θ), Fc(X

′
i; θ));

15 Evaluate cross-task loss as Eq. (7):
L
(i)
cross = L2(Fc(Xi; θ), Fc(Xj ; θ));

16 Evaluate task contrastive loss as Eq. (8):
L
(i)
con = Lcon(L

(i)
inner, L

(i)
cross);

17 end
18 Update ConditionNet with combined loss:

φ← φ− β∇φ
∑k
i=1(L

(i)
con + λL

(i)
res);

19 end
20 end

degradation pattern with ILR, or from ILR itself. For unknown
LR in real scenario, it’s hard to acquire other images which
have the same degradation pattern. Therefore, we randomly
crop patches from LR itself (self-patches) to get the support
set at test time in all our experiments. With the conditional
feature extracted from the support set, BaseNet performs fast
adaptation to the test distribution in one step and produces the
restored SR image.

IV. EXPERIMENTS

A. Experimental Setting

As introduced before, the input of CMDSR consists of
two parts: the support set for the ConditionNet and the LR
image for the BaseNet. When training, n random patches are
cropped from n randomly sampled LRs of the same task and
this process is conducted for k training tasks. Hence, during

Algorithm 2: CMDSR Testing
Data: LR test image: ILR
Input: Trained parameters of ConditionNet Fc and

BaseNet Fsr: φ, θ
Output: Restored SR image: ISR

1 Randomly crop n patches of ILR as the support set X;
2 Extract conditional feature fc = Fc(X;φ);
3 Compute adapted parameters θ′ of BaseNet:

Fsr(· ; θ′) = Fsr(fc; θ);
4 return ISR = Fsr(ILR; θ′)

training, the sizes of support sets and LR images are set as
[k, n∗3, h, w] and [k, 3, h, w] separately, where size 3 indicates
RGB channels. When testing, the full LR image [1, 3, H,W ]
is fed into BaseNet and n random patches are cropped from
LR itself to compose the self-support set [1, n ∗ 3, h, w] for
testing. All uniform random croppings allow for overlapping.
In training configurations, we set the task size as k = 8 and
the size of support set n to 20. The patch size h×w is 48×48.
The update step t0 is 10, which means that the ConditionNet
is joined for training after the BaseNet has been trained for
9 steps. The loss coefficient λ of Eq. (9) is 0.1. The initial
learning rates α, β of the BaseNet and ConditionNet are set
to 10−3 and 10−4. The ADAM optimizer [43] is applied.

We use the LR-HR pairs of DIV2K [46] for training.
Following previous works [12], [15], the degraded LR images
of different tasks are synthesized based on Eq. (1). As shown
in Eq. 1, the multi-degradation applies a sequence of degrading
effects on HR images, following the order of blurring, bicubic
downsampling and then adding noise. To ensure consistency
with previous works [12], [15], we use 15 × 15 isotropic
Gaussian blur kernels and the Additive White Gaussian Noise
(AWGN). The blur kernel widths σG are discrete in range
of [0.2, s] for scale factor s with a stride of 0.1. For noise,
we set the AWGN with the continuous noise levels σN in
range [0, 75]. For each iteration, the discrete kernel width and
continuous noise level are randomly sampled. The total task
number of our training data is infinite. We set the scale factor
s = 4 and all the experiments were conducted on NVIDIA
Tesla-V100 GPUs.

It should be noted that previous methods [12], [18] choose
the isotropic and anisotropic Gaussian blur kernels for gener-
ating blur degradation. Since we only use isotropic Gaussian
blur kernels, our training degradation patterns (σG, σN ) are the
subspace of (σG, σaniG , σN ) in SOTAs. Therefore, the training
sets of SOTAs can cover all degradation information of ours.
Although this is “unfair” for our model, we want to highlight
the ability of our model for degradation shift in this “unfair”
setting and verify the effectiveness of our work.

B. Experiments on Synthetic Multi-degradated Images

To demonstrate the effectiveness and generalization of our
framework for multi-degradations, we evaluate the proposed
CMDSR from the perspectives of matched degradation and
shift degradation. First, we use the Simple and Middle testing
sets, which are in range of training distribution. Since our
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TABLE I
AVERAGE PSNR VALUES WITH SCALE FACTOR ×4 ON Simple, Middle AND Severe DEGRADATIONS. WE USE THE PROVIDED OPENSOURCE CODES OF
SOTA MODELS TO COMPUTE THEIR RESULTS, EXCEPT RESULTS OF IRCNN [44] AND UDVD [15], WHICH ARE DIRECTLY EXTRACTED FROM THEIR

PUBLICATIONS. BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED IN RED AND BLUE.

Degradation Kernel Noise Model Type Models Datasets
Set5 Set14 BSD100

(A) Simple Degradation
In-Distribution σ0.2

G σ15
N

BI-structured SR model RCAN+ [5] 24.90 23.87 23.42
Blind multi-degraded

SR model
ZSSR [17] 25.40 24.30 24.05

IRCNN [44] 28.35 - -

Blind denoising/deblurring
+ Blind SR model

DnCNN [30]+KernelGAN [19]+ZSSR [17] 27.02 25.46 25.34
DnCNN [30]+MZSR [26] 26.57 25.10 24.72

DnCNN [30]+IDN [45]+MLSR [27] 26.32 25.14 24.63
DnCNN [30] + IKC [18] 28.16 26.11 25.68

Blind denoising+
Gt blur kernel maps+
Non-blind SR model

DnCNN [30] + SRMDNF [12] 28.31 26.19 25.79

Gt Degradation maps+
Non-blind SR model

SRMD [12] 28.79 26.48 25.95
UDVD [15] 29.04 26.82 26.08

Conditional hyper-network Our CMDSR 28.35 26.23 25.83

(B) Middle Degradation
In-Distribution σ2.6

G σ15
N

BI-structured SR model RCAN+ [5] 23.32 22.54 22.61
Blind multi-degraded

SR model
ZSSR [17] 24.91 23.74 23.57

IRCNN [44] 24.36 - -

Blind denoising/deblurring
+ Blind SR model

DnCNN [30]+MZSR [26] 25.86 24.31 24.40
DnCNN [30]+IDN [45]+MLSR [27] 25.89 24.44 24.32

DnCNN [30]+KernelGAN [19]+ZSSR [17] 26.08 24.66 24.65
DnCNN [30] + IKC [18] 26.84 25.09 25.02

Blind denoising+
Gt blur kernel maps+
Non-blind SR model

DnCNN [30] + SRMDNF [12] 23.85 21.04 21.79

Gt Degradation maps+
Non-blind SR model

SRMD [12] 26.82 25.12 24.86
UDVD [15] 26.98 25.33 24.96

Conditional hyper-network Our CMDSR 27.10 25.39 25.12

(C) Severe Degradation
Out-of-Distribution σani

G σ50
N

BI-structured SR model RCAN+ [5] 16.32 15.83 15.81
Blind multi-degraded

SR model ZSSR [17] 17.89 17.46 17.79

Blind denoising/deblurring
+ Blind SR model

DnCNN [30]+MZSR [26] 21.73 20.80 21.49
DnCNN [30]+IDN [45]+MLSR [27] 21.31 20.46 21.32

DnCNN [30]+KernelGAN [19]+ZSSR [17] 22.32 21.69 22.34
DnCNN [30] + IKC [18] 22.18 21.63 22.23

Blind denoising+
Gt blur kernel maps+
Non-blind SR model

DnCNN [30] + SRMDNF [12] 21.63 21.18 21.99

Gt degradation maps+
Non-blind SR model SRMD [12] 22.43 21.83 22.43

Conditional hyper-network Our CMDSR 23.07 22.14 23.03

framework is trained with isotropic Gaussian blur kernel, we
also add the Severe testing set with anisotropic Gaussian blur
kernel to validate whether CMDSR can handle degradation
shift. More precisely, three testing sets are synthesized as:

(A) Simple: 7×7 isotropic Gaussian blur kernel with kernel
width λ = 0.2 followed by BI downsampler (σ0.2

G ) and
AWGN with noise level 15 (σ15

N ).
(B) Middle: 7×7 isotropic Gaussian blur kernel with kernel

width λ = 2.6 followed by BI downsampler (σ2.6
G ) and

AWGN with noise level 15 (σ15
N ).

(C) Severe: 7×7 anisotropic Gaussian blur kernel with kernel
width λ1 = 4, λ2 = 1, angle Θ = −0.5 followed by
BI downsampler (σaniG ) and AWGN with noise level 50
(σ50
N ).

The Simple and Middle are in distribution of training data and
the Severe is out of distribution. We follow [12], [15] to set the
degradation parameters of three testing sets for fair comparison
with other SOTA methods for consistent comparison.

To be specific, we compare the proposed framework with
non-blind and blind methods. For non-blind methods, we

make comparison with two latest models, SRMD [12] and
UDVD [15], which utilize the accurate blur kernel and noise
maps as the additional inputs. For blind methods, the SOAT BI
structured SR model, RCAN [5] is first compared. Since most
blind SR methods for multiple degradations have not been
studied sufficiently, except ZSSR [17] (5000 steps) and IR-
CNN [44], we follow [12], [19], [21] to add cascaded schemes,
which combine SR models with blind denoising and deblurring
methods: DnCNN [30] + KernelGAN [19] + ZSSR [17] (5000
steps), DnCNN [30] + IKC [18]. Although two previous meta
SR methods [26], [27] have limitations with large scale factor
(×4), we still add them as DnCNN [30] + MZSR [26] (10
steps), DnCNN [30] + IDN [45] + MLSR [27] (10 steps).
To evaluate the mutual negative influence between cascaded
stages, we also add a baseline by combining blind denoiser
and non-blind SR model, DnCNN [30] + SRMDNF [12].

1) Degradation-in-Distribution: The Section A and B of
Table I show the PSNR values on Simple and Middle degrada-
tions, where degradation patterns match the range of training
data. Due to the unawareness of multiple degradations, the
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LR PSNR/SSIM
Middle Degradation

DnCNN+KernelGAN
+ZSSR  28.65/0.7706

DnCNN+SRMDNF
23.30/0.6674

DnCNN+IKC
28.98/0.7848

SRMD
29.00/0.7780

CMDSR
29.02/0.7919

LR PSNR/SSIM
Simple Degradation

CMDSR
29.81/0.7962

DnCNN+KernelGAN
+ZSSR  29.01/0.7840

DnCNN+SRMDNF
29.54/0.7949

DnCNN+IKC
29.51/0.7967

SRMD
29.79/0.8007

LR PSNR/SSIM
Severe Degradation

CMDSR
22.50/0.4481

DnCNN+KernelGAN
+ZSSR  22.18/0.4179

DnCNN+SRMDNF
19.73/0.3688

DnCNN+IKC 
22.44/0.4378

SRMD
22.18/0.4443

Fig. 4. SR perceptual results (×4) of images on Simple, Middle and Severe degradations. Best results are highlighted in red. For Simple degradation, CMDSR
outperforms all the blind methods and is competitive with non-blind method, the SRMD. For Middle and Severe degradations, our CMDSR even outperforms
the non-blind SRMD. Better to enlarge the images for more visual details.

BI structured model RCAN [5] produces the worse PSNR.
When kernel width and noise level are increasing, the cascaded
blind methods suffer the mutual negative influence between
different stages. This is because the denoiser will make the
LR image more blurred and lead to kernel mismatch, which
increases the difficulty of deblurring. The severe performance
drops of PSNR as shown in Table I and the over-sharp results
of DnCNN [30] + SRMDNF [12] in Fig. 4 clearly illustrates
this phenomenon. Our CMDSR achieves better PSNR than
all blind schemes for Simple degradation, but a little lower
than the non-blind methods, SRMD [12] and UDVD [15],
because they take the accurate blur kernel and noise maps
as the additional inputs. However, it is noted that when degra-
dation is more complicated, the generalization of our adaptive
framework becomes prominent. Our CMDSR achieves the best
performance for Middle degradation, even better than the non-
blind methods. As shown in Fig. 4, CMDSR produces sharper
and clearer SR results. These results demonstrate that CMDSR
is an effective blind framework for multiple degradations.

2) Degradation-Out-of-Distribution: The results in Section
C of Table I show PSNR values on Severe degradation, where
the degradation levels are higher and the blur kernel is out of
the distribution of training data. The qualitative comparisons
are presented in Fig. 1 and Fig. 4. Our CMDSR significantly
outperforms all the blind and the non-blind methods, because
the parameters of BaseNet are not fixed but adaptive for
a new degradation when testing. It should be emphasized
that non-blind SRMD [12] is trained with both isotropic and

TABLE II
AVERAGE PSNR VALUES WITH SCALE FACTOR ×4 ON NOISE-FREE

DEGRADATIONS. BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED IN
RED AND BLUE.

Models Kernel Datasets
Set5 Set14 BSD100

ZSSR

σ0.2
G

28.87 27.15 26.68
SRMDNF 31.96 28.35 27.49

IKC 32.39 28.77 27.58
UDVD 32.31 28.78 27.70

CMDSR 31.82 28.53 27.60
ZSSR

σ2.6
G

27.69 26.06 25.92
SRMDNF 31.77 28.26 27.43

IKC 32.05 28.55 27.47
UDVD 31.99 28.55 27.55

CMDSR 31.79 28.36 27.50
ZSSR

σani
G

26.24 25.33 25.02
SRMDNF 30.48 27.23 26.85

IKC 30.51 27.31 26.70
CMDSR 29.94 27.29 26.95

anisotropic Gaussian blur kernel, while our blind CMDSR
trained with isotropic blur kernels still achieves better qualita-
tive and quantitative results. These results further demonstrate
the generalization of our CMDSR to handle distribution shifts.

C. Experiments on Synthetic Noise-free Images

As we have explained before, although existing methods can
perform well on single degradation (eg. noise-free), they are
difficult to deal with multiple degradations, and the multiple
degradations are more complicated in real tasks. However, it
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DnCNN+IKC SRMDFlower.png CMDSR

JFK funeral.png CMDSRDnCNN+IKC SRMD

CMDSRSRMDDnCNN+IKCiPhone Image.png

Frog.png DnCNN+IKC SRMD CMDSR

Fig. 5. SR perceptual results (×4) of real-captured images. Best results are highlighted in red. Our CMDSR produces best results with less artifacts and
brighter color. Better to enlarge the images for more visual details.

is still a valid assessment on noise-free degradation. Here,
we present the experimental results on noise-free degradation
in Table II. Compare to well-designed SOTAs, such as blind
IKC and non-blind UDVD, our CMDSR achieves little worse
performance. When degradation is more complicated and out
of distribution, the performance of our CMDSR can get
improved, which also proves the adaptation of our model on
noise-free degradation. It should be noted that since different
degradation patterns are mixed together, it’s a tough problem
for existing blind SR models to conduct accurate degradation
estimation on multi-degradations. Therefore, the superiority of
adapted our CMDSR are more significant on multi-degraded
images.

D. Perceptual Visualization on Real Images
We further extend the experiments to real images. The most

representative blind and non-blind methods, DnCNN [30] +
IKC [18] and SRMD [12] are compared with our framework.
Since there are no GT degradation patterns for real images,
SRMD [12] is searched by manual grid as in [12]. The
qualitative results of real images [12], [47] are shown in Fig. 5.
It is clear that the blind scheme produces over-sharp results and
non-blind SRMD [12] fails to recover sharp edges. Overall,
CMDSR produces the best results with less artifacts, sharper
edges, and even brighter color.

E. Ablation Experiments
In this section, we present the systematic ablation studies to

explain the important implementation details and validate the
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effectiveness of our framework. For fair comparison, all the
ablation studies were conducted with training data and settings
as described in Section IV-A.

1) Computational and Parameter Comparison: We present
the SOTA blind and non-blind SR models, RCAN [5],
ZSSR [17], DnCNN [30] + KernelGAN [19] + ZSSR
[17] (5000 steps), DnCNN [30] + IKC [18], SRMD [12],
UDVD1 [15], SRResNet-10 and CMDSR to conduct exper-
iments. The model parameters, average inference time and
PSNR results for ×4 SISR of Set5 with Middle Degradation
are listed in Table III. It is clear that our proposed CMDSR
can achieve better results with fast speed and relatively less
parameters.

2) BaseNet w/ and w/o ConditionNet: We first evaluate the
performance of BaseNet with and without ConditionNet to
show the importance of conditional feature. Although Condi-
tionNet is not directly used for SISR, it involves more pa-
rameters. For a fair comparison, we add SRResNet-16, where
the number of parameters nearly equals to the completed
CMDSR. The SRResNet-16 is then trained with the same
synthetic data as ours. As shown in Table IV, the PSNR
result of CMDSR is much better, which demonstrates the
significance of conditional hyper-network for unsupervised
task-level feature extraction.

Sampling 400 support sets per task

Fig. 6. The t-SNE visualization of modulated conditional features. Different
colors represent different tasks.

3) Visualizations of Conditional Features: To show Condi-
tionNet can efficiently extract task-level features, we compare
the conditional features between inner-tasks and cross-tasks.
Using DIV2K validation set, we randomly sample 8 different
tasks and sample 400 support sets for each task. We choose the
conditional features modulated by the first modulation layer
and show the t-SNE [48] visualizations in Fig. 6. It is clear
that the modulated features of inner-tasks are similar and those
from cross-tasks are significantly different, which is consistent
with the prior knowledge in Fig. 2.

4) Stability with Different Support Sets: Our framework
aims to extract the common degradation patterns from dif-
ferent LR images of the same task. Therefore, the conditional
features should be content-invariant. To demonstrate this, we
conduct experiments to evaluate the stability of SR results
with different support sets. As shown in Fig. 7, we evaluated
the PSNR values of baby.png using different support patches

1The codes of UDVD [15] have not been released. We reconstruct the
backbone of UDVD according to its original paper to calculate the model
parameters (Pytorch version) and average inference time.

self-patches other-patches

Fig. 7. PSNR results of baby.png using different support patches of Set5.

of Set5. We randomly cropped the self-support-patches from
baby.png itself and other-support-patches from other LR im-
ages of Set5, separately. The self-support-patches and other-
support-patches from the same task share the same degradation
but have different contents. As shown in Fig. 7, it is clear that
our framework achieves relatively stable performance. This
further verifies that our model can extract degradation prior
from different image contents at task-level.

Fig. 8. PSNR curves comparison of Severe degradation with fixed 8 tasks,
64 tasks and random infinite tasks.

5) The Importance of Randomly Selected Tasks from A
Infinite Degradation Pool : Why we use the random selected
tasks from the infinite degradation pool for each iteration, but
not fix them from a specific degradation pool at the beginning
of training? We conduct experiments by using fixed 8 tasks, 64
tasks and random infinite tasks. The curves of PSNR results
with Severe degradation are shown in Fig 8. As introduced
in the experimental setting, the degradation distributions p(T )
of meta-training data is randomly sampled. For each training
iteration with scale factor s, we sample k tasks, where the blur
kernel widths σG are in the range of [0.2, s] and the noise
levels σN are in the range of [0, 75]. Some previous meta-
network frameworks [37], [39] fix the tasks at the beginning of
training and feed all the tasks for one iteration. However, our
framework cannot use the fix tasks because of the following
two reasons: (1) we cannot define a certain number of tasks
because the degradations of LR images are various and infinite;
and (2) the fixed tasks will cause overfitting, which limits
the generalization of CMDSR. As shown in Fig 8, we can
observe that both models trained with fixed tasks get worse
performance with distribution shifts. Moreover, when using
8 tasks, the curve of training loss even shows performance
drop. The model trained with random tasks achieves the best
performance at shifted degradation, which indicates that the
setting of random tasks is significant for our framework.
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TABLE III
COMPARISONS ON MODEL PARAMETERS, AVERAGE INFERENCE TIME AND PSNR RESULTS FOR ×4 SISR OF SET5 WITH Middle DEGRADATION. IT IS

CLEAR THAT OUR PROPOSED CMDSR CAN ACHIEVE BETTER RESULTS WITH FAST SPEED AND RELATIVELY LESS PARAMETERS.

Model RCAN+ [5] ZSSR [17] (5000 steps) DnCNN [30] + KernelGAN [19]
+ ZSSR [17] (5000 steps)

DnCNN [30] + IKC [18]
(10 iterations)

Params. 15.6M 0.23M 1.08M 2.16M
Sec. 507.32ms 183.85s 213.93s 780.40ms

PSNR 23.32 24.91 26.08 26.84

Model SRMD [12] UDVD [15] SRResNet-10 CMDSR
(SRResNet-10 + ConditionNet)

Params. 1.55M 4.83M 1.04M 1.48M
Sec. 6.28ms 42.72ms 29.84ms 39.19ms

PSNR 26.82 26.98 26.09 27.10

TABLE IV
AVERAGE ×4 PSNR OF SRRESNET-10, SRRESNET-16 AND

SRRESNET-10+CONDITIONNET ON SET5 WITH Middle DEGRADATION.

Model Parameters PSNR
SRResNet-10 w/o ConditionNet 1.04M 26.09
SRResNet-16 w/o ConditionNet 1.48M 26.62

SRResNet-10 w/ ConditionNet (Our CMDSR) 1.46M 27.10

6) The Number of Task Size, Support Size and Patch Size:
To evaluate the influence of task size k, support size n
and patch size h × w, we conduct experiments by changing
the number of task size (k = 2, 4, 8), support size (n =
1, 10, 15, 20, 25, 30) and patch size (h × w = 8 × 8, 32 ×
32, 48× 48).

First, we fix the support size and increase the task size. The
number of task size defines the number of tasks which are
used for each training step. When we use a larger task size,
more tasks will be fed into CMDSR for each iteration. As
Table V shows, the CMDSR benefits from larger training task
size.

TABLE V
AVERAGE ×4 PSNR ON SET5 WITH Middle DEGRADATION, WHERE

CMDSR IS TRAINED WITH DIFFERENT TASK SIZES.

Model Task Size Support Size PSNR

CMDSR
2 20 26.96
4 20 27.03
8 20 27.10

Then, we fix the task size and change the support size
and patch size. The number of support size defines the
number of LR images of the support set for each task. As
Fig. 9 shows, the CMDSR benefits from larger support size
and larger patch size. According to the network structure of
ConditionNet, the number of support size also defines the input
channel of ConditionNet. Larger support size and larger patch
size is beneficial for ConditionNet to extract the degradation
information more accurately from LR patch samples at task
level. And our settings (support set size=20, patch size=48) are
the most appropriate because further larger sizes bring only
marginal improvements.

7) Combination of Loss Functions: We compare the results
of CMDSR, where ConditionNet is separately trained with task
contrastive loss Lcon, reconstruction loss Lres and combined
loss. The BaseNet is still optimized by the reconstruction
loss Lres for SR. As shown in Table VI, if ConditionNet is

Our settings

Fig. 9. PSNRs on Middle Set5 using different support sizes and patch sizes.

TABLE VI
AVERAGE ×4 PSNR ON SET5 WITH Middle DEGRADATION, WHERE

CONDITIONNET IS SEPARATELY TRAINED WITH THREE LOSSES.

Model Loss of
BaseNet

Loss of
ConditionNet PSNR

ConditionNet + BaseNet
(CMDSR)

Lres Lres 23.36
Lres Lcon 26.84
Lres Lcon + λ ∗ Lres 27.10

trained with Lres, CMDSR gets collapsed to produce even
worse results than the single BaseNet. Only when using the
unsupervised Lcon, the result is acceptable, but using the
combined loss achieves the best results; This is because it
makes a balance between task-level feature extraction and the
generalization of SISR.

8) The Effect of Contrastive Loss and Reconstruction Loss
Ratio: How to balance the effect of Contrastive Loss and
Reconstruction Loss to better optimize the ConditionNet?
We conduct experiments by changing the loss coefficient
(λ = 1, 0.1, 0.01). The PSNR results with Middle degradation
are shown in Table VII. It is observed that the large ratio
of Reconstruction loss (λ = 1) is harmful for the task-level
feature extraction of ConditionNet. When we decrease the ratio
(λ = 0.01), the performance of CMDSR is slightly decreased.
Therefore, we set the loss coefficient λ as 0.1.

TABLE VII
AVERAGE ×4 PSNR ON SET5 WITH Middle DEGRADATION, WHERE
CONDITIONNET IS SEPARATELY TRAINED WITH DIFFERENT LOSS

COEFFICIENTS.

Model Combined Loss of
ConditionNet coefficient PSNR

CMDSR Lcon + λ ∗ Lres

λ = 1 25.27
λ = 0.1 27.10
λ = 0.01 27.03
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9) The Importance of Alternating Training Strategy: As
we have explained before, the ConditionNet and BaseNet
serve different purposes with different learning rates and loss
functions. Here, we have conducted the experiment to show
the importance of alternating training strategy with different
steps t0. Specifically, we alternately optimize the BaseNet
and ConditionNet with different steps (t0 = 0, 1, 10, 20).
The results are presented in Table VIII. It can be seen that
the alternative training strategy is quite important, since non-
alternative training t0 = 0 produces the worst performance. We
speculate that this is caused by the inconsistent convergence
speed of the ConditionNet and Basenet. To make a balance
between the conditional feature extraction and SR restoration,
we experimentally set the alternating training step t0 = 10 to
train ConditionNet and BaseNet alternatively.

TABLE VIII
AVERAGE ×4 PSNR ON SET5 WITH Middle DEGRADATION USING

DIFFERENT ALTERNATING TRAINING STEP t0 .

Model Alternating training step t0 PSNR

CMDSR

0 26.86
1 27.05

10 27.10
20 27.01

10) Can CMDSR Use Other Modulation?: Since our model
aims to be a general framework, we use depth-wise scaling to
adapt convolutions without changing the CNN structures or
involving more network parameters. Hence, we applied the
depth-wise scaling as our modulation. Here, we extend to use
the novel Spatial Feature Transform (SFT) of IKC [18] as the
modulation. As shown in Table IX, CMDSR can further benefit
from SFT which concatenates the degradation and image
features to apply an affine transformation in each middle layer.
However, after using the SFT modulations, the parameters
of CMDSR get greatly increased. With sufficient calculation
resources, we believe more novel modulations can be applied
to our framework in the future.

TABLE IX
AVERAGE ×4 PSNR ON SET5 WITH Middle DEGRADATION USING

DIFFERENT MODULATIONS.

Model Modulation PSNR Params.

CMDSR depth-wise scaling 27.10 1.48M
SFT [18] 27.53 ↑ 5.92M

11) Can CMDSR Extend to Other SISR Structure?: As
mentioned before, since our model uses depth-wise scaling
to adapt convolutions without changing CNN structures, it
has no strict restrictions on the BaseNet structure. Therefore,
we attempt to extend our framework to other SISR structure.
Specifically, we replace SRResNet-10 with other three SISR
models, VDSR [2], EDSR [4] and IDN [45]. Moreover, we
also use the same training data described in Section IV-A
to train these models without ConditionNet. As shown in
Table X, all joint models obtain significant improvement, and
EDSR [5] achieves the best results with the largest number of
parameters. We believe that our framework can be extended
to more complicated structures in the future.

TABLE X
AVERAGE ×4 PSNR ON SET5 WITH Middle DEGRADATION USING OTHER

STRUCTURES FOR BASENET.

Model BaseNet
Parameters PSNR

VDSR [2] w/o ConditionNet 0.67M 26.49
VDSR [2] w/ ConditionNet 26.97↑
IDN [45] w/o ConditionNet 0.80M 26.53
IDN [45] w/ ConditionNet 27.03↑

EDSR [4] w/o ConditionNet 43M 26.81
EDSR [4] w/ ConditionNet 27.51↑

V. CONCLUSION

In this paper, we investigate the blind SISR problem with
multiple degradations. Inspired by meta-learning, we design
the first blind SR hyper-network that learns how to adapt
to changes in input distribution. Specifically, we use a Con-
ditionNet to extract the task-level features with batches of
LR patches and use BaseNet to rapidly adapt its parameters
according to the conditional features. Extensive experiments
show that our framework can handle distribution shift by
only performing one-step adaptation. For complicated and real
scenes, our blind model even outperforms several non-blind
models. Besides, our framework is flexible and efficient so that
we can extend the structure of BaseNet to other SISR models.
In future work, we will extend our general framework to more
CNN models and more low-level vision tasks.
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