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Abstract

We provide straightforward new nonparametric methods for testing conditional independence

using local polynomial quantile regression, allowing weakly dependent data. Inspired by Hausman�s

(1978) speci�cation testing ideas, our methods essentially compare two collections of estimators that

converge to the same limits under correct speci�cation (conditional independence) and that diverge

under the alternative. To establish the properties of our estimators, we generalize the existing

nonparametric quantile literature not only by allowing for dependent heterogeneous data but also

by establishing a weak consistency rate for the local Bahadur representation that is uniform in both

the conditioning variables and the quantile index. We also show that, despite our nonparametric

approach, our tests can detect local alternatives to conditional independence that decay to zero at

the parametric rate. Our approach gives the �rst nonparametric tests for time-series conditional

independence that can detect local alternatives at the parametric rate. Monte Carlo simulations

suggest that our tests perform well in �nite samples. Our tests have a variety of uses in applications,

such as testing conditional exogeneity or Granger non-causality.

Key Words: Conditional independence, Empirical process, Granger causality, Local polynomial,
Quantile regression, Speci�cation test, Uniform local Bahadur representation.

1 Introduction

Hausman�s (1978) seminal paper on speci�cation testing opened the way to a broad array of methods

for assessing the validity of econometric models and their resulting insights. The fundamental idea of

comparing two estimators, both consistent under correct speci�cation, but divergent under misspeci�ca-

tion applies not only to detecting incorrect parametric functional form for conditional means, variances,

or other aspects of the conditional distribution of a variable of interest, but also to detecting failures

of exogeneity �the stochastic orthogonality condition between observable and unobservable drivers of
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the dependent variable of interest ensuring that structural features of interest can be recovered from

observable data.

Although functional form misspeci�cation can be considerably mitigated using nonparametric meth-

ods, exogeneity in one form or another remains a crucial assumption; its failure results in estimators

being largely uninformative about structural objects of interest (see, e.g., White and Chalak, 2012).

There remains a clear need to develop convenient nonparametric methods for exogeneity speci�cation

testing; Hausman�s (1978) approach provides a valuable foundation on which to construct such tests.

Over the years since Hausman�s paper appeared, various alternatives to strict exogeneity (observ-

able causes (X) independent of unobservable causes (U)) useful for identifying economic structure of

interest have emerged. One important alternative is that introduced by Barnow, Cain, and Goldberger

(1980), termed �selection on observables,�namely that observable causes are independent of unobserv-

able causes, conditional on some further observables, say W: We write this conditional independence as

X ? U jW; following Dawid (1979). This condition plays a key role in the identi�cation and estimation
of treatment e¤ects (White and Lu, 2011; White and Chalak, 2012). Similar conditions play a key role

in recovering structural features in many other contexts, as catalogued by Chalak and White (2011).

Because U is unobservable and, in the general case, not estimable, indirect methods for testing

X ? U j W have been developed, based on the fact that, under additional plausible assumptions,

X ? U j W implies certain conditional independence relations among observables, e.g., X ? S j W;
where S is observable (White and Chalak, 2010). Conditional independence also plays a key role in

other important contexts. For example, tests of Granger non-causality in distribution (Granger, 1969;

Granger and Newbold, 1986) are tests of conditional independence among observables. And, as White

and Lu (2011) show, such tests can be used to test structural non-causality under appropriate conditions.

Accordingly, our main goal and contribution here is to provide straightforward and powerful new

nonparametric methods for testing conditional independence. Hausman�s (1978) ideas provide the basic

foundation for our approach; however, as is now often the case, our methods compare two collections of

estimators that converge to the same limits under correct speci�cation (conditional independence) and

that diverge under the alternative.

We construct our tests using local polynomial quantile regression, allowing weakly dependent data.

This yields speci�cation testing methods suitable for either cross-section or time-series data. In pursuing

our main goal in this way, we make a number of further related contributions. Speci�cally, we generalize

the existing nonparametric quantile literature not only by allowing for dependent heterogeneous data

but also by establishing a weak consistency rate for the local Bahadur representation that is uniform in

both the conditioning variables and the quantile index. We also show that, despite our nonparametric

approach, our tests can detect local alternatives to conditional independence that decay to zero at the

parametric rate, in contrast to the tests of Huang (2010) and of Su and White (2007, 2008, 2011).

Although other tests can also detect local alternatives at the parametric rate (Linton and Gonzalo,

1997; Delgado and González-Manteiga, 2001; Song, 2009; Huang and White, 2010), those tests are

for independent identically distributed (IID) data and do not necessarily extend easily to the time-

series case. Our tests are thus the �rst for time series conditional independence that can detect local

alternatives at the parametric rate.

The rest of the paper is organized as follows. In Section 2 we describe quantile regression and

its relation to conditional independence. Section 3 introduces the local polynomial quantile regression
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estimator and studies its uniform local Bahadur representation. We apply this representation result to

testing conditional independence in Section 4, where we also conduct some Monte Carlo simulations to

evaluate the �nite sample performance of our tests. Section 5 provides a summary and conclusion. All

proofs are provided the appendix.

2 Quantile Regression and Conditional Independence

Let f(Yt; Xt)g denote a time series of random vectors, with Yt a scalar for simplicity. Let mt(� ; x) de�ne

the �th conditional quantile function of Yt given Xt = x 2 Rd; that is, the �th conditional regression
quantile. Speci�cally,

mt(� ; x) � inf fy : Ft (yjx) � �g ;

where Ft (�jx) denotes the conditional cumulative distribution function (CDF) of Yt given Xt = x: Let

�� (z) = z(� �1(z � 0)) be the �check�function, with 1 (:) being the usual indicator function. It is well
known that the �th conditional quantile mt(� ; x) solves the minimization problem

mt(� ; x) = argmin
q2Q

E [�� (Yt � q(Xt)jXt = x)] ; (2.1)

where Q is a given space of measurable functions de�ned on Rd: As is common, we assume that the
solution to this minimization problem is unique.

Often, the distribution of f(Xt; Yt)g is assumed to be stationary, so the conditional quantile function
mt(� ; x) is not time-varying; in this case, we write mt(� ; x) = m(� ; x) for all t � 1: Here, we do not

assume stationarity; however, under conditional stationarity of Yt given Xt; we again have mt = m:

Koenker and Bassett (1978) pioneered quantile regression, treating the linear parametric case where

Q = fq : q(x) = �Tx; � 2 Rdg and T denotes the transpose operator. Subsequently, nonparametric

quantile regression has been studied by Bhattacharya and Gangopadhyay (1990), Chaudhuri (1991),

White (1992), Fan, Hu, and Truong (1994), He and Shao (1996), Welsh (1996), Yu and Jones (1998),

Hong (2000), and Lu, Hui, and Zhao (2001), among others. Here, we apply local polynomial methods,

as described in the next section.

Our main focus of interest is the conditional independence of Yt and Zt given Xt; Yt ? Zt j Xt: Let

m(� ; x) and m(� ; x; z) de�ne the �th conditional quantile functions of Yt given Xt = x and (Xt; Zt) =

(x; z) ; respectively. Then Yt ? Zt j Xt if and only if the following null hypothesis holds:

H0 : Pr [m(� ;Xt; Zt) = m(� ;Xt)] = 1 for all � 2 (0; 1) : (2.2)

An important special case is that of Granger non-causality (Granger, 1969). Let Xt�1 = (Xt�1; � � � ;
Xt�px)

T and Yt�1 = (Yt�1; � � � ; Yt�py )T ; and let m (� ;Yt�1) and m (� ;Xt�1;Yt�1) denote the �th
conditional quantiles of Yt given Yt�1 and (Xt�1;Yt�1) ; respectively. Finite-order Granger non-causality
in distribution is the condition that Yt ? Xt�1 j Yt�1 (for additional related concepts, see White and
Lu, 2010). Then Yt ? Xt�1 j Yt�1 if and only if

HG
0 : Pr [m (� ;Xt�1;Yt�1) = m (� ;Yt�1)] = 1 for all � 2 (0; 1) :

Recently, Jeong and Härdle (2008) proposed a test of a version of this hypothesis with �xed � by

extending the work of Zheng (1998) from the IID case to the time-series case.
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An important feature of H0 is that it involves all quantiles � 2 (0; 1) and all values in the joint
support of the conditioning variables. This generally requires the convergence of the quantile estimators

underlying the test to be uniform in both � and the conditioning variables.

3 Local Polynomial Quantile Regression and Uniform Bahadur
Representation

3.1 The local polynomial quantile regression estimator

When the distribution of Yt given Xt is stationary, and if m (� ; x) is a su¢ ciently smooth function of x;

for any ex in a neighborhood of x; we have
m(� ; ex) = m(� ; x) +

X
1�jjj�p

1

j!
Djjjm (� ; x) (ex� x)j + o (kex� xkp)

�
X

0�jjj�p

�j (� ; x;h) ((ex� x)=h)j + o (kex� xkp) ; say.
Here, we use the notation of Masry (1996): Letting j1; :::; jd be non-negative integers, j � (j1; :::; jd),

jjj �
Pd

i=1 ji; x
j � �d

i=1x
ji
i ,
P

0�jjj�p �
Pp

k=0

Pk
j1=0

:::
Pk

jd=0
j1+:::+jd=k

; Djjjm (� ; x) � @jjjm(�;x)
@j1x1:::@

jdxd
; �j (� ; x;h)

� hjjj

j! D
jjjm (� ; x) ; where j! � �d1

i=1ji!; and h = h (n) is a bandwidth parameter that scales the distance

between ex and x:
With observations f(Yt; Xt)gnt=1 ; we estimate the quantile regression function by local polynomial

quantile regression. For this, let � denote the vector formed by stacking the vectors �j in lexicographic

order. De�ne

b� (� ; x;h) � argmin
�
Qn (� ; x;�) � n�1

nX
t=1

��

0@Yt � X
0�jjj�p

�j((Xt � x)=h)j
1AK ((x�Xt) =h) ; (3.1)

where K is a nonnegative kernel function on Rd: The conditional quantile m(� ; x) and its derivatives
up to pth order are then estimated respectively by

bm(� ; x) = b�0 (� ; x;h) and bDjjjm (� ; x) = (j!=hjjj)b�j (� ; x;h) , 0 � jjj � p:

In particular, a local linear approach obtains when p = 1: See Fan, Hu, and Truong (1994) and Yu and

Jones (1998), among many others.

To proceed, we introduce some notation. Let Nl = (l+ d� 1)!=(l!(d� 1)!) be the number of distinct
d-tuples j with jjj = l: This denotes the number of distinct l-th order partial derivatives of m(� ; x) with

respect to x: Arrange the Nl d-tuples as a sequence in a lexicographical order (with highest priority to

last position), so that �l(1) � (0; 0; :::; l) is the �rst element in the sequence and �l(Nl) � (l; 0; :::; 0)

is the last element, and let ��1l denote the mapping inverse to �l: Let N =
Pp

l=1Nl: For each j with

0 � jjj � 2p; let �j =
R
Rd x

jK(x)dx; and de�ne the N �N dimensional matrix H and N � 1 matrix B
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by

H =

266664
H0;0 H0;1 ::: H0;p
H1;0 H1;1 ::: H1;p
...

...
. . .

...

Hp;0 Hp;1 ::: Hp;p

377775 ; B =
266664
H0;p+1
H1;p+1
...

Hp;p+1

377775 , (3.2)

where Hi;j are Ni �Nj dimensional matrices whose (l; s) elements are ��i(l)+�j(s):

3.2 Assumptions

A Bahadur representation is an approximation of the sample quantiles by the empirical distribution

function (Bahadur, 1966). Local Bahadur representations of conditional quantiles have been previously

considered in a number of papers, including He and Shao (1996), Honda (2000), Lu, Hui, and Zhao

(2001). In particular, Honda (2000) establishes a Bahadur representation that is uniform in the condi-

tioning variables. More recently, Kong, Linton, and Xia (2010) establish a strong uniform consistency

rate for the Bahadur representation of local polynomial M-regression estimates; there, too, the uniform

rate is obtained only in the conditioning variables. In this section, we provide conditions su¢ cient to

obtain a local Bahadur representation for b� (� ; x;h) ; uniform in both � and the conditioning variables.

For given n; let
�
(Ynt; Xnt) 2 R� Rd

	n
t=1

be a sequence of time-series random vectors. The triangular-

array notation f(Ynt; Xnt)gnt=1 facilitates the study of asymptotic local power properties of many testing
problems, including ours. Nevertheless, to avoid complicated notation we will suppress reference to the

n subscript in what follows; in particular, we write Yt = Ynt; Xt = Xnt. For example, we will denote

the conditional CDF of Ynt given Xnt as Ft (�jXt), instead of Fnt (�jXnt) :

Next, let T � (0; 1) and for (� ; u) 2 T � R; de�ne

 � (u) � � � 1 (u � 0) :

For simplicity, we let the supports of the Xt�s and Yt�s be time-invariant. For simplicity, we also suppose

that the conditional support of Yt given Xt coincides with Yt�s unconditional support. These restrictions

can be straightforwardly relaxed, but with a considerable proliferation of notation. We thus let X denote
the common support of the Xt�s and Y denote the common support of the Yt�s. We let k�k denote the
Euclidean norm. Although n is implicit for Yt and Xt in what follows, the stated conditions hold for

n = 1; 2; � � � ; and the referenced bounding constants or functions do not depend on n:

Assumption A1. f(Yt; Xt)g is a strong mixing process with mixing coe¢ cients � (s) such thatP1
s=0 s

3� (s)
�=(4+�) � C <1 for some � > 0 with �= (4 + �) � 1=2:

Assumption A2. (i) Xt is continuously distributed, with probability density function (PDF) ft (�)
bounded with bounded �rst order derivatives on X for each t = 1; 2; � � � : (ii) The conditional CDF
Ft (�jXt) of Yt given Xt has Lebesgue density ft (�jXt) such that supy: Ft(yjXt)2T ft (yjXt) � C1 < 1
for all t; and for all y1; y2 2 Y; jft (y1jXt)� ft (y2jXt)j � C2 (Xt) jy1 � y2j a.s. for all t; where C2 (�) is
a continuous function. (iii) The joint PDF fts (�; �) of (Xt; Xs) is bounded for all t; s = 1; 2; � � � :

Assumption A3. For all (� ; x) 2 T � X , the conditional quantile function de�ned by mt (� ; x) �
inf fy 2 Y : Ft (yjx) � �g satis�es: (i) mt (� ; x) = m (� ; x) + n�1=2c (� ; x; t=n) where c (� ; x; t=n) is uni-

formly bounded for all (� ; x) 2 T � X and t � n; (ii) m (� ; x) is bounded uniformly in (� ; x) 2 T � X :
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It is Lipschitz continuous in (� ; x) and for each � 2 T has all partial derivatives with respect to x

up to order p + 1; (iii) The (p+ 1)th order partial derivatives with respect to x; i.e., Dkm (� ; x) with

jkj = p+1; are uniformly bounded in (� ; x) 2 T �X and are Hölder continuous in (� ; x) with exponent

0 > 0 : jDkm (� ; x)�Dkm (e� ; ex) j � C3 (j� � e� j0 + jjx� exjj0) for some constant C3 <1; and for all
� ; e� 2 T and x; ex 2 X and all k such that jkj = p+ 1.

Assumption A4. limn!1n
�1Pn

t=1 ft (m (� ; x) jx) ft (x) > 0 uniformly in (� ; x) 2 T � X .

Assumption A5. The kernel functionK (�) is a product kernel of k (�) ; which is a symmetric density
function with compact support A � [�ck; ck] : supa2A jk (a)j � c1 < 1; and jk (a) � k (ea) j � c2ja � eaj
for all a; ea 2 R and some c2 < 1: The functions Hj(x) = xjK(x) for all j with 0 � jjj � 2p + 1 are
Lipschitz continuous. H de�ned in (3.2) is positive de�nite.

Assumption A6. As n ! 1; (i) h ! 0; nh2d= (log n)
2 ! 1; nhd+2(p+1) ! c 2 [0;1);

hd=2=(�n log log n) ! 0; and h(p+1)=�n ! 0 for some non-increasing positive sequence �n. (ii) Let

h = n�1=&1 and �n = n�&� where &1 > 0, &� � 0 and 4&�+d=&1�1 < 0: There exists � 2 (&�; (1�d=&1)=2)
such that 16=� > [5=2 + d+ 2� + 3d=(2&1) + (2N + 1)&�]=(1� 2� � d=&1)� 1:

Assumption A1 restricts the process f(Yt; Xt)g to be strong mixing with mixing rates decaying
su¢ ciently fast. It does not require stationarity. Assumption A2 imposes smoothness conditions on

the functions ft (�) ; ft (�jXt) ; and fts (�; �) : Assumptions A3-A4 enable us to establish the uniform local

Bahadur representation for our local polynomial estimates. In particular, A3 allows us to establish a

uniform Bahadur representation for asymptotically stationary process. Assumptions A5 and A6 specify

typical conditions on the kernel and bandwidth used in local polynomial regression. In particular,

Assumption A6 implies that nhd�2n !1 as n!1:

3.3 Uniform local Bahadur representation

We now show that with the above assumptions, the local polynomial quantile estimator b� (� ; x;h) has a
Bahadur representation uniform in both � and x. For this, we introduce some additional notation. Let

� ((Xt � x)=h) be an N � 1 vector that contains the regressors ((Xt � x)=h)j in the local polynomial

quantile regression (see (3.1)) in the lexicographical order. For example, if p = 1; then � ((Xt � x)=h) =
(1; (Xt � x)T =h)T : Let �tx � � ((Xt � x)=h) : De�ne

Hn (� ; x) � 1

nhd

nX
t=1

K ((x�Xt) =h) ft (m (� ;Xt) jXt) �tx�
T
tx; and

Jn (� ; x) � 1p
nhd

nX
t=1

K ((x�Xt) =h) �tx  �

�
Yt � �0 (� ; x;h)

T
�tx

�
:

Theorem 3.1 Suppose Assumptions A1-A6 hold. Then
p
nhd

�b� (� ; x;h)� � (� ; x;h)� = Hn (� ; x)
�1
Jn (� ; x) + oP (�n) uniformly in (� ; x) 2 T � X .

In particular,
p
nhd (bm (� ; x)�m (� ; x)) = eT1Hn (� ; x)

�1
Jn (� ; x) + oP (�n) uniformly in (� ; x) 2 T � X ;

where e1 = (1; 0; :::; 0)
T is an N -vector.
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Theorem 3.1 generalizes the local Bahadur representation results in the literature. This uniform

result is useful for many statistical applications, where one usually requires �n to be 1 or hd=2: If

�n = 1; we can choose &� = 0 in Assumption A6(ii), and the last two conditions in Assumption A6(i)

are automatically satis�ed. To construct a conditional quantile-based test that can detect deviations

from the null at the parametric rate, one typically needs �n = hd=2: In this case, &� = d=(2&1); and

the �rst condition in Assumption A6(ii) implies that nh3d ! 1. The following corollary is handy for
deriving the asymptotic properties of our test statistic.

Corollary 3.2 Suppose Assumptions A1-A6 hold with �n and &� in Assumption A6 replaced by hd=2

and d=(2&1); respectively. Suppose nh2(p+1) = o (1) : Then, uniformly in (� ; x) 2 T � X ,
p
nhd (bm (� ; x)�m (� ; x)) = eT1H (� ; x)

�1
Jn (� ; x) [1 + oP (1)] + oP (h

d=2);

where Jn (� ; x) � n�1=2h�d=2
Pn

t=1K ((x�Xt) =h)�tx  � (Yt �m (� ;Xt)) ; H (� ; x) � f (� ; x)H, f (� ; x)
� limn!1 fn (� ; x) ; and fn (� ; x) � n�1

Pn
t=1 ft (m (� ; x) jx) ft (x) :

If we assume the process f(Xt; Yt)g is stationary, then the conditional and marginal PDF�s ft (m (� ; x) jx)
and ft (x) can be written f (m (� ; x) jx) and f (x) ; so that H (� ; x) = f (m (� ; x) jx) f (x) H: This result
is frequently used in the next section.

4 Testing Conditional Independence

4.1 Motivation and the test statistic

As discussed in Section 2, we wish to test

H0 : Pr [m(� ;Xt; Zt) = m(� ;Xt)] = 1 for all � 2 (0; 1) ;

where Xt and Zt are random vectors of dimension dX and dZ , respectively. An obvious way to test this

hypothesis would be to compare estimators of m(� ;Xt; Zt) and m(� ;Xt) for all � and all admissible

Wt �
�
XT
t ; Z

T
t

�T
. This approach clearly would give a form of Hausman test. As White (1994, ch.9)

shows, however, Hausman tests can also be formulated as m�tests, that is, tests of speci�c moment
restrictions that hold under correct speci�cation and fail otherwise. Such m�tests are often especially
convenient, both for analysis and computation.

To formulate a corresponding m�test for H0; let ut� � Yt �m(� ;Xt) and "t� � Yt �m(� ;Xt; Zt);

and recall that  � (u) � � � 1 (u < 0) : Then ut� = "t� under H0 and H0 holds if and only if

H�
0 : E [ � (ut� ) jWt] = 0 a.s. for all � 2 (0; 1) :

This hypothesis has the form of a conditional moment restriction, involving the generalized residuals

 � (ut� ) : Two challenges are apparent here. First, for each � ; there is an in�nite number of unconditional

moment restrictions implied by E [ � (ut� ) jWt] = 0. Second, we must accommodate the fact that � can

take a continuum of values.
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Results of Stinchcombe and White (1998, SW) allow us to convert conditional to unconditional

moment restrictions in a convenient way. Speci�cally, SW provide conditions under which

E [ � (ut� ) jWt] = 0 a.s. for all � 2 (0; 1)
if and only if

E [ � (ut� )'(Wt; )] = 0 almost everywhere (a.e.) in (� ; ) 2 (0; 1)� � (4.1)

where � � Rd� is a properly chosen set with typical choices d� = dX + dZ or dX + dZ + 1; and ' is a

generically comprehensively revealing (GCR) or comprehensively revealing (CR) function. Examples of

GCR functions include

(1) '(Wt; ) = exp
�
iTWt

�
;

(2) '(Wt; ) = sin
�
TWt

�
;

(3) '(Wt; ) = exp
�
TWt

�
;

where i =
p
�1: The following CR functions are frequently used in the literature:

(4) '(Wt; ) = 1 (Wt � ) ;

(5) '(Wt; ) = 1
�
�TWt � �

�
with  =

�
�; �T

�T
;

where 1 (Wt � ) = �dX+dZi=1 1 (Wti � i) ; and Wti and i are the ith elements of Wt and  respectively.

See SW for primitive conditions for GCR or CR functions.

A remarkable property of GCR functions is that if ' is GCR, then deviations from the null hypothesis

can be detected by essentially any choice of  2 �; where � can be chosen as any small compact set
with non-empty interior. In contrast, for CR functions the set � may have to be Rd� in order to ensure
consistency of the associated test. Also, di¤erent choices of ' result in di¤erent local power properties.

There is no general way to choose the �optimal�' to conduct a test because such a function ' will

depend on the underlying data generating process or the true alternative. For this reason, it is desirable

to establish a general theory that covers a large class of (G)CR functions ':

Given a sample f(Yt;Wt)gnt=1 ; de�ne the empirical process

S(1)n (� ; ) � n�1=2
nX
t=1

 � (ut� )'(Wt; ):

Since ut� is not observable, in practice we replace it with but� ; where but� � Yt � bm(� ;Xt); and bm(� ; x)
denotes the p-th order local polynomial quantile regression estimate of m(� ; x): A practical test of CI

can be based on the process

S(2)n (� ; ) � n�1=2
nX
t=1

 � (but� )'(Wt; ):

The limiting distribution of S(2)n (� ; ) is di¤erent from that of S(1)n (� ; ) ; a consequence of the �pa-

rameter estimation error� problem. As we explain shortly, this causes great di¢ culty in proposing a

bootstrap test statistic whose limiting distribution coincides with the limiting null distribution of the

test statistic. In addition, the indicator function in  � (�) is not a smooth function, which makes the
asymptotic analysis of S(2)n (� ; ) intractable: even if we assume that the conditional quantile function

m (� ; x) belongs to a certain smooth class of functions (e.g., Van der Vaart and Wellner (1996, p.154))

so that S(1)n (� ; ) obeys a version of the Donsker theorem, it is hard (if even possible) to ensure that the
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local polynomial quantile estimate bm (� ; x) also belongs to the same class. We therefore can not apply
empirical process theory to study S(2)n (� ; ) directly. Instead, we propose to approximate the indicator

function by a smooth function G (�) and consider the stochastic process

Sn (� ; ) � n�1=2
nX
t=1

[� �G (�but�=�n)]'(Wt; );

where G (�) is a function that behaves like a CDF with uniformly bounded derivatives up to third order
and �n ! 0 is a smoothing parameter.

The process Sn (� ; ) will be the main ingredient of our test statistic. Under some regularity con-

ditions, it converges to a mean-zero Gaussian process under the null and diverges for some value(s) of

(� ; ) under the alternative. Consequently, we accommodate the continuum of values for � and  using

the Cramér-von Mises test statistics

CMn �
Z
�

Z
T
jSn (� ; )j2	1 (d�)	2 (d) ; (4.2)

where T = [� ; � ] is a subset of (0; 1) ; and 	1 (�) and 	2 (�) are weighting functions satisfying some mild
conditions.

One can also consider the Kolmogorov-Smirno¤ test statistic

KSn � sup
�2T

sup
2�

jSn (� ; )j :

But KSn is much more computationally demanding than CMn; so we focus on the CMn statistic.

As we show next, despite the nonparametric quantile regression, our tests can detect local alternatives

that decay to zero at the parametric rates, in sharp contrast with the tests of Su and White (2007, 2008,

2011). More importantly, since our tests only involve dX�dimensional smoothing, it is less severely
subject to the �curse of dimensionality�problem than some of the earlier tests. In addition, our tests

allow for weakly dependent data, and they are asymptotically pivotal under the null hypothesis for

independent or martingale di¤erence sequence (m.d.s.) data.

4.2 Asymptotic null distribution

We add the following assumptions.

Assumption B1. For all � 2 (0; 1); E[ � (Yt �m (� ;Wt))jWt] = 0 a.s.

Assumption B2. f(Yt;Wt)g is a strictly stationary strong mixing process with mixing coe¢ cients
� (s) such that (i)

P1
s=0 s

5� (s)
�=(6+�) � C <1 for some � > 0 with �= (6 + �) � 1=2; (ii) �

2+�+
1+�
6� < 1

where � = 1 ^ (r�); and r and � are speci�ed in Assumption B4 below.

Assumption B3. (i) The conditional CDF of Yt given Wt; FY jW (�jWt) ; and its Lebesgue density

function fY jW (�jWt) have continuous derivatives up to qth order denoted respectively by F
(s)
Y jX (�jXt) and

f
(s)
Y jW (�jWt) ; s = 1; � � � ; q: fY jW (�jWt) is Lipschitz continuous a.s., and F

(q)
Y jW (�jWt) and f

(q)
Y jW (�jWt)

are bounded and uniformly continuous on R a.s. (ii) Let Vt � (Yt;WT
t )

T : The joint PDF ft1;��� ;t12 (�) of
(Vt1 ; � � � ; Vt12) exists and is bounded for all t1; � � � ; t12 2 f1; 2; � � � ; ng:
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Assumption B4. ' (�; �) is uniformly bounded by c' on the support ofWt and �. For some constants

r � 2 and � 2 (0; 1]; either one of the following conditions holds: (i) ' (�; ) is Hölder continuous with
respect to  in the sense that for some measurable function C' (�) with E(jC' (W ) jr) <1,

j' (W;)� ' (W;0)j � C' (W ) k � 0k�

for all ; 0 2 �; (ii) ' (�; ) is locally uniformly Lr-continuous with respect to  in the sense that for
some constant C' > 0; (

E

"
sup

0:k�0k��
j' (Wt; )� ' (Wt; 

0)jr
#)1=r

� C'�
�

for all  2 � and all small positive � = o (1) :

Assumption B5. (i) supu2R jG (u)j � cG for some cG <1, limu!�1G (u) = 0; and limu!1G (u) =

1: (ii) G (�) is three times di¤erentiable with derivatives denoted by G(s) (�) for s = 1; 2; 3; G (�) and
its �rst derivative G(1) (�) are uniformly bounded, and the integrals

R1
�1

��G(s) (u)�� du; s = 1; 2; 3;

are �nite. (iii) g (�) � G(1) (�) is symmetric over its support. There exists an integer q � 2 such

that
R1
�1 usg (u) du = �s0 for s = 0; 1; � � � ; q � 1 and

R1
�1 uqg (u) du < 1; where �s0 is Kronecker�s

delta. (iv) For some cG < 1 and AG < 1; either G(3) (u) = 0 for juj > AG and for u; u0 2 R;��G(3) (u)�G(3) (u0)�� � cG ju� u0j ; or G(3) (u) is di¤erentiable with jG(4) (u) j � cG and for some 0 > 1

and jG(4) (u) j � cG juj�0 for all juj > AG:

Assumption B6. As n!1; �n ! 0; n�2qn ! 0; n2�3nh
7dX=2= log n !1; and n3�6nh4dX=(log n)4

!1:

Assumption B1 says that for each � ; m (� ;Wt) is the �th conditional quantile function of Yt given

Wt: Assumption B2 strengthens the mixing conditions in Assumption A2. The �rst condition of B2

is used to determine the sixth moment of a second-order U-statistic, whereas the second condition is

used together with Assumption B4 to prove the stochastic equicontinuity of a certain empirical process.

Assumption B3 imposes some smoothness conditions on the conditional CDF FY jW (�jWt) and PDF

fY jW (�jWt) : The uniform boundedness of the joint PDF ft1;��� ;t12 (�) facilitates the determination of the
six moments of certain U-statistics. Assumptions B4(i) and (ii) parallel Conditions (3.1) and (3.2) in

Chen, Linton, and Van Keilegom (2003). It is easy to verify that the �ve examples after (4.1) satisfy

either condition (i) or (ii) in B4. In all but example (3), ' (�; �) is uniformly bounded no matter whether
we allow the support of Wt to be compact or not. In the case where Wt is compactly supported,

' (�; �) is also uniformly bounded in example (3). Assumption B5(i) is required because we use G to

approximate the indicator function. Nevertheless, G does not need to be bounded between 0 and 1,

nor does it need to be monotone. Assumptions B5(ii)-(iv) specify smoothness conditions on G: In

particular, Assumption B5(iii) requires that the �rst derivative function g behaves like a symmetric qth

order kernel and Assumption B5(iv) is used in studying the remainder term of a third order Taylor

expansion. If q = 2; the CDF for the standard normal distribution meets all the conditions on G; if

q = 4; one can use the integral of the fourth order Gaussian or Epanechnikov kernel as G: Assumption

B6 speci�es conditions on the smoothing parameters �n and h: Note that the last requirement in the

assumption implies that n�1=2h�dX=2
p
log n = o (�n), i.e., n�

2
nh

dX= log n!1: We can set h = n�1=&1
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and �n _ n�1=&2 so that Assumptions A6 and B6 are both satis�ed. We then need

max

�
6&1

4&1 � 7dX
;

6&1
3&1 � 4dX

�
< &2 < 2q:

When the dimension dX of the conditioning variableXt is small and � is small enough in Assumption B2,

q = 2 will su¢ ce. For example, if d = 1; p = 1; q = 2; h _ n�1=3:5; then one can choose &2 2 (42=13; 4);
if d = 2; p = 3; q = 2; h _ n�1=7; then one can choose &2 2 (42=13; 4) :

Let �t (; �) = ['(Wt; )�c0b (Xt; )] � ("t� ) ; where c0 = eT1HB and b (Xt; ) � E['(Wt; )jXt]: The

following theorem shows that Sn (�; �) converges weakly to a Kiefer process under the null hypothesis.
We let ) denote weak convergence. Here and below, we use �c to denote the complex conjugate of �:

Theorem 4.1 Suppose the conditions of Corollary 3.2 hold. Suppose Assumptions B1-B6 hold. Then
under H0

Sn (�; �)) S1 (�; �) ;

where S1 (�; �) is a mean-zero Gaussian process with covariance kernel �(� ; � 0; ; 0) � E[S1 (� ; )

S1 (�
0; 0)] = E [�1 (; �) �

c
1 (

0; � 0)] +
P1

i=1E
�
�1 (; �) �

c
1+i (

0; � 0)
�
+E

�
�1+i (; �) �

c
1 (

0; � 0)
�
:

Remark 1. Theorem 4.1 indicates that the process fSn (� ; ) : � 2 T ;  2 �; n � 1g converges to a
zero-mean Gaussian process under the null hypothesis of CI. By the continuous mapping theorem,

CMn )
Z
�

Z
T
jS1 (� ; )j2	1 (d�)	2 (dw) ;

provided 	1 and 	2 are well behaved. The covariance kernel of the limiting process fS1 (� ; ) : � 2 T ;
 2 �g depends on the (G)CR function ' (�; �) and the dependence structure in the data. There is thus
no way to tabulate the critical values for our test, so we will provide a method to obtain bootstrap

p-values. Note that the term c0b (Xt; ) in the de�nition of �t (; �) re�ects the cost paid for replacing

m (� ;Xt) with its local polynomial estimate. (We can show that c0 = 1 for the local linear quantile

regression estimate and lies strictly between 0 and 1 for general local polynomial regression with p � 2:)
This term has to be taken into account when one proposes a bootstrap procedure to obtain the p-values.

Remark 2. Let Ft�1 � � (Wt; Yt�1;Wt�1; Yt�2;Wt�2 � � � ) : If f � ("t� ) ;Ftg is an m.d.s. for each �
(e.g., when f(Yt;Wt)g is an independent sequence), then

�(� ; � 0; ; 0) = E [�1 (; �) �
c
1 (

0; � 0)] :

In this special case, the limiting process fS1 (� ; ) : � 2 T ;  2 �g is asymptotically pivotal. But this
still depends on the chosen (G)CR and kernel functions.

4.3 Consistency and asymptotic local power properties

Now we study the consistency and asymptotic local power properties of tests based on Sn (�; �) : First,
we show that the tests are consistent.

Theorem 4.2 Suppose the conditions of Corollary 3.2 hold. Suppose Assumptions B1-B6 hold. Then
under H1 : H0 is false, for each (� ; ) 2 T � �

n�1=2Sn (� ; )
P! E ff (m (� ;Wt) jWt)' (Wt; ) [m (� ;Wt)�m (� ;Xt)]g :

11



Consequently, the (G)CR nature of the function ' implies that Eff (m (� ;Wt) jWt)' (Wt; ) [m (� ;Wt)

�m (� ;Xt)]g 6= 0 in a set with positive measure, so the CMn test statistic will diverge to 1 under the

alternative.

To study the local power properties of the tests based upon Sn (�; �) ; we consider the quantile regres-
sion model (3.1) with the following class of local alternatives:

H1n : m (� ;Wt) = m (� ;Xt) + n
�1=2� (� ;Wt) ; (4.3)

where � (�; �) is a non-constant measurable function. To facilitate our analysis, we add the following
assumption.

Assumption B7. (i) � (� ;W ) is uniformly bounded and uniformly continuous on T and the support
of Wt: (ii) n�1

Pn
t=1E ff (m (� ;Wt) jWt) � (� ;Wt) [' (Wt; )� c0b (Xt; )]g =� (� ; )+ o (1) uniformly

in (� ; ) 2 T � �:

The above assumption is not minimal. The uniform boundedness and continuity of � (� ;W ) greatly

simplify our proofs.

Theorem 4.3 Suppose the conditions of Corollary 3.2 hold. Suppose Assumptions B1-B7 hold. Then
under H1n;

Sn (�; �)) S1 (�; �) +� (�; �)

Theorem 4.3 implies that the CMn test has non-trivial power in detecting n�1=2-local alternatives

provided � (� ; ) 6= 0 for (� ; ) in a set of positive measure on T � �:

4.4 A bootstrap version of the test

From the previous section, we see that the asymptotic null distributions of the CMn test statistics are

generally not asymptotically pivotal, so the critical values for these tests cannot be tabulated. In this

section, we propose a bootstrap version of our test, which is in the spirit of the block bootstrap (e.g.,

Bühlmann, 1994) but di¤ers from the latter in several ways.

Let bb (Xj ; ) denote a local linear estimate of b (Xj ; ) with kernel K (�) and bandwidth hb: Let

S�n (� ; ) � n�1=2
n�L+1X
i=1

�i

i+L�1X
j=i

[� �G (�buj�=�n)] h' (Wj ; )� c0bb (Xj ; )
i
;

where L � L (n) denotes the block length and f�ign�L+1i=1 is a sequence of random variables. The

requirements on L and �i are stated in the next assumption.

Assumption B8. (i) f�tgn�L+1t=1 are IID and independent of the process f(Yt;Wt)g : (ii) E (�t) = 0;
E
�
�2t
�
= 1=L; and E

�
�4t
�
= O(1=L2): (iii) As n!1; L!1 and L=n1=2 ! 0:

Like Inoue (2001), we will generate �t independently from N (0; 1=L) : Using S�n (�; �) ; we construct
the bootstrap version CM�

n of the test statistic CMn. We repeat this procedure B times to obtain

the sequence
�
CM�

n;j

	B
j=1
. We reject the null when, for example, p� = B�1

PB
j=1 1

�
CMn � CM�

n;j

�
is

smaller than the desired signi�cance level. Let
p) denote weak convergence in probability, as de�ned by

Giné and Zinn (1990).
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Theorem 4.4 Suppose the conditions of Corollary 3.2 hold. Suppose Assumptions B1-B8 hold. Then
under either H0 or H1n

S�n (�; �)
p) S1 (�; �) :

Remark 3. First, if f � ("t� ) ;Ftg is an m.d.s., we do not need to mimic the dependence structure
in the data so we can take L = 1 and our bootstrap is essentially a wild bootstrap:

SWn (� ; ) � n�1=2
nX
i=1

�i [� �G (�buj�=�n)]' (Wj ; ) ;

and there is also no need to account for the parameter estimation error by recentering ' (Wj ; ) around

c0bb (Xj ; ) : Second, if f � ("t� ) ;Ftg is not an m.d.s., the limiting Gaussian process under the null
hypothesis has the long-run covariance kernel de�ned in Theorem 4.1 and the wild bootstrap does not

work, because it ignores the dependence structure of the data. Third, the parameter estimation error

generally cannot be ignored in the bootstrap procedure. To see why, consider the following �naive�

bootstrap process

Syn (� ; ) � n�1=2
n�L+1X
i=1

�i

i+L�1X
j=i

[� �G (�buj�=�n)]' (Wj ; ) :

One can decompose 1p
L

Pi+L�1
j=i [� �G (�buj�=�n)]' (Wj ; ) into

1p
L

i+L�1X
j=i

 � ("j� )' (Wj ; ) +
1p
L

i+L�1X
j=i

[1 ("j� � 0)�G (�"j�=�n)]' (Wj ; )

+
1p
L

i+L�1X
j=i

[G (�"j�=�n)�G (�buj�=�n)]' (Wj ; ) ;

where the �rst term is our main object of interest, the second term represents the error due to the approx-

imation of the indicator function by the smooth function G (�) ; and the third term re�ects the parameter
estimation error due to the estimation ofm (� ;Xj) by bm (� ;Xj) (under the local alternative H1n; the dif-

ference between m (� ;Xj) and m (� ;Wj) does not enter the asymptotics of Syn (� ; )): Under weak condi-

tions, we can show that the second term is oP (1) uniformly in (� ; ) ; and the third term is also oP (1) uni-

formly in (� ; ) provided L1=2�n = o (1) where �n � n�1=2h�dX=2
p
log n+hp+1 is the uniform probability

order of the estimation error, i.e., max1�j�n sup�2T jbm (� ;Xj)�m (� ;Xj) j = OP (�n) : (In the decompo-

sition of Sn (� ; ) ; the above third term corresponds to 1p
n

Pn
j=1[G (�"j�=�n)�G (�buj�=�n)]' (Wj ; ) ;

which is OP (1) instead.) It follows that

E
�
Syn (� ; )S

yc
n (�

0; 0) jDn
�

= n�1
n�L+1X
i=1

1

L

i+L�1X
j=i

[� �G (�buj�=�n)]' (Wj ; ) [�
0 �G (�buj� 0=�n)]'c (Wj ; 

0)

= n�1
n�L+1X
i=1

1

L

i+L�1X
j=i

 � ("j� )' (Wj ; ) � 0 ("j� 0)'
c (Wj ; 

0) + oP (1)

9 �(� ; � 0; ; 0) in probability,
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where Dn � f(Yt;Wt)gnt=1 : That is, conditional on Dn; Syn (�; �) cannot converge to S1 (�; �) ; as it does
not have the correct covariance kernel �(�; �; �; �) : Fourth, as an alternative one can replace our bootstrap
procedure by the block bootstrap of Bühlmann (1994):

Szn (� ; ) = n�1=2
n�L+1X
i=1

si+L�1X
j=si

[� �G (�buj�=�n)] h' (Wj ; )� c0bb (Xj ; )
i
;

where the si�s are IID Uniform(f1; 2; � � � ; n � L + 1g): We conjecture that such a block bootstrap
procedure is asymptotically equivalent to ours but the proof strategy will be quite di¤erent.

Remark 4. Theorem 4.4 shows that each bootstrapped process fS�n (�; �)g converges weakly to the
relevant Gaussian process, thus providing a valid asymptotic basis for approximating the limiting null

distribution of test statistics based on fSn (�; �)g : But we are only able to prove the above theorem
under the sequence of local alternatives converging to 0 at the n�1=2-rate (see H1n). This is a phe-

nomenon associated with many bootstrap versions of tests that aim not to re-estimate the model under

investigation and are thus computationally attractive.

4.5 Monte Carlo simulations

In this subsection we conduct some Monte Carlo experiments to evaluate the �nite sample performance

of our tests. We consider four data generating processes (DGPs):

DGP 1.

Yt = �Zt +Xt + "Y t;

Zt = Xt + 0:25X
2
t + "Zt;

whereXt is IID U (�1; 1) ; "Y t is IID N (0; 1), "Zt is IID, computed as the sum of 48 independent random

variables, each uniformly distributed on [-0.25,0.25], fXtg ; f"Y tg ; and f"Ztg are mutually independent,
and � = �=(2

p
1� �2): It is easy to verify that � characterizes the conditional correlation coe¢ cient of

Yt and Zt given Xt:

DGP 2. 
Yt

Zt

!
jXt s N

 
0;

 
1 +X2

t �
p
(1 +X2

t ) (0:5 + 2X
2
t )

�
p
(1 +X2

t ) (0:5 + 2X
2
t ) 0:5 + 2X2

t

!!
;

where Xt = 0:5 + 0:5Xt�1 + "Xt; and "Xt is generated in the same way that "Zt is generated in DGP

1. Note that � is also the conditional correlation coe¢ cient of Yt and Zt given Xt:

DGP 3.

Yt = 0:1 + � (Yt�1)Yt�1 + �Zt�1 + "Y t;

Zt = 0:5Zt�1 +
p
1� 0:52"Zt;

where "Y t = 0:5"Y t�1 +
p
1� 0:52eYt ; eYt and "Zt are independently generated in the same way that

"Zt is generated in DGP 1, � (�) is the standard normal PDF, and � = �=(2
p
1� �2) with � denoting

the conditional correlation coe¢ cient of Yt and Zt�1 given Yt�1:
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DGP 4.

Yt =
2

1 + exp (1� 0:5X2
t )
+
p
#Y t"Y t;

#Y t = 0:05 + 0:9#Y;t�1 + 0:05Y
2
t�1 + 0:1X

2
t ;

Zt = 1 +Xt +
p
#Zt"Zt;

#Zt = 0:05 + 0:7#Z;t�1 + 0:2Z
2
t�1 + 0:2X

2
t ;

where Xt = 0:5Xt�1 +
p
1� 0:52"Xt; "Y t and "Zt are both t (3) =

p
3 and have correlation given by �;

and "Xt is generated as Xt in DGP 1, independently of ("Y t; "Zt).

Clearly, DGP 1 generates IID data f(Yt; Zt; Xt)g whereas the other DGPs generate time-series
dependent observations. f � ("t� ) ; Ftg forms an m.d.s. in both DGPs 1 and 2, but not in DGPs 3-4.
Note that our test is based on local polynomial quantile regressions, which typically require compactly

supported conditioning variables. This motivates the otherwise awkward way we generate "Zt in DGP

1, "Xt in DGP 2, and eYt and "Zt in DGP 3. According to the central limit theorem, we can treat these

variables as being nearly standard normal random variables but with compact support [-12, 12]. In all

DGPs except DGP 3, we are interested in testing whether Yt and Zt are conditionally independent given

Xt: In DGP 3, we test whether Yt and Zt�1 are independent conditional on Yt�1; i.e., the null hypothesis

in this case is that Zt does not Granger-cause Yt at the �rst-order distributional level. Obviously, in all

DGPs, the null hypotheses are satis�ed if and only if the parameter � takes the value 0. The larger the

value of j�j, the stronger the conditional dependence between Yt and Zt (or Zt�1 in DGP 3).
To construct the test statistics, we estimate the conditional quantile function m (� ; x) using locally

linear quantile regression (p = 1) : We choose the normalized Epanechnikov kernel (with variance 1):

K (u) = 3
4 (1 �

1
5u

2)1
�
juj �

p
5
�
: Since there is no data-driven procedure to choose the bandwidth for

quantile regression, to estimate the �th conditional quantile of Yt given Xt; we choose a preliminary

bandwidth according to the rule of thumb recommended by Yu and Jones (1998):

h0� = sXn
�1=5 ��(1� �)[� ���1(�)�]�2	1=5 ;

where sX is the standard deviation of Xt; and � and � are the standard normal PDF and CDF,

respectively. Since undersmoothing is required for our test, we modify the above choice of bandwidth

to

h0� = sXn
�1=� ��(1� �)[� ���1(�)�]�2	1=5 ;

where 3 < � < 4:We study the behavior of our tests with di¤erent choices of �n in order to examine the

sensitivity of our test to the bandwidth sequence. Robinson (1991, p.448) and Lee (2003, p.16) propose

very similar devices. Note that these choices for h0� and the kernel function meet the requirements for

our test. Through a preliminary simulation study, we �nd our bootstrap-based test is not sensitive to

the choice of � when we take � 2 (3; 4) : So we �x � = 3:5 for our simulation results.
To construct the bootstrap tests, we need to estimate b (Xt; ). Again, we apply the local linear esti-

mation method by regressing ' (Wt; ) on Xt to obtain the estimate bb (Xt; ) :We choose the bandwidth

by the rule of thumb: hb = 2sXn�1=5: To construct the CMn test statistics, we consider �ve cases of the

(G)CR functions ' listed after eq. (4.1). We also need to choose the integrating functions 	1 (�) and
	2 (�) (see eq. (4.2)). We treat all quantiles � as equally important, so we choose 	1 (d�) = 1= (� � �) if
� 2 [� ; � ] and 0 otherwise. Following common practice in the parametric quantile regression literature,
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we set � = 0:1 and � = 0:9: The choice of 	2 (�) depends on the nature of the (G)CR function ' and
the ease of implementation. To obtain the CMn test statistics, we need to compute the integral

Its �
Z
'(Wt; )'

c(Ws; )d	2 () :

Even though numerical integration is possible, it is computationally costly, especially when the dimension

of  is high. To save time in computation, we choose 	2 to ensure that Its can be calculated analytically.

Let N (0;�) denote a multivariate normal distribution with mean zero and variance-covariance matrix

�: Corresponding to the �ve choices of the GCR (or CR) functions, we consider the following integrating

functions 	2 (�) :
(1) When '(Wt; ) = exp

�
iwTWt

�
; choose 	2 to be the multivariate standard normal CDF. Then

Its = exp(�
PdX+dZ

i=1 (Wti� Wsi)
2=2); and we denote the resulting test statistic as CM1n: Here I is an

identity matrix and Wti denotes the ith element of Wt.

(2) When '(Wt; ) = sin
�
TWt

�
; choose 	2 to be the multivariate standard normal CDF. Then

Its = [exp(�
PdX+dZ

i=1 (Wti�Wsi)
2=2)� exp(�

PdX+dZ
i=1 (Wti +Wsi)

2
=2)]=2; and we denote the resulting

test statistic as CM2n:

(3) When '(Wt; ) = exp
�
TWt

�
; we need to ensure that the values of TWt are not too large or

small in absolute value. (Note that exp (u) is close to linear if juj is close to 0, close to 0 if u is too
small, and explodes quickly when u is too large. In such cases, the test will not be well behaved. See

Bierens (1990).) We thus follow Bierens�s (1990) advice and transform Wt to make sure each element

Wti of Wt lies between 0 and 1: W ti = 1= (1 + exp (�Wti)) ; i = 1; � � � ; dX + dZ : Then we choose 	2
s N(0; 1

dX+dZ
I): In this case, Its = exp((dX + dZ)

PdX+dZ
i=1

�
W ti +W si

�2
=2): We denote the resulting

test statistic as CM3n:

(4) When '(Wt; ) = 1 (Wt � ) ; we consider two choices for 	2 (�) : First, we choose 	2 to be
the multivariate standard normal CDF. Then Its = �dX+dZi=1 [1� �(Wti _Wsi)], and we denote the

resulting test statistic as CM4n: Second, we choose 	2 to be the empirical distribution of Wt; then

Its � 1
n

Pn
l=1�

dX+dZ
i=1 1(Wti_ Wsi �Wli); and we denote the resulting test statistic as CM4bn:

(5) When '(Wt; ) = 1
�
�TWt � �

�
with  =

�
�; �T

�T
; we follow Escanciano (2006) and set

	2 (dw) = Fn;� (d�) d�

where Fn;� (�) denotes the empirical distribution function of
n
�TWt

on
t=1

and d� denotes the uniform

density on the unit sphere. Then Its can be calculated analytically, but the exact formula is cumbersome.

See Appendix B in Escanciano (2006) for a simple algorithm to compute Its:

We �rst focus on the �nite sample performance of our tests under the null. Tables 1-4 report the

empirical rejection frequencies of the CMn tests at the 5% nominal level for DGPs 1-4, respectively,

where � = 0. We use 1000 replications for each sample size n and 500 bootstrap resamples in each

replication. To examine the sensitivity of our tests to the choice of block size L and the smoothing

parameter �n; we set �n = 0; 0.001, and 0.01, and choose L = dcn1=4c for three choices of c: 1, 2, 4.
When �n = 0; we e¤ectively replace the approximating function G (�but�=�n) by the indicator function
1(but� � 0): This allows us to examine whether the use of indicator function can be justi�ed in practice
when one needs to estimate the conditional quantile function but is not sure whether the estimate

belongs to the same class of smooth functions as the original quantile function.
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Table 1: Finite sample rejection frequency under the null (DGP 1, nominal level: 0.05)

n Tests �n= 0; L = dcn1=4c �n= 0:001; L = dcn1=4c �n= 0:01; L = dcn1=4c
c = 1 c = 2 c = 4 c = 1 c = 2 c = 4 c = 1 c = 2 c = 4

100 CM1 0.128 0.099 0.063 0.062 0.045 0.019 0.061 0.045 0.020
CM2 0.054 0.050 0.028 0.059 0.052 0.028 0.064 0.055 0.031
CM3 0.290 0.296 0.298 0.100 0.095 0.088 0.096 0.092 0.086
CM4 0.273 0.243 0.210 0.080 0.077 0.038 0.086 0.072 0.048
CM4b 0.359 0.321 0.269 0.100 0.080 0.042 0.102 0.082 0.050
CM5 0.589 0.539 0.455 0.102 0.076 0.044 0.097 0.082 0.045

200 CM1 0.094 0.083 0.058 0.056 0.048 0.024 0.055 0.046 0.029
CM2 0.061 0.053 0.036 0.057 0.058 0.034 0.055 0.051 0.040
CM3 0.177 0.191 0.183 0.090 0.084 0.081 0.079 0.084 0.078
CM4 0.173 0.150 0.132 0.067 0.058 0.035 0.066 0.057 0.040
CM4b 0.217 0.203 0.171 0.079 0.063 0.045 0.080 0.064 0.042
CM5 0.326 0.315 0.253 0.099 0.076 0.060 0.095 0.076 0.050

Table 2: Finite sample rejection frequency under the null (DGP 2, nominal level: 0.05)

n Tests �n= 0; L = dcn1=4c �n= 0:001; L = dcn1=4c �n= 0:01; L = dcn1=4c
c = 1 c = 2 c = 4 c = 1 c = 2 c = 4 c = 1 c = 2 c = 4

100 CM1 0.145 0.119 0.065 0.071 0.050 0.017 0.066 0.045 0.018
CM2 0.062 0.050 0.033 0.055 0.045 0.026 0.054 0.045 0.028
CM3 0.285 0.282 0.299 0.064 0.067 0.060 0.062 0.063 0.064
CM4 0.332 0.316 0.264 0.082 0.069 0.040 0.073 0.065 0.032
CM4b 0.487 0.443 0.366 0.089 0.067 0.032 0.078 0.070 0.030
CM5 0.704 0.678 0.613 0.093 0.074 0.045 0.088 0.076 0.047

200 CM1 0.109 0.089 0.071 0.059 0.056 0.033 0.059 0.059 0.034
CM2 0.065 0.050 0.040 0.061 0.049 0.034 0.057 0.049 0.036
CM3 0.223 0.224 0.232 0.066 0.065 0.058 0.068 0.064 0.063
CM4 0.243 0.221 0.186 0.076 0.065 0.045 0.070 0.062 0.044
CM4b 0.344 0.322 0.267 0.079 0.056 0.034 0.068 0.060 0.033
CM5 0.502 0.484 0.451 0.085 0.076 0.061 0.084 0.076 0.055

Table 3: Finite sample rejection frequency under the null (DGP 3, nominal level: 0.05)

n Tests �n= 0; L = dcn1=4c �n= 0:001; L = dcn1=4c �n= 0:01; L = dcn1=4c
c = 1 c = 2 c = 4 c = 1 c = 2 c = 4 c = 1 c = 2 c = 4

100 CM1 0.156 0.125 0.068 0.061 0.046 0.016 0.063 0.044 0.019
CM2 0.075 0.066 0.038 0.067 0.060 0.034 0.071 0.057 0.031
CM3 0.457 0.469 0.466 0.094 0.081 0.078 0.092 0.081 0.080
CM4 0.288 0.270 0.228 0.062 0.047 0.024 0.063 0.049 0.019
CM4b 0.277 0.261 0.224 0.055 0.045 0.018 0.060 0.048 0.021
CM5 0.817 0.795 0.721 0.103 0.085 0.054 0.096 0.080 0.050

200 CM1 0.089 0.084 0.064 0.052 0.048 0.028 0.053 0.047 0.031
CM2 0.053 0.049 0.037 0.050 0.054 0.031 0.045 0.048 0.035
CM3 0.332 0.338 0.350 0.070 0.072 0.062 0.079 0.072 0.065
CM4 0.212 0.199 0.170 0.062 0.052 0.035 0.058 0.053 0.040
CM4b 0.211 0.200 0.171 0.059 0.050 0.036 0.057 0.047 0.038
CM5 0.623 0.598 0.545 0.071 0.072 0.049 0.067 0.068 0.044
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Table 4: Finite sample rejection frequency under the null (DGP 4, nominal level: 0.05)

n Tests �n= 0; L = dcn1=4c �n= 0:001; L = dcn1=4c �n= 0:01; L = dcn1=4c
c = 1 c = 2 c = 4 c = 1 c = 2 c = 4 c = 1 c = 2 c = 4

100 CM1 0.162 0.122 0.054 0.081 0.050 0.012 0.079 0.053 0.013
CM2 0.067 0.044 0.028 0.054 0.039 0.019 0.054 0.038 0.022
CM3 0.274 0.273 0.295 0.082 0.076 0.056 0.078 0.074 0.054
CM4 0.241 0.217 0.190 0.064 0.050 0.029 0.068 0.052 0.027
CM4b 0.258 0.243 0.207 0.062 0.056 0.026 0.062 0.051 0.028
CM5 0.784 0.755 0.682 0.090 0.078 0.030 0.093 0.072 0.038

200 CM1 0.217 0.180 0.096 0.088 0.069 0.057 0.082 0.700 0.050
CM2 0.052 0.049 0.030 0.046 0.044 0.033 0.049 0.045 0.034
CM3 0.249 0.250 0.249 0.084 0.071 0.063 0.078 0.076 0.064
CM4 0.226 0.216 0.192 0.074 0.058 0.040 0.076 0.060 0.041
CM4b 0.218 0.214 0.190 0.073 0.058 0.042 0.072 0.056 0.036
CM5 0.622 0.594 0.550 0.081 0.070 0.057 0.084 0.073 0.055

We summarize some important �ndings from Tables 1-4. First, when �n = 0; the sizes of our tests

are highly distorted, whereas for �n = 0:001 or 0.01, they are reasonably well behaved. This indicates

that the use of indicator function is questionable and thus we only focus on the case where �n = 0:001

or 0.01. Second, our tests depend on the choice of block size L (or equivalently c in the table): when

�n = 0:001 or 0.01, the tests tend to be oversized for smaller values of block size (c = 1; 2) and close

to the nominal levels or a little bit undersized when c = 4: Third, there is some level variation due to

di¤erent choices of ', but this is not large: the levels of CM3n and CM5n tend to be in�ated more often

than for the other tests. Fourth, as the sample size doubles, the levels of all tests improve.

Figures 1-4 display the powers of our tests at the 5% level for the block size L = dcn1=4c (c = 2)

and smoothing parameter �n = 0:01: To compare the tests on an equal basis, we consider not only

the power of bootstrap-based tests but also the size-corrected power obtained by using critical values

simulated from 250 replications under the null hypothesis of conditional independence (� = 0) for the

four DGPs introduced above. In either case, we use 250 replications for each value of � 2 [�0:9; 0:9] ;
the bootstrap tests are based on 500 bootstrap resamples in each replication. We summarize some of

the main �ndings: (a) As the degree of conditional dependence (j�j) increases, the powers of all tests
increase. (b) With or without size correction, the CM5n test dominates the other tests in terms of power

for all DGPs examined here. (c) The CM4bn and CM3n tests tend to be dominated by other tests in

terms of size-corrected power. (d) The performance of the other tests tends to be DGP-dependent.

Overall, CM5n with L = d4n1=4c (c = 4) provide reliable level and power performance.

5 Summary and Conclusion

We provide straightforward new nonparametric methods for testing conditional independence using

local polynomial quantile regression, allowing weakly dependent data. Inspired by Hausman (1978),

our methods essentially compare two collections of estimators that converge to the same limits under

correct speci�cation (conditional independence) and that diverge under the alternative.
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Figure 1: Power function for DGP 1 (n =100, �n = 0:01; nominal level: 0.05)
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Figure 2: Power function for DGP 2 (n =100, �n = 0:01; nominal level: 0.05)
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In addition, we generalize the existing nonparametric quantile literature not only by allowing for

dependent heterogeneous data but also by establishing a weak consistency rate for the local Bahadur

representation that is uniform in both the conditioning variables and the quantile index. We also

show that, despite our nonparametric approach, our tests can detect local alternatives to conditional

independence that decay to zero at the parametric rate. Our tests are the �rst for time-series conditional

independence that can detect local alternatives at the parametric rate. Monte Carlo simulations suggest

that our tests perform well in �nite samples. Our tests have a variety of uses in applications, such as

testing for failure of conditional exogeneity or for Granger non-causality.
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A Proof of the Main Results
Let �ix � �(Xi � x)=h and Kix � K ((x�Xi)=h) : Let Ei denote expectation conditional on Xi. We
use C to signify a generic constant whose exact value may vary from case to case and aT to denote
the transpose of a unless otherwise stated. We write An ' Bn to signify that An = Bn[1 + oP (1)] as
n!1:
First we state a lemma that is used in the proof of Theorem 3.1.
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Lemma A.1 Let Vn (� ; x;�) be a vector function that satis�es (i) ��TVn (� ; x;��) � ��TVn (� ; x;�)
for all � � 1 and (� ; x) 2 T � X ; (ii) sup(�;x)2T �X supk�k�M kVn (� ; x;�) +Hn (� ; x)��An (� ; x)k =
oP (�n) ; where � may depend on (� ; x) ; 0 < M <1; inf(�;x)2T �X �min (Hn (� ; x)) > 0 a.s. as n!1,
and kAn (� ; x)k = OP (1) 8 (� ; x) 2 T � X . Suppose that �n�x satis�es sup(�;x)2T �X jjVn (� ; x;�n�x) jj =
oP (�n) : Then

(a) sup(�;x)2T �X k�n�xk = OP (1) ;

(b) �n�x = Hn (� ; x)
�1An (� ; x) + oP (�n) uniformly in (� ; x) 2 T � X :

This extends the pointwise result of Koenker and Zhao (1996, p.809) to a uniform result.
To prove Theorem 3.1, we need some additional notation. Let �0�x = � (� ; x;h) denote the vector

that contains the true value of m (� ; x) and its scaled partial derivatives with respect to x: Let ��x
denote the stack of the quantile regression coe¢ cients �j ; 0 � jjj � p; in the lexicographical order (see
(3.1)), where the dependence of �j on (� ; x) is made explicitly, but we suppress the dependence of both
�0�x and ��x on h: De�ne

an �
p
nhd; b��x � an(b� (� ; x;h)� �0�x); and ��x � an(� (� ; x;h)� �0�x):

It follows that b��x = arg min
��x2RN

nX
i=1

��

�
Yi �

�
�0�x + a

�1
n ��x

�T
�ix

�
Kix: (A.1)

Let Vn (� ; x;�) � a�1n
Pn

i=1  � (Yi�
�
�0�x + a

�1
n �

�T
�ix)�ixKix; and V n (� ; x;�) � a�1n

Pn
i=1Ei[ � ((Yi�

(�0�x + a�1n �)T�ix)]�ixKix: The following lemmas constitute the main steps in the proof of Theorem
3.1.

Lemma A.2 Suppose Assumptions A1-A6 hold. Then jjVn(� ; x; 0)jj = OP (1) for each (� ; x) 2 T � X :

Lemma A.3 Suppose Assumptions A1-A6 hold. Then
sup�2T supx2X supk�k�M

Vn (� ; x;�)� Vn (� ; x; 0)� �V n (� ; x;�)� V n (� ; x; 0)� = oP (�n) :

Lemma A.4 Suppose Assumptions A1-A6 hold. Then
sup�2T supx2X supk�k�M

V n (� ; x;�)� V n (� ; x; 0) +Hn (� ; x)�
 = oP (�n):

Lemma A.5 Suppose Assumptions A1-A6 hold. Then sup�2T supx2X jjVn(� ; x; b��x)jj = oP (�n):

Proof of Theorem 3.1 We prove the theorem by checking that the conditions of Lemma A.1 hold
with An(� ; x) = Vn (� ; x; 0) ; Vn (� ; x;�) = Vn (� ; x;�) ; Hn (� ; x) = Hn (� ; x) ; and �n�x = b��x: By
Assumption A4, Hn (� ; x) is positive de�nite a.s. as n ! 1 for each (� ; x) 2 (T ;X ): By Lemma A.2,
jjAn(� ; x)jj = OP (1) 8 (� ; x) 2 T � X . By Lemma A.5, sup�2T supx2X jjVn(� ; x; b��x)jj = oP (�n): By
Lemmas A.3-A.4,

sup
�2T

sup
x2X

sup
k�k�M

jVn (� ; x;�)� Vn (� ; x; 0) +Hn (� ; x)�j = oP (�n);

so that condition (ii) in Lemma A.1 is satis�ed. Noting that  � (y) is a non-decreasing function of y;
the function

��TVn (� ; x;��) = a�1n

nX
i=1

 � (Yni � �T0�x�ix � �a�1n �T�ix)
�
��T�ix

�
Kix

is also non-decreasing in �: This implies that condition (i) in Lemma A.1 holds. Consequently, we havep
nhd(b� (� ; x)� �0�x) = Hn (� ; x)

�1
Vn (� ; x; 0) + oP (�n) uniformly in (� ; x) 2 T � X : �
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Proof of Corollary 3.2 We prove the corollary by showing (i) sup(�;x)2T �X kHn (� ; x)�H (� ; x)k =
OP (n

�1=2h�d=2
p
log n+h0) = oP (1) ; and (ii) Jn (� ; x) = Jn (� ; x)+oP

�
hd=2

�
: Then

p
nhd(bm (� ; x)�

m (� ; x)) = eT1H (� ; x)
�1
Jn (� ; x) [1 + oP (1)]+oP

�
hd=2

�
: The proof of (i) is similar to but simpler than

that of Corollary 2 in Masry (1996) because we only need convergence in probability, whereas Masry
proved almost sure convergence. For (ii), let

Rn (� ; x) =
1p
nhd

nX
t=1

n
1 (Yt � m (� ;Xt))� 1(Yt � �0 (� ; x;h)

T
�ix)

o
�ixKix:

Then Jn (� ; x) = Jn (� ; x)+Rn (� ; x) :We can write Rn (� ; x) as fRn (� ; x)� E[Rn (� ; x)]g+E[Rn (� ; x)]:
The last term is O(

p
nhdhp+1) uniformly in (� ; x) : Following the proof for Wn1 in Lemma A.3, we can

show the �rst term is oP (hd=2): Then Jn (� ; x) = Jn (� ; x)+oP (h
d=2) because O(

p
nhdhp+1) = oP

�
hd=2

�
by assumption. �
Proof of Lemma A.1 To save space, let An�x � An (� ; x) and sup�;x � sup(�;x)2T �X . Fix � > 0;
� > 0:

P

�
sup
�;x

inf
k�k=M

�
��TVn (� ; x;�)

�
< �M

�
� P

�
sup
�;x

inf
k�k=M

��TVn (� ; x;�) < �M; sup
�;x

inf
k�k=M

��T [�Hn (� ; x)� +An�x] � 2�M
�

+P

�
sup
�;x

inf
k�k=M

��T [An�x �Hn (� ; x)�] < 2�M

�
� A1n +A2n; say. (A.2)

Noting that sup�;x infk�k=M ��TVn (� ; x;�) < �M and sup�;x infk�k=M ��T [�Hn (� ; x)� +An�x]
� 2�M implies that

sup
�;x

"
sup

k�k=M

�
��T [�Hn (� ; x)� +An�x]�

�
��TVn (� ; x;�)

�	#
= sup

�;x
sup

k�k=M

�
��T [�Hn (� ; x)� +An�x]

�
� inf
�;x

inf
k�k=M

�
��TVn (� ; x;�)

�
� 2�M � �M = �M;

we have

A1n � P

 
sup
�;x

sup
k�k=M

�T [Vn (� ; x;�) +Hn (� ; x)��An�x] � �M

!

� P

 
sup
�;x

sup
k�k=M

kVn (� ; x;�) +Hn (� ; x)��An�xk � �

!
; (A.3)

where the last line follows from the fact
�TB � k�k kBk : For A2n, noting that

��T [An�x �Hn (� ; x)�]

= ��TAn�x +�THn (� ; x)� � �k�k kAn�xk+ c1 k�k2 8 (� ; x) 2 T � X ;

where c1 � inf(�;x)2T �X �min (Hn (� ; x)) > 0 a.s. as n!1; we have

sup
�;x

inf
k�k=M

�
��T [An�x �Hn (� ; x)�]

	
� �M kAn�xk+ c1M2:
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It follows that

A2n = P

�
sup
�;x

inf
k�k=M

�
��T [An�x �Hn (� ; x)�]

	
< 2�M

�
� P (�kAn�xk+ c1M < 2�) = P (kAn�xk > c1M � 2�) : (A.4)

This, together with (A.2) and (A.3), implies that

P

�
sup
�;x

inf
k�k=M

�
��TVn (� ; x;�)

�
< �M

�
� P

 
sup
�;x

sup
k�k=M

kVn (� ; x;�) +Hn (� ; x)��An�xk � �

!
+ P (kAn�xk � c1M � 2�) :

Given condition (ii) and the fact that kAn�xk = OP (1) ; one can choose M > 0 and n0 > 0 such that
for n � n0;

P

�
sup
�;x

inf
k�k=M

�
��TVn (� ; x;�)

�
< �M

�
< �: (A.5)

Next, consider the case k�k �M: Let �� � k�k =M and �� � �=��: Then jj��jj =M: By condition
(i), we have

���TVn (� ; x;�) = ���TVn (� ; x;����) � ���TVn (� ; x;��) :

It follows that kVn (� ; x;�)k � ���TVn (� ; x;��) =M . This, together with (A.5), implies

P

�
sup
�;x

inf
k�k�M

kVn (� ; x;�)k < �

�
� P

�
sup
�;x

inf
k��k=M

���TVn (� ; x;��) < �M

�
< �:

Noting that sup�;x kVn (� ; x;�n�x)k = oP (�n) ; we have P
�
��1n sup�;x kVn (� ; x;�n�x)k � �

�
� �

for large enough n; say n � n1: It follows that when n � n0 _ n1; we have

P

�
sup
�;x
k�n�xk �M

�
� P

�
sup
�;x
k�n�xk �M;��1n sup

�;x
kVn (� ; x;�n�x)k < �

�
+ P

�
��1n sup

�;x
kVn (� ; x;�n�x)k � �

�
� P

�
��1n sup

�;x
inf

k�k�M
kVn (� ; x;�)k < �

�
+ � � 2�:

That is, sup�;x k�n�xk = OP (1) : Then by condition (ii), we have

Vn (� ; x;�n�x) +Hn (� ; x)�n�x �An (� ; x) = oP (�n) uniformly in (� ; x) 2 T � X .

It follows thatHn (� ; x)�n�x = An (� ; x)+oP (�n) uniformly in (� ; x) as sup(�;x)2T �X kVn (� ; x;�n�x)k
= oP (�n) : The result then follows. �
Proof of Lemma A.2 Let V (� ; x) � �[Vn (� ; x; 0)� V n (� ; x; 0)]: Then by the Minkowski inequality,
kVn (� ; x; 0)k � kV (� ; x)k +

V n (� ; x; 0) � V1n + V2n; where we suppress the dependence of V1n and
V2n on (� ; x) : Let Ri (� ; x) � m (� ;Xi)� �T0�x�ix: Then

Ri (� ; x) = (p+ 1)
X

jkj=p+1

1

k!
(Xi � x)k

Z 1

0

Dkm (� ; x+ s (Xi � x)) (1� s)p ds: (A.6)
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Following Masry (1996), we can show that Ri (� ; x) = OP
�
hp+1

�
uniformly in (� ; x) on the set {i :

kXi � xk � Ch}. By the mean value expansion, Assumptions A2(ii), A3(i), A5 and A6 we have

V2n =

a�1n
nX
i=1

h
Fi(mi (� ;Xi) jXi)� Fi(�T0�x�ixjXi)

i
�ixKix


� Ca�1n

nX
i=1

hn�1=2c (� ;Xi; i=n) +Ri (� ; x)
i
�ixKix

 � Ca�1n

�
n�1=2 + hp+1

� nX
i=1

k�ixKixk

= OP

�
hd=2 + n1=2hd=2+p+1

�
= OP (1) :

Now let �ik =
h
1(Yi � �T0�x�ix)� Fi

�
�T0�x�ixjXi

�i
�ix;kKix; where �ix;k denotes the kth element of

the N -vector �ix; k = 1; 2; � � � ; N: Let Vk (� ; x) denote the kth element of the N -vector V (� ; x) : Then
Ei [�ik] = 0; Vk (� ; x) = a�1n

Pn
i=1 �ik; and E[Vk (� ; x)] = 0: By Assumption A1 and the Davydov

inequality (e.g., Bosq, 1996, p.19), we have

Var (Vk (� ; x)) = a�2n

nX
i=1

E
�
�2ik
�
+ 2a�2n

nX
1�i<j�n

Cov
�
�ik; �jk

�
� a�2n

nX
i=1

E
�
�2ik
�
+ 2c2n

�1
nX

1�i<j�n
� (j � i)�=(2+�)

� n�1h�d
nX
i=1

E
�
�2ix;kK

2
ix

�
+ 2c2

1X
s=1

� (s)
�=(2+�)

= O (1) ;

where supn�1max1�i�nE(h
�d �ix;kKix

2
2+�
) � c2 <1 by the compactness of K (�) : Thus Vk (� ; x) =

OP (1) by the Chebyshev inequality. It follows that V (� ; x) = OP (1). �
Proof of Lemma A.3 Let �ix;k denote the kth element of the N -vector �ix; k = 1; 2; � � � ; N: Let

Snk (� ; x;�) = a�1n

nX
i=1

fsni;k (� ; x;�)� Ei[sni;k (� ; x;�)]g ;

where sni;k (� ; x;�) =
h
1(Yi � (�0�x + a�1n �)T�ix)� 1(Yi � �T0�x�ix)

i
�ix;kKix:Note that Snk (� ; x;�)

is the kth element of �fVn (� ; x;�)�Vn (� ; x; 0) �
�
V n (� ; x;�)� V n (� ; x; 0)

�
g: It su¢ ces to show that

for each k = 1; 2; � � � ; N;
sup
x2X

sup
�2T

sup
k�k�M

jSnk (� ; x;�)j = oP (�n): (A.7)

By the Minkowski inequality, (A.7) will hold if

sup
x2X

sup
�2T

sup
k�k�M

��S+nk (� ; x;�)�� = oP (�n) and sup
x2X

sup
�2T

sup
k�k�M

��S�nk (� ; x;�)�� = oP (�n); (A.8)

where S+nk and S
�
nk are analogous to Snk but with �ix;k replaced by �

+
ix;k � max

�
�ix;k; 0

�
and ��ix;k �

max
�
��ix;k; 0

�
; respectively. We only show the �rst part of (A.8), as the other case is similar.

Let D � f� : k� �Mkg : By selecting n0 = O
�
d�N0n

�
grid points, �1; � � � ;�n0 ; we can cover D

by Ds = f� : k���sk � d0ng where d0n = �n= log log n: Let d1n = n�1=2= log log n; and d2n =
n�1=2= log log n: By selecting n1 = O

�
d�11n

�
grid points, �1; �2; � � � ; �n1 we cover the compact set T by

Tj = f� : j� � � j j � d1ng for j = 1; � � � ; n1: Similarly, we select n2 = O
�
h�dd�d2n

�
grid points x1; :::; xn2

to cover the compact set X by Xl = fx : kx� xlk � d2nhg ; l = 1; :::; n2:

27



Let 'ix (� ;�) = (�0�x + a
�1
n �)T�ix. By the de�nition above (A.6), �

T
0�x�ix = m (� ; x) +Ri (� ; x) :

Then by Assumptions A3 (ii)-(iii), we can quantify several objects that are used subsequently:

d1n � sup
j����j�d1n;jj����jj�d0n

sup
x2X ,fKix>0g

j'ix (� ;�)� 'ix (��;��)j � C(d1n + h
p+1d

0
1n + a

�1
n d0n);

d2n � sup
j����j�d1n

sup
x2X ,fKix>0g

����T0�x�ix � �T0��x�ix��� � C(d1n + h
p+1d

0
1n);

d3n � sup
(�;�)2T �D

sup
kx�x�k�hd2n;fKix>0g

j'ix (� ;�)� 'ix� (� ;�)j � C
�
hd2n + h

p+1(hd2n)
0 + a�1n d2n

�
:

For brevity, let

�0i (� ; x;�; �1) � 1(Yi � 'ix (� ;�) + �1d1n)� Fi('ix (� ;�) + �1d1njXi);

�i (� ; x;�) � 1 (Yi � 'ix (� ;�))� Fi ('ix (� ;�) jXi) ;

�0i (� ; x; �2) � 1
�
Yi � �T0�x�ix + �2d2n

�
� Fi

�
�T0�x�ix + �2d2njXi

�
;

�i (� ; x) � 1
�
Yi � �T0�x�ix

�
� Fi

�
�T0�x�ixjXi

�
:

Clearly, �0i (� ; x;�; 0) = �i (� ; x;�), and �
0
i (� ; x; 0) = �i (� ; x) : Let

W (� ; x;�) � a�1n

nX
i=1

�i (� ; x;�)�
+
ix;kKix; and W� (� ; x) � a�1n

nX
i=1

�i (� ; x)�
+
ix;kKix:

Then S+nk (� ; x;�) =W (� ; x;�)�W� (� ; x) : Fix xl 2 Xl: Then

sup
x2X

sup
�2T

sup
k�k�M

S+nk (� ; x;�)

� max
1�l�n2

sup
�2T

sup
k�k�M

jW (� ; xl;�)�W� (� ; xl)j+ max
1�l�n2

sup
x2Xl

sup
�2T

sup
k�k�M

jD (� ; x;�)� D (� ; xl;�)j

� Wn1 +Wn2;

where D (� ; x;�) �W (� ; x;�)�W� (� ; x) : It su¢ ces to show Wna = oP (�n) for a = 1; 2:

Step 1. We show Wn1 = oP (1) : Fix (� j ;�s)2 Tj �Ds: Then

Wn1 = max
1�l�n2

max
1�j�n1

sup
�2Tj

max
1�s�n0

sup
�2Ds

jW (� ; xl;�)�W� (� ; xl)j

� max
1�l�n2

max
1�j�n1

max
1�s�n0

jW (� j ; xl;�s)�W� (� j ; xl)j

+ max
1�l�n2

max
1�j�n1

sup
�2Tj

max
1�s�n0

sup
�2Ds

jDs (� ; xl;�)� Ds (� j ; xl;�s)j

� Wn11 +Wn12: (A.9)

It su¢ ces to show that Wn1a = oP (1) for a = 1; 2.

Let � > 0: Let �ni (� ; x;�) � [1 (Yi � 'ix (� ;�)) � 1
�
Yi � �T0�x�ix

�
]�+ix;kKix; and �ni (� ; x;�) �

�ni (� ; x;�)�Ei[�ni (� ; x;�)]: By Assumptions A1, A2(ii) and A5, one can readily show that there exist
some positive constants c�1 and c�2 such that

���ni (� ; x;�)�� � c�1 and E

"
a+pnX
i=a+1

�ni (� ; x;�)

#2
� c�2a

�1
n pnh

d
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for any a = 1; � � � ; pn and 1 � pn � n=2: Let � 2 (&�; (1 � d=&1)=2): We can apply Lemma C.3 with
Mn = c�1 ; pn = n1=2��hd=2; �� = n�1=2hd=2�n� and �2 (pn) = c�2a

�1
n pnh

d to obtain

P (Wn11 > �n�) � n0n1n2 max
1�l�n2

max
1�j�n1

max
1�s�n0

P (jW (� j ; xl;�s)�W� (� j ; xl)j > �n�)

= n0n1n2 max
1�l�n2

max
1�j�n1

max
1�s�n0

P

 �����n�1
nX
i=1

�ni (� j ; xl;�s)

����� > n�1=2hd=2�n�

!

� n0n1n2C0 exp

 
� �2nh

d�2

C1c�2a
�1
n hd + 2C2c�1n

��hd�n�

!

+n0n1n2C3

r
c�1

n�1=2hd=2�n�
n1=2+�h�d=2� (pn + 1)

= n0n1n2C0 exp

 
� �2

C1c�2n
�1=2h�d=2��2n + 2C2c�1n

����1n �

!
+n0n1n2O

�
n3=4+�h�3d=4��1=2n

�
�(n1=2��hd=2)

= n0n1n2C0 exp

 
� �2

C1c�2n
�1=2h�d=2��2n + 2C2c�1n

����1n �

!
+o
�
n3=4+���1=2n d�N0n d�11n d

�d
2n h

�3d=4(n1=2��hd=2)��0
�

� pn1 + pn2;

where �0 = 1 + 16=�: Clearly, by Assumption A6 the �rst term pn1 is o (1) provided � > &�: Noting
that d0n = �n= log log n; d1n = d2n = n�1=2= log log n; and h = n�1=&1 ; we have

pn2 = o
�
n3=4+���1=2n d�N0n d�11n d

�d
2n h

�3d=4(n1=2��hd=2)��0
�

= o
�
n3=4+���N�1=2n n(d+1)=2h�3d=4(n1=2��hd=2)��0 (log log n)

N+d+1
�

= o
��
n3=4+�n(d+1)=2n�(1=2��)�0h�(3+2�0)d=4��N�1=2n

�
(log log n)

N+d+1
�

= o
�
n5=4+d=2+��(1=2��)�0h�(3d+2�0)=4��N�1=2n (log log n)

N+d+1
�

= o
�
n5=4+d=2+�+3d=(4&1)+(N+1=2)&��(1=2���d=(2&1))�0 (log log n)

N+d+1
�
:

Then pn2 = o (1) because �0 > [5=2+d+2�+3d=(2&1)+(2N+1)&�]=(1�2��d=&1) and � < (1�d=&1)=2
by Assumption A6(iii). It follows that

Wn11 = oP (�n): (A.10)

Now considerWn12: By the monotonicity of the indicator function and the nonnegativity of �
+
ix;kKix,

we have that for any (� ;�) 2 Tj �Ds;

D (� ; x;�)� D (� j ; x;�s)

= a�1n

nX
i=1

f[�i (� ; x;�)� �i (� j ; x;�s)]� [�i (� ; x)� �i (� j ; x)]g�+ix;kKix

� a�1n

nX
i=1

��
�0i (� j ; x;�s; 1)� �i (� j ; x;�s)

�
�
�
�0i (� j ; x;�1)� �i (� j ; x)

�	
�+ix;kKix

+a�1n

nX
i=1

�
Fi
�
'ix (� j ;�s) + d1njXi

�
� Fi('ix (� ;�) jXi)

�
�+ix;kKix
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+a�1n

nX
i=1

[Fi

�
�T0�x�ixjXi

�
� Fi(�T0�jx�ix � d2njXi)]g�+ix;kKix:

Similarly,

D (� ; x;�)� D (� j ; x;�s)

� a�1n

nX
i=1

��
�0i (� j ; x;�s;�1)� �i (� j ; x;�s)

�
�
�
�0i (� j ; x; 1)� �i (� j ; x)

�	
�+ix;kKix

+a�1n

nX
i=1

�
Fi
�
'ix (� j ;�s)� d01njXi

�
� Fi('ix (� ;�) jXi)

�
�+ix;kKix

+a�1n

nX
i=1

[Fi

�
�T0�x�ixjXi

�
� Fi(�T0�jx�ix + d1njXi)]�

+
ix;kKix:

It follows that

max
1�j�n1

sup
�2Tj

max
1�s�n0

sup
�2Ds

jD (� ; x;�)� D (� j ; x;�s)j

� max
1�j�n1

max
1�s�n0

�����a�1n
nX
i=1

�
�0i (� j ; x;�s;�1)� �i (� j ; x;�s)

�
�+ix;kKix

�����
+ max
1�j�n1

max
1�s�n0

�����a�1n
nX
i=1

�
�0i (� j ; x;�1)� �i (� j ; x)

�
�+ix;kKix

�����
+ max
1�j�n1

max
1�s�n0

�����a�1n
nX
i=1

�
Fi
�
'ix (� j ;�s) + d1njXi

�
� Fi

�
'ix (� j ;�s)� d1njXi

��
�+ix;kKix

�����
+ max
1�j�n1

max
1�s�n0

�����a�1n
nX
i=1

[Fi(�
T
0�jx�ix + d2njXi)� Fi(�T0�jx�ix � d2njXi)]�

+
ix;kKix

�����
� Dn1 (x) +Dn2 (x) +Dn3 (x) +Dn4 (x) : (A.11)

Let �i;js (x) =
�
�0i (� j ; x;�s;�1)� �i (� j ; x;�s)

�
�+ix;kKix: Then one can readily show that there

exist some positive constants c�1 and c�2 such that j�i;js (x)j � c�1 and E[
Pa+pn

i=a+1 �i;js (x)]
2 �

c�2a
�1
n pnh

d for any a = 1; � � � ; pn and 1 � pn � n=2: Following the proof for Wn11; we can readily
show that

P

�
max
1�l�n2

Dn1 (xl) � �n�

�
� n0n1n2 max

1�l�n2
max
1�j�n1

max
1�s�n0

P

 �����n�1
nX
i=1

�i;js (xl)

����� � n�1an�n�

!
= o (1) .

Similarly, one can show that P (max1�l�n2 Dn2 (xl) � �n�) = o(1): Next, by the mean value expansion
and Assumptions A2, A5, and A6,

max
1�l�n2

Dn3 (xl) � Cd1n max
1�l�n2

�����a�1n
nX
i=1

�+ixl;kKixl

����� = OP

�
n1=2hd=2d1n

�
= OP

�
n1=2hd=2(d1n + h

p+1d
0
1n + a

�1
n d0n)

�
= oP (�n):

Similarly max1�l�n2 Dn4 (xl) = OP
�
n1=2hd=2d2n

�
= oP (�n): These results, together with (A.11), imply

that
Wn12 = oP (�n): (A.12)
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Combining (A.9), (A.10) and (A.12) yields Wn1 = oP (�n):

Step 2. We show Wn2 = oP (1) : Write

D (� ; x;�)� D (� ; xl;�) = a�1n

nX
i=1

f�i (� ; x;�)� �i (� ; x)g
�
�+ix;kKix � �+ixl;kKixl

�
+a�1n

nX
i=1

[�i (� ; x;�)� �i (� ; xl;�)]�+ixl;kKixl

+a�1n

nX
i=1

[�i (� ; xl)� �i (� ; x)]�+ixl;kKixl

� Dn1 (� ; x; xl;�) +Dn2 (� ; x; xl;�) +Dn3 (� ; x; xl) , say. (A.13)

It su¢ ces to show that each of the three terms on the r.h.s. of (A.13) is oP (�n) uniformly.
First, we consider Dn1 (� ; x; xl;�) : Assumption A5 implies that for all kx1 � x2k � � � ck;

jK (x2)�K (x1)j � �K� (x1) ; (A.14)

where K� (x) = C1 (kxk � 2dck) for some constant C that depends on c1 and c2 in the assumption.
For any x 2 Xl, kx� xlk =h � d2n: It follows from (A.14) that jKix �Kixl j � d2nK

�
ixl
with K�

ixl
�

K� ((xl �Xi)=h) ; and�����
�
Xi � x
h

�k
Kix �

�
Xi � xl

h

�k
Kixl

����� �
�����
�
Xi � x
h

�k����� jKix �Kixl j+
�����
�
Xi � x
h

�k
�
�
Xi � xl

h

�k�����Kixl

� (2ck)
jkj
d2nK

�
ixl
+ (2ck)

jkj�1
d2nKixl1 (jkj > 0)

� Cd2n(K
�
ixl
+Kixl):

With this, we can show that for any x 2 Xl such that kx� xlk =h � d2n; jj�+ix;kKix � �+ixl;kKixl jj �
Cd2n(K

�
ixl
+Kixl): It follows that

max
1�l�n2

sup
x2Xl

sup
�2T

sup
k�k�M

jDn1 (� ; x; xl;�) j

� max
1�l�n2

sup
x2Xl

sup
�2T

sup
k�k�M

a�1n

nX
i=1

j�i (� ; x;�)� �i (� ; x)j
����+ix;kKix � �+ixl;kKixl

���
� max

1�l�n2
sup
x2Xl

a�1n

nX
i=1

����+ixkKix � �+ixl;kKixl

���
� C max

1�l�n2
a�1n d2n

nX
i=1

(K�
ixl
+Kixl) = OP

�
nhda�1n d2n

�
= oP (�n). (A.15)

Now we consider Dn2 (� ; x; xl;�) de�ned in (A.13). Let �3 2 R. De�ne

Dn2 (� ; xl;�; �3) = a�1n

nX
i=1

[1(Yi � 'ixl (� ;�) + �3d3n)� Fi
�
'ixl (� ;�) + �3d3njXi

�
]�+ixl;kKixl :

Note that max1�l�n2 sup�2T supk�k�M jDn2 (� ; xl;�; �3)�Dn2 (� ; xl;�; 0)j is exactly like the object
Wn11 de�ned in (A.9). Following the proof of the probability order of Wn11, we can also show that

P

 
max
1�l�n2

sup
�2T

sup
k�k�M

jDn2 (� ; xl;�; �3)�Dn2 (� ; xl;�; 0)j � �n�

!
= o (1) for each �3. (A.16)
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Again, by the monotonicity of the indicator function and the CDF Fi; we have

max
1�l�n2

sup
x2Xl

sup
�2T

sup
k�k�M

jDn2 (� ; x; xl;�) j

= max
1�l�n2

sup
x2Xl

sup
�2T

sup
k�k�M

�����a�1n
nX
i=1

[�i (� ; x;�)� �i (� ; xl;�)]�+ixl;kKixl

�����
� max

1�l�n2
sup
�2T

sup
k�k�M

jDn2 (� ; xl;�; 1)�Dn2 (� ; xl;�; 0)j

+ max
1�l�n2

sup
�2T

sup
k�k�M

jDn2 (� ; xl;�;�1)�Dn2 (� ; xl;�; 0)j

+ max
1�l�n2

sup
�2T

sup
k�k�M

�����a�1n
nX
i=1

[Fi('ixl (� ;�) + d3njXi)� Fi('ixl (� ;�)� d3njXi)]�
+
ixl;k

Kixl

����� :
The �rst two terms are oP (1) by (A.16). For the last term, a mean value expansion implies that it is
no bigger than

2C1d3na
�1
n sup

1�l�n2

nX
i=1

�+ixl;kKixl = OP
�
nhdd3na

�1
n

�
= oP (�n):

It follows that
max
1�l�n2

sup
x2Xl

sup
�2T

sup
k�k�M

jDn2 (� ; x; xl;�) j = oP (�n): (A.17)

Analogously, one can show that max1�l�n2 supx2Xl sup�2T jDn3 (� ; x; xl) j = oP (1) : This, together with
(A.13), (A.16) and (A.17), implies that Wn2 = oP (1) : �

Proof of Lemma A.4 Let Hn (� ; x) � n�1
Pn

i=1 fi

�
�T0�x�ixjXi

�
�ix�

T
ixKix: Noting that m (� ;Xi)�

�T0�x�ix = OP
�
hp+1

�
uniformly in (� ; x) on the set fi : Kix > 0g ; it is easy to show that uniformly in

(� ; x) ; Hn (� ; x) = n�1h�d
Pn

i=1 fi (m (� ;Xi) jXi)�ix�
T
ixKix +OP

�
hp+1

�
= Hn (� ; x) + oP (�n). Then

by the Minkowski inequality, we have that

sup
�2T

sup
x2X

sup
k�k�M

V n (� ; x;�)� V n (� ; x; 0) +Hn (� ; x)�


� sup
�2T

sup
x2X

sup
k�k�M

V n (� ; x;�)� V n (� ; x; 0) +Hn (� ; x)�
+ oP (�n):

By Assumptions A2, A5 and A6,

sup
�2T

sup
x2X

sup
k�k�M

V n (� ; x;�)� V n (� ; x; 0) +Hn (� ; x)�


= sup
�2T

sup
x2X

sup
k�k�M

a�1n
nX
i=1

h
Fi

��
�0�x + a

�1
n �

�T
�ixjXi

�
� Fi

�
�T0�x�ixjXi

�i
�ixKix �Hn (� ; x)�


= sup

�2T
sup
x2X

sup
k�k�M

a�2n
nX
i=1

Z 1

0

h
fi

��
�0�x + sa

�1
n �

�T
�ixjXi

�
� fi

�
�T0�x�ixjXi

�i
ds �ix�

T
ixKix�


� sup

x2X
sup

k�k�M
a�3n

nX
i=1

C2 (Xi)�
T�ix�ix�

T
ixKix�

 � CM2 sup
x2X

a�3n

nX
i=1

k�ixk
3
Kix

= OP
�
nhda�3n

�
= oP (�n): �

Proof of Lemma A.5 By the proof of Lemma A2 in Ruppert and Carroll (1980) and Assumptions
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A5-A6,

sup
�2T

sup
x2X

jjVn(� ; x; b��x)jj = sup
�2T

sup
x2X

n�1=2
nX
i=1

 � (Yi � b�T�x�ix)�ixKix


� sup

�2T
sup
x2X

n�1=2
nX
i=1

1(Yi � b�T�x�ix = 0) k�ixKixk

� 2Nn�1=2 max
1�i�n

sup
x2X

k�ixKixk = oP (�n): �

NOTATION. To prove the main results in Section 4, we apply some propositions in the next ap-
pendix. For notational simplicity, let mi� � m(� ;Wi); "i� � Yi � mi� ; ui� � Yi � m(� ;Xi); andbui� � Yi � bm(� ;Xi): Then by Corollary 3.2, it is standard to show that max1�i�n sup�2T jbui� � ui� j
= oP (n

�1=2h
�dX=2
X

p
log n). Clearly, ui� = "i� under H0 and ui� = "i� + n�1=2� (� ;Wi) under H1n: Let

'i = ' (Wi; ) : We use F (�jWi), F (�jXi) ; f(�jWi); and f (�jXi) to denote FY jW (�jWi) ; FY jX (�jXi) ;
fY jW (�jWi) ; and fY jX (�jXi) ; respectively. Recall that Sc denotes the complex conjugate of S:

Proof of Theorem 4.1 The proof is a special case of that of Theorem 4.3, so we omit it. �
Proof of Theorem 4.2 Following the proof of Theorem 4.3 below, we can show that n�1=2Sn (� ; ) =
n�1=2Sn3 (� ; ) + oP (1) ; where Sn3 (� ; ) � n�1=2

Pn
i=1 fG (�"i�=�n)�G (�bui�=�n)g'i : It follows

that

n�1=2Sn (� ; ) = n�1
nX
i=1

fG (�"i�=�n)�G (�bui�=�n)g'i + oP (1)
= ��1n n�1

nX
i=1

n
G(1) (�"i�=�n) (bui� � "i� )o'i + oP (1)

= ��1n n�1
nX
i=1

G(1) (�"i�=�n) [m (� ;Wi)�m (� ;Xi)]'i

���1n n�1
nX
i=1

G(1) (�"i�=�n) [m (� ;Xi)� bm (� ;Xi)]'i + oP (1)

= ��1n n�1
nX
i=1

G(1) (�"i�=�n) [m (� ;Wi)�m (� ;Xi)]'i + oP (1)

= n�1
nX
i=1

f (mi� jWi) [m (� ;Wi)�m (� ;Xi)]'i + oP (1)

= �� (� ; ) + oP (1) ;

where �� (� ; ) � Eff (mi� jWi) [m (� ;Wi)�m (� ;Xi)]'ig: When ' is (G)CR, �� (� ; ) 6= 0 in a set
of positive Lebesgue measure. The test statistic thus diverges to 1 under the alternative. �

Proof of Theorem 4.3 Decompose Sn (� ; ) = n�1=2
Pn

i=1 [� �G (�bui�=�n)]'i as follows:
Sn (� ; ) = n�1=2

nX
i=1

[� � 1 ("i� < 0)]'i + n�1=2
nX
i=1

[1 ("i� < 0)�G (�"i�=�n)]'i

+n�1=2
nX
i=1

[G (�"i�=�n)�G (�bui�=�n)]'i
� Sn1 (� ; ) + Sn2 (� ; ) + Sn3 (� ; ) ; say.
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By Propositions B.4 and B.7, we have that, uniformly in (� ; ) ; Sn2 (� ; ) = oP (1) ; and that

Sn3 (� ; ) = �c0n�1=2
nX
i=1

b (Xi; ) � ("i� ) + � (� ; ) + oP (1) ;

where c0 = eT1H�1B; B =
R
� (v)K (v) dv; and b (Xj ; ) = E [' (Wj ; ) jXj ] : It follows that Sn (� ; )

� Sn (� ; ) +� (� ; ) + oP (1) ; where

Sn (� ; ) � n�1=2
nX
i=1

�
'i � c0b (Xi; )

�
 � ("i� ) :

It su¢ ces to show that Sn (�; �) ) S1 (�; �) ; where S1 (�; �) is de�ned in Theorem 4.1. De�ne the
pseudometric �d on (T ;�) :

�d ((� ; ) ; (�
0; 0)) �

�
E j�i (; �)� �i (0; � 0)j

r	1=r
;

where r � 2 and �i (; �) � [' (Wi; )� c0b (Xi; )] � ("i� ) : By Theorem 10.2 of Pollard (1990), this
follows if we have (i) total boundedness of a pseudometric space ((T ;�) ; �d) ; (ii) stochastic equiconti-
nuity of

�
Sn (� ; ) : n � 1

	
; and (iii) �nite dimensional (�di) convergence.

Consider the class of functions

F1 �
�
f(�;) : (� ; ) 2 T � �

	
;

where f(�;) : [0; 1]�W ! R is de�ned by

f(�;) (Ui;Wi) � [' (Wi; )� c0b (Xi; )] [� � 1 (Ui � �)];

and Ui � F (YijWi) : Let � < 1 and (� 0; 0) be generic element in T � �: Noting that

�i (� ; )� �i (� 0; 0) = [' (Wi; )� c0b (Xi; )] [� � 1 (Ui � �)� � 0 + 1 (Ui � � 0)]

+ [' (Wi; )� c0b (Xi; )� ' (Wi; 
0) + c0b (Xi; 

0)] [� 0 � 1 (Ui � � 0)]

� �i1 (� ; �
0; ) + �i2 (�

0; ; 0) ; say,

by the repeated use of Cr-inequality, the uniform boundedness of ' (�; �) and Assumption B4, we have

E sup
j��� 0j��1;k�0k��2;

p
�21+�

2
2��

j�i (� ; )� �i (� 0; 0)j
r

� 2r�1E sup
j��� 0j��1;k�0k��2;

p
�21+�

2
2��

j�i1 (� ; � 0; )j
r

+2r�1E sup
j��� 0j��1;k�0k��2;

p
�21+�

2
2��

j�i2 (� 0; ; 0)j
r

� CE sup
j��� 0j��1

j� � � 0jr + CE sup
j��� 0j��1

j1 (Ui � �)� 1 (Ui � � 0)jr

+ CE sup
k�0k��2

j' (Wi; )� ' (Wi; 
0)jr + CE sup

k�0k��2
jb (Xi; )� b (Xi; 

0)jr

� C�r1 + CP (jUi � � j � �1) + C�
r�
2 + C�r�2

� C�r1 + C�1 + 2C�
r�
2 � 2C�1^(r�) = 2C�� ;

where � = min (1; r�) : That is, F1 is a class of uniformly bounded functions satisfying Lr-continuity.
Lr-continuity implies that the bracketing number satis�es

N
�
�;F1; k�kLr(P )

�
� C

�
1

�

�(1+d�)=�
;

34



which in conjunction with Assumption B2(ii) implies thatZ 1

0

��
�

2+�N
�
�;F1; k�kLr(P )

� 1
6

d� � C

Z 1

0

��
�

2+��
1+d�
6� d� <1:

If follows that conditions (i)-(ii) are satis�ed by Theorem 2.2 of Andrews and Pollard (1994). The
�di convergence holds by the Cramér-Wold device and a central limit theorem for bounded random
variables under strong mixing conditions. See Corollary 5.1 in Hall and Heyde (1980, p. 132). We are
left to demonstrate that the sample covariance kernel converges to that of the limiting Gaussian process
S1 (�; �) : By the Davydov inequality,

���E hSn (� ; )Scn (� 0; 0)i��� =
������ 1n

nX
i=1

nX
j=1

E [�i (; �) �
c
i (

0; � 0)]

������ � 4c2'
n

nX
i=1

nX
j=1

� (ji� jj) � 4c2'
1X
s=0

� (s) <1:

It follows that E
h
Sn (� ; )S

c

n (�
0; 0)

i
is absolutely convergent, and E

h
Sn (� ; )S

c

n (�
0; 0)

i
! E[�1(;

�)�c1 (
0; � 0)] +

P1
i=1E

�
�1 (; �) �

c
1+i (

0; � 0)
�
+E

�
�1+i (; �) �

c
1 (

0; � 0)
�
: This completes the proof of the

theorem. �

Proof of Theorem 4.4 Let P � denote the probability conditional on the original sample Dn �
f(Yt;Wt)gnt=1 : Let E� denote the expectation with respect to P �: Rewrite S�n(� ; ) =

Pn�L+1
i=1 sni (�i; � ; ) ;

where

sni (�i; � ; ) � n�1=2�i

i+L�1X
j=i

[� �G (�buj�=�n)] h'jw � c0bb (Xj ; )
i

(A.18)

and buj� � Yj � bm (� ;Xj) : De�ne the envelope function of sni as

sni (�i) � j�ijn�1=2 sup
2�

sup
�2T

������
i+L�1X
j=i

[� �G (�buj�=�n)] h'jw � c0bb (Xj ; )
i������ : (A.19)

Conditional on Dn, the triangular array fsni (�i; � ; )g is independent within rows, so we can apply
Theorem 10.6 of Pollard (1990) to show the weak convergence of S�n(

:;: ) to S1(:;: ): Recall that Pollard�s
theorem allows the function sni (�; �; �) to depend on both n and i:
De�ne the pseudo-metric

�n (� ; �
0; ; 0) �

(
nX
i=1

E�
h
jsni (�i; � 0; 0)� sni (�i; � ; )j

2
i)1=2

: (A.20)

By Theorem 10.6 of Pollard (1990), it su¢ ces to verify the following �ve conditions:
(i) fsnig is manageable in the sense of De�nition 7.9 of Pollard (1990);
(ii) E� [S�n (� ; )S

�c
n (�

0; )]
P! �(� ; � 0; ; 0) for every (� ; ) ; (� 0; 0) in T � �;

(iii) limn!1
Pn

i=1E
� �s2ni (zi)� is stochastically bounded;

(iv)
Pn

i=1E
� �s2ni (zi) 1 (sni (zi) > �)

� P! 0 for each � > 0;
(v) � (� ; � 0; ; 0) �plimn!1 �n (� ; �

0; ; 0) is well de�ned and, for all deterministic sequences f� 0n; 0ng
and f�n; ng ; if � (�n; � 0n; n; 0n)! 0 then �n (�n; �

0
n; n; 

0
n)

P! 0:

Step 1. We verify condition (i). In order for the triangular array of process fsni (�i; � ; )g to be
manageable with respect to the envelope sni (�i) ; we need to �nd a deterministic function � (�0) that
bounds the the covering number of � � Sn � f�isni (�i; � ; ) : (� ; ) 2 T � �; �i are nonnegative
�nite constants for all i = 1; � � �ng with

p
log � (�0) integrable. Here, the covering number refers to the
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smallest number of closed balls with radius (�0=2)
qPn

i=1 �
2
i jsni (�i)j

2 whose unions cover � � Sn: It
follows that within each closed ball

nX
i=1

�2iE
� jsni (�i; � ; )� sni (�i; � 0; 0)j

2 � �20
4

nX
i=1

�2iE
� jsni (�i)j

2 8�0 2 (0; 1]: (A.21)

First, we study the term on the left hand side (l.h.s.) of (A.21). Let e'j = 'j � c0bb(Xj ; ) and
'j = 'j � c0b (Xj ; ) : By Propositions B.9-B.10 , we have that uniformly in (� ; ) ;

L�1=2
i+L�1X
j=i

[� �G (�buj�=�n)]e'j = L�1=2
i+L�1X
j=i

 � ("j� )'j + oP (1) : (A.22)

Note that the local alternative does not contribute to the above equation because L�1=2��1n
Pi+L�1

j=i

G(1) (�"j�=�n)n�1=2� (� ;Wj) e'j = OP (
p
L=n) = oP (1) by Proposition B.3(i) and the boundedness of

� (�; �) and '. It follows that
nX
i=1

�2iE
� jsni (�i; � ; )� sni (�i; � 0; 0)j

2

=
1

n

n�L+1X
i=1

�2i
1

L

������
i+L�1X
j=i

[� �G (�buj�=�n)] e'j � i+L�1X
j=i

[� 0 +G (�buj� 0=�n)] e'j0
������
2

=
1

n

n�L+1X
i=1

�2i
1

L

������
i+L�1X
j=i

'j � ("j� )�
i+L�1X
j=i

'j0 � 0 ("j� 0)

������
2

+ oP (1)

P!
1X
i=1

�2i [� (� ; � ; ; )� 2� (� ; � 0; ; 0) + � (� 0; � 0; 0; 0)]

�
1X
i=1

�2i �
2 (� ; � 0; ; 0) ; say. (A.23)

Next, we study the term on the right hand side (r.h.s.) of (A.21). By Propositions B.9-B.10,

nX
i=1

�2iE
� jsni (�i)j

2
=

1

n

nX
i=1

�2i sup
2�

sup
�2T

������L�1=2
i+L�1X
j=i

[� �G (�buj�=�n)] e'j
������
2

� 1

n

nX
i=1

�2i sup
2�

sup
�2T

������L�1=2
i+L�1X
j=i

 � ("j� )'j + oP (1)

������
2

= OP (1) ;

where the last equality follows because fL�1=2
Pi+L�1

j=i  � ("j� )'jg is an empirical process indexed by
(� ; ) by the proof of Theorem 4.3. It follows that

Pn
i=1 �

2
iE

� jsni (�i)j
2
= OP (1) : This, together with

(A.21) and (A.23), implies that for any small �1 > 0; there exists a large constant M1 � M1 (�1) such
that the following holds

1X
i=1

�2i �
2 (�; �0; � ; � 0) � �20

4
M1 for su¢ ciently large n (A.24)

on a set with probability 1� �1:

36



Now, partition the compact set T by �nite points � = �0 < �1 < � � � < �N1�1 < �N1 = �
such that j� j � � j�1j = �1: By selecting grid points 1; � � � ; N2, we can cover the compact set � by
�k = f : k � kk � �2g: Let (� ; ) 2 [� j�1; � j ] � �k (j; k = 1; 2; � � � ). Note that jj � ("i� )'i �
 �j ("i�j )'i jj

2+�
2+� � C�1 and jj['i � 'ik ] � ("i�j )jj

2+�
2+� � C�2: Denote 'n (� ; ) =

Pn
i=1 'i � ("i� ) :

Let � �
q
�21 + �

2
2 < 1: Then by the Cauchy-Schwarz and Davydov inequalities, we have

�(� j ; � ; k; ) = lim
n!1

1

n
E j'n (� ; )� 'n (� j ; k)j

2

� 2 lim
n!1

1

n
E

�����
nX
i=1

'i

h
 � ("i� )�  �j ("i�j )

i�����
2

+ 2 lim
n!1

1

n
E

�����
nX
i=1

['i � 'ik ] �j ("i�j )
�����
2

� C

"
O (�1 + �2) + �

2=(2+�)
1

1X
s=1

� (s)
1=(2+�)

+ �
2=(2+�)
2

1X
s=1

� (s)
1=(2+�)

#
� C�2=(2+�);

where the exact values of C vary across lines. This implies that

�2 (� j ; � ; k; ) = � (� ; � ; ; )� 2� (� j ; � ; k; ) + � (� j ; � j ; k; k) � C1�
2=(2+�)

for large enough C1: Consequently, if we choose � = �2+�0 ; then
P1

i=1 �
2
i �
2 (�j ; �; �k; �) � C1�

2
0

P1
i=1 �

2
i ;

so that (A.24) can be satis�ed for su¢ ciently large n and M1: It follows that the capacity bound is
O
�
��2
�
= O(�

�2(2+�)
0 ) and the integrability condition is satis�ed.

Step 2. We verify condition (ii). Recall e'j = 'j � c0bb (Xj ; ) and 'j = 'j � c0b (Xj ; ) :

By Propositions B.9-B.10, L�1=2
Pi+L�1

j=i [� �G (�buj�=�n)] e'j = L�1=2
Pi+L�1

j=i  � ("j� )'j + oP (1)

uniformly in (� ; ) : It follows that

E� [S�n(� ; )S
�c
n (�

0; 0)] = n�1
n�L+1X
i=1

1

L

i+L�1X
j1=i

i+L�1X
j2=i

[� �G (�buj1�=�n)] e'j1 [� 0 �G (�buj2� 0=�n)] e'cj20
= n�1

n�L+1X
i=1

1

L

i+L�1X
j1=i

i+L�1X
j2=i

 � ("j1� )'j1 � ("j2� 0)'
c
j20 + oP (1)

� S
�
n + oP (1) ;

where we suppress the dependence of S
�
n � S

�
n (� ; ; �

0; 0) on (� ; ; � 0; 0) : First,

E(S
�
n) =

1

n

n�L+1X
i=1

1

L

i+L�1X
j1=i

i+L�1X
j2=i

E[ � ("j1� ) � ("j2� 0)'j1'
c
j20 ]! �(� ; � 0; ; 0) :

To show Var(S
�
n) = o (1) ; let ��ni � ��ni (� ; �

0; ; 0) = L�2
Pi+L�1

j1=i

Pi+L�1
j2=i

 � ("j1� ) � ("j2� 0)'j1'
c
j20

;

and let �ni (� ; ) � L�1
Pi+L�1

j=i  � ("j� )'j : Then by the Cauchy inequality,

k��nik8 = k�ni (� ; ) �ni (�
0; 0)k8 � k�ni (� ; )k16 k�ni (�

0; 0)k16 :

By Lemma 3.1 of Andrews and Pollard (1994) with Q =16, k�ni (� ; )k
16
16 = Ej 1L

Pi+L�1
j=i  � ("j� )'j j16

= O
�
L�8

�
: Consequently, E j��nij

8
= O

�
L�8

�
: Let �4n = supi�n sup�;� 0;;0 E j��nij

8
= O

�
L�8

�
and

�2n = supi�n sup�;� 0;;0 E j��nij
4
= O

�
L�4

�
: By Lemma A.1(b) of Inoue (2001) with � = 2 (see also

Lemma 9 of Bühlmann (1994)),

E

�����Ln
n�L+1X
i=1

��ni

�����
4

= O
�
L4n�4L2

�
n2�

1=2
4n + n�2n

��
= O

�
n�2L2

�
= o (1) :
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Hence S
�
n = �(� ; �

0; ; 0) + oP (1) by the Chebyshev inequality.

Step 3. We verify condition (iii). This follows from the proof in Step 1 by taking �i = 1 8i:
Step 4. We verify condition (iv). By the conditional Chebyshev inequality and Propositions B.9-

B.10,

P � (sni (�i) > �) � L

n�2

8<:sup2�
sup
�2T

������ 1pL
i+L�1X
j=i

(� �G (�buj�=�n)) e'j
������
9=;
2

=
L

n�2

8><>:sup2�
sup
�2T

������ 1pL
i+L�1X
j=i

 � ("j� )'j

������
2

+ oP (1)

9>=>; = OP

�
L

n

�
:

By the Cauchy-Schwarz inequality,

nX
i=1

E�
�
jsni (�i)j

2
1 (sni (�i) > �)

�

=
1

n

nX
i=1

E�

8><>:�2i sup2�
sup
�2T

������
i+L�1X
j=i

[� �G (�buj�=�n)] e'j
������
2

1 (sni (�i) > �)

9>=>;
� 1

n

nX
i=1

8><>: 1

L2
sup
2�

sup
�2T

������
i+L�1X
j=i

[� �G (�buj�=�n)] e'j
������
4

P � (sni (�i) > �)

9>=>;
1=2

= OP (
p
L=n) = oP (1) :

The result follows.

Step 5. We verify condition (v). From the veri�cation of condition (i), we know that �2 (� ; � 0; ; 0) =
plimn!1 �2n (� ; �

0; ; 0) is well de�ned. If � (�n; � 0n; n; 
0
n)! 0; then �n (�n; �

0
n; n; 

0
n) � j�n(�n; � 0n;

n; 
0
n) �� (�n; � 0n; n; 0n) j+ � (�n; � 0n; n; 0n)

P! 0: �

B Propositions
In this appendix, we prove some propositions used in the proof of Theorems 4.1-4.4 and that apply some
technical lemmas in the next appendix. Recall 'i � ' (Wi; ) ; mi� � m (� ;Wi) ; g (�) � G(1) (�) ; and
�ix � � ((Xi � x)=h) : Let Kij � K ((Xi �Xj) =h) ; �i;j � � ((Xi �Xj) =h) ; and g(s�1) (�) � G(s) (�)
for s = 2; 3: Here we use Ei (�) to denote expectation conditional on Wi �

�
XT
i ; Z

T
i

�T
instead of Xi:

Proposition B.1 (i) E [G (�"i�=�n)]� � = O (�qn) ;

(ii) E [G (�"i�=�n)� 1 ("i� � 0)]2 = O (�n) ;

(iii) ��1n E
�
G(1) (�"i�=�n)

�
= E [f (mi� jWi)] +O (�

q
n) :

Proof. Under Assumptions B3(i) and B5(i)-(iii), using change of variables, integration by parts,
and a qth order Taylor expansion yields

E [G (�"i�=�n) jWi]

= E [G (� (Yi �mi� ) =�n) jWi] =

Z 1

�1
G (� (y �mi� ) =�n) dF (yjWi)

= �
Z 1

�1
F (yjWi) dG (� (y �mi� ) =�n) =

Z 1

�1
F (mi� + v�njWi) g (�v) dv
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= � +

Z 1

�1

qX
s=1

1

s!
F (s) (mi� jWi) v

s�sng (v) dv + rni = � +
�qn�q
q!

F (q) (mi� jWi) + rni;

where �q �
R1
�1 vqg (v) dv; rni � (�qn=(q � 1)!)

R1
�1

R 1
0
[F (q) (mi� + sv�njWi) � F

(q)
i (mi� jWi)]v

qg (v)

(1� s)q�1 dsdv: By Assumption B3(i), the dominated convergence theorem, and the law of iterated
expectations, E jrnij = o(�qn); and E [G (�"i�=�n)] = � +

�qn�q
q! E

�
F (q) (mi� jWi)

�
+ o (�qn) : This proves

(i). For (ii), using Assumptions B1, B5(i) and (iii), we have G (0) �
R 0
�1 g (v) dv = 0:5; and

E [G (�"i�=�n)� 1 ("i� � 0)]2

= E
�
G2 (�"i�=�n)

�
+ E [1 ("i� � 0)]� 2E [G (�"i�=�n)1 ("i� � 0)]

= E

�Z 1

�1
G2 (� (y �mi� ) =�n) dF (yjWi)

�
+ � � 2E

�Z mi�

�1
G (� (y �mi� ) =�n) dF (yjWi)

�
= �E

�Z 1

�1
F (mi� + �nvjWi) dG

2 (�v)
�
+ � � 2

�
G (0) � + E

�Z 0

�1
F (mi� + �nvjWi) g (�v) dv

��
= ��

Z 1

�1
dG2 (�v) + � � 2� +O (�n) = O (�n) :

By Assumptions B3(i) and B5(ii)-(iii),

��1n E
h
G(1) (�"i�=�n)

i
= E

�
��1n

Z 1

�1
G(1) (� (y �mi� ) =�n) f (yjWi) dy

�
= E

�Z 1

�1
f (mi� + �nvjWi) g (v) dv

�
= E

"
f (mi� jWi) +

Z 1

�1

qX
s=1

1

s!
f
(s)
i (mi� jWi)�

s
nv

sg (v) dv

#
+ o (�qn)

= E [f (mi� jWi)] +
�qn�q
q!

E
h
f (q) (mi� jWi)

i
+ o (�qn) = E [f (mi� jWi)] +O (�

q
n) :

Proposition B.2 (i) sup�2T
1

n�n

Pn
i=1E

��G(1) (�"i�=�n)�� = O (1) ;

(ii) sup�2T
1

n�2n

Pn
i=1E

��G(2) (�"i�=�n)�� = O (1) ;

(iii) sup�2T
1

n�3n

Pn
i=1E

��G(3) (�"i�=�n)�� = O (1) :

Proof. By Assumptions A3(i), B3(i), and B5(ii)-(iii), we have, uniformly in � ,

��1n E
���G(1) (�"i�=�n)��� = E

�
��1n

Z 1

�1
jg (� (y �mi� ) =�n)j f (yjWi) dy

�
= �E

�Z 1

�1
f (mi� + �nvjWi) jg (v)j dv

�
= E

"Z 1

�1

 
f (mi� jWi) +

qX
s=1

1

s!
f (s) (mi� jWi)�

s
nv

s

!
jg (v)j dv

#
+ o (�qn)

= E [f (mi� jWi)]

Z 1

�1
jg (v)j dv +O (�n) = O (1) :
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Similarly, uniformly in � ;

��2n E
���G(2) (�"i�=�n)��� = E

�
��2n

Z 1

�1

���g(1) (� (y �mi� ) =�n)
��� f (yjWi) dy

�
= ���1n E

�Z 1

�1
f (mi� + �nvjWi)

���g(1) (v)��� dv�
= E

"Z 1

�1

 
f (mi� jWi) +

qX
s=1

1

s!
f (s) (mi� jWi)�

s
nv

s

!
sgn

�
g(1) (v)

�
dg (v)

#
+ o(�q�1n )

= E
h
f (1) (mi� jWi)

i Z 1

�1

���g(1) (v)��� dv +O (�n) = O (1) .

The proof of (iii) is similar and thus omitted.

Proposition B.3 (i) sup�2T
1

n�n

Pn
i=1

��G(1) (�"i�=�n)�� = OP (1) ;

(ii) sup�2T
1

n�2n

Pn
i=1

��G(2) (�"i�=�n)�� = OP (1 + n
�1=2��3=2n

p
log n);

(iii) sup�2T
1

n�3n

Pn
i=1

��G(3) (�"i�=�n)�� = OP (1 + n
�1=2��5=2n

p
log n):

Proof. We only show (i) since the other cases are similar. By Proposition B.2(i), it su¢ ces to
show that sup�2T

1
n

Pn
i=1 bni (�) = OP (1) ; where bni (�) � ��1n [jG(1) (�"i�=�n) j �EjG(1) (�"i�=�n) j]:

Let bn (�) � 1
n

Pn
i=1 bni (�) : Noting that

��1n g (�"i�=�n)

2+�

= O(��(1+�)=(2+�)n ); we have by the
Davydov inequality that

Var (bn (�)) =
1

n2

nX
i=1

Var (bni (�)) +
2

n2

nX
1�i<j�n

E [bni (�) bnj (�)]

� O
�
n�1��1n

�
+ C max

1�i�n
kbni (�)k22+�

nX
i=1

1X
s=1

� (s)
�=(2+�)

= O
�
n�1��1n + n�1��2(1+�)=(2+�)n

�
= o (1) :

It follows that bn (�) = oP (1) for each � : Following exactly the same argument as used in the proof
of the uniform consistency of kernel density estimators, we can show that sup�2T jbn (�)j = OP (n

�1=2

��1=2n

p
log n): It follows that sup�2T n

�1��1n
Pn

i=1

��G(1) (�"i�=�n)�� = O (1) + OP (n
�1=2��1=2n

p
log n)

= OP (1) :

Proposition B.4 Vn1 (� ; ) � n�1=2
Pn

i=1[1 ("i� < 0)�G (�"i�=�n)]'i = oP (1) uniformly in (� ; ) 2
T � �:

Proof. Let Vn1;1 (� ; ) � n�1=2
Pn

i=1 f1 ("i� < 0)�G (�"i�=�n)� � + Ei[G (�"i�=�n)]g'i and
Vn1;2 (� ; ) � n�1=2

Pn
i=1 f� � Ei[G (�"i�=�n)]g'i : Then Vn1 (� ; ) = Vn1;1 (� ; ) + Vn1;2 (� ; ) : By

Proposition B.1(i) and the uniform boundedness of ', sup2� sup�2T jVn1;2 (� ; ) j = O
�
n1=2�qn

�
=

oP (1) : We partition the compact set T by n1 points � = �0 < �1 < �2 < � � � < �n1 = � such
that j� j � � j�1j = �1n = 1= log log n: Let T1 = [�0; �1] and Tj = (� j�1; � j ] for j = 2; � � � ; n1: Let
� 2 (� j ; � j+1]: We cover the compact set � by �k = f : k � kk � �2ng for k = 1; � � � ; n2; where
�2n = 1=(log log n)

d� ; d� is the dimension of  2 �; and n2 = O(log log n):
Note that

sup
2�

sup
�2T

jVn1;1 (� ; )j

� max
1�l�n2

max
1�j�n1

jVn1;1 (� j ; l)j+ max
1�l�n2

max
1�j�n1

sup
2�l

sup
�2Tj

jVn1;1 (� ; )� Vn1;1 (� j ; l)j

� Vn11 + Vn12:
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Fix � > 0: Let �i;jl � f1("i�j < 0) � G(�"i�j=�n) � � j + Ei[G(�"i�j=�n)]g'il : Then
���i;jl�� � 2cGc';

E
�
�i;jl

�
= 0 and E

�
�2i;jl

�
� C�n by Propositions B.1(i)-(ii) where �n � �n + �qn. By the Davydov

inequality, one can show that there exists some positive constant c� such that E[
Ps+pn

i=s+1 �i;jl]
2 � c�pn�n

for any s = 1; � � � ; pn and 1 � pn � n=2: We can apply Lemma C.3 with Mn = 2c'; pn = n1=2�� for
some � > 0; �� = n�1=2�; and �2 (pn) = c�pn�n to obtain

P (Vn11 > �) � n1n2 max
1�l�n2

max
1�j�n1

P

 �����n�1
nX
i=1

�i;jl

����� > n�1=2�

!

� n1n2C0 exp

�
� �2

C1c��n + 4c'C2n���

�
+ n1n2C3

s
2

n�1=2c'�
n1=2+��(n1=2�� + 1)

= n1n2 exp

�
� �2

C1c��n + 4c'C2n���

�
+ o

�
n3=4+�(n1=2��)��0 (log log n)

2
�

� pn1 + pn2; (B.1)

where �0 = 1 + 16=�: Clearly, the �rst term pn1 is o (1) provided � > 0: pn2 = o(n3=4+��(1=2��)�0

(log log n)
2
) = o (1) provided �0 > (3=4 + �)=(1=2� �) and v 2 (0; 1=2):

Now consider the class of functions

F2 �
�
b(�;) : (� ; ) 2 T � �

	
where b(�;) : R� RdX+dZ ! R is de�ned by

b(�;) (Yi;Wi) �
�
G

�
�Yi +m (� ;Wi)

�n

�
� Ei

�
G

�
�Yi +m (� ;Wi)

�n

���
' (Wi; ) :

Let G (�"i�=�n) � G (�"i�=�n)� Ei[G (�"i�=�n) and &i (� ; ) � G (�"i�=�n)'i : Then

&i (� ; )� &i (� 0; 0) =
�
G (�"i�=�n)�G (�"i� 0=�n)

�
'i +G (�"i� 0=�n)

�
'i � 'i0

�
� &i1 (� ; �

0; ) + &i2 (�
0; ; 0) ; say.

Following the arguments in the proof of Theorem 4.3 and Proposition B.7 below, by the Cr inequality
and Assumptions A4, B4, and B5 we have

E sup
j��� 0j��1;k�0k��2;

p
�21+�

2
2��

j&i (� ; )� &i (� 0; 0)jr

� 2r�1E sup
j��� 0j��1;k�0k��2;

p
�21+�

2
2��

j&i1 (� ; � 0; )jr

+2r�1E sup
j��� 0j��1;k�0k��2;

p
�21+�

2
2��

j&i2 (� 0; ; 0)jr

� CE sup
j��� 0j��1

jG (�"i�=�n)�G (�"i� 0=�n)j+ CE sup
k�0k��2

j' (Wi; )� ' (Wi; 
0)jr

� CE

������
3X
j=1

��jn G(j)
�
�Yi +m (� ;Wi)

�n

������� sup
j��� 0j��1

jm (� ;Wi)�m (� 0;Wi)jj

+CE

(������3n G
�
�
�Yi +m (� ;Wi)

�n

����� sup
j��� 0j��1

jm (� ;Wi)�m (� 0;Wi)j3
)
+ C�r�2

� C�1 + C�
3
1 + C�

r�
2 � 2C�1^(rs) = 2C�� ;
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where � � 1; � = min (1; r�) ; and G�
(�) is de�ned in the proof of Proposition B.7. That is, F2 is a class

of uniformly bounded functions satisfying Lr-continuity. The Lr-continuity implies that the bracketing
number satis�es

N
�
�;F2; k�kLr(P )

�
� C2

�
1

�

�(1+d�)=�
:

By Theorem 2.2 of Andrews and Pollard (1994), this, together with Assumption B2(ii) and the result
in the proof of Theorem 4.3, implies that fVn12 (� ; ) : (� ; ) 2 T � �g is stochastically equicontinuous.
It follows that

Vn12 = max
1�l�n2

max
1�j�n1

sup
2�l

sup
�2Tj

jV1n (� ; )� V1n (� j ; l)j = oP (1) :

This completes the proof of the proposition.

Proposition B.5 Under H1n; Vn2 (� ; ) � n�1=2h�dX
Pn

i=1 [1 ("i� � 0)� 1 (ui� � 0)]'i�ixKix =

n�1h�dX
Pn

i=1 f (mi� jWi) �(� ;Wi) �ixKix + oP (1) uniformly in (� ; ) 2 T � � for each x 2 X .

Proof. Let Vn2;1 (� ; x) � n�1=2h�dX
Pn

i=1 f1 ("i� � 0)� 1 (ui� � 0)� � + Ei[1 (ui� � 0)]g'i�ixKix;

and Vn2;2 (� ; x) � n�1=2h�dX
Pn

i=1 f� � Ei[1 (ui� � 0)]g'i�ixKix: Then Vn2 (� ; ) = Vn2;1 (� ; ) +
Vn2;2 (� ; ) : By the proof of Theorem 3.1 (Lemma A.3 in particular), one can readily show that
Vn2;1 (� ; ) = oP (1) uniformly in (� ; ) 2 T ��. Let�n (� ; ) � n�1h�dX

Pn
i=1 f (mi� jWi) � (� ;Wi)'i�ix

�Kix: By the Taylor expansion

sup
(�;)2T ��

kVn2;2 (� ; )��n (� ; )k

= sup
(�;)2T ��

n�1=2h�dX
nX
i=1

[F (mi� jWi)� F (m (� ;Xi) jWi)]'i�ixKix ��n (� ; )


= sup
(�;)2T ��

n�1h�dX
nX
i=1

[f (m�
i� jWi)� f (mi� jWi)] � (� ;Wi)'i�ixKix


� sup

(�;)2T ��
n�3=2h�dX

nX
i=1

C2 (Wi) �
2 (� ;Wi)'i k�ixkKix

� Cn�3=2h�dX
nX
i=1

k�ixkKix = oP (1) ;

where m�
i� lies between mi� and m (� ;Xi) :

Proposition B.6 Under H1n; Vn3 (� ; ) � n�1=2��1n
Pn

i=1G
(1) (�"i�=�n) (bui� � "i� )'i = �c0n�1=2

�
Pn

i=1 b(Xi; ) � ("i� ) +� (� ; ) + oP (1) uniformly in (� ; ) :

Proof. Let gni� � ��1n G(1) (�"i�=�n) : Using Proposition B.1(iii) and ui� = "i� + n�1=2� (� ;Wi)
yields

Vn3 (� ; ) = n�1=2
nX
i=1

gni� (bui� � ui� )'i + n�1=2 nX
i=1

gni�� (� ;Wi)'i

=
1p
n

nX
i=1

f (mi� jWi) (bui� � ui� )'i + 1p
n

nX
i=1

[gni� � E (gni� jWi)] (bui� � ui� )'i
+
1

n

nX
i=1

gni�� (� ;Wi)'i + oP (1)

� Vn3;1 (� ; ) + Vn3;2 (� ; ) + Vn3;3 (� ; ) + oP (1) uniformly in (� ; ) : (B.2)
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By Corollary 3.2, we have

bui� � ui� = �eT1H (� ;Xi)
�1 1

nhdX

nX
j=1

 � (uj� )�j;iKij [1 + oP (1)] + oP (n
�1=2)

= [��1i (�)� �2i (�)] [1 + oP (1)] + oP (n�1=2);

where both oP (1) and oP (n�1=2) hold uniformly in i and � ; H (� ; x) = f (m (� ; x) jx) f (x)H, �1i (�) =
eT1H (� ;Xi)

�1 1
nhdX

Pn
j=1  � ("j� )�j;iKij ; and �2i (�) = eT1H (� ;Xi)

�1 1
nhdX

Pn
j=1[1 ("j� � 0) � 1(uj�

� 0)]�j;iKij : It follows that

Vn3;1 (� ; ) ' � 1p
n

nX
i=1

f (mi� jWi)'i�1i (�)�
1p
n

nX
i=1

f (mi� jWi)'i�2i (�) + oP (1)

� �V(1)n3;1 (� ; )� V
(2)
n3;1 (� ; ) + oP (1) : (B.3)

We �rst study V(1)n3;1 (� ; ) : As before, partition T as before by n1 points � = �0 < �1 < � � � < �n1 = �

and cover the compact set � by �k � f : k � kk � �2ng; but we now require � s+1�� s = hdX=2= log n
and �2n = n�1=2= log n: Fix l 2 �l: Let Ts = [� s; � s+1] for s = 1; � � � ; n1 and let (� ; ) 2 Ts � �l. Then

sup
2�

sup
�2T

���V(1)n3;1 (� ; )��� � max
1�l�n2

max
1�s�n1

���V(1)n3;1 (� s; l)���
+ max
1�l�n2

sup
2�l

max
1�s�n1

sup
�2Ts

���V(1)n3;1 (� ; )� V(1)n3;1 (� s; l)��� : (B.4)

Let Vi � (WT
i ; Yi)

T and &ij (� ; ) � h�dXf (mi� jXi)'ie
T
1H (� ;Xi)

�1
�j;iKij : Introducing �1� (Vi; Vj)

� [&ij (� ; ) � ("j� ) + &ji (� ; ) � ("i� )]; we can write V
(1)
n3;1 (� ; ) as n

�3=2Pn
i=1 �1� (Vi; Vi) plus the

U-statistic

Un (� ; ) �
1

n3=2

nX
1�i<j�n

�1� (Vi; Vj) :

It is straightforward to show that n�3=2
Pn

i=1 �1� (Vi; Vi) = OP (n
�1=2h�dX ) = oP (1) uniformly in

(� ; ) : By the Hoe¤ding decomposition we have

Un (� ; ) =
n� 1
n

n
U(1)n (� ; ) + U(2)n (� ; )

o
; (B.5)

where

U(1)n (� ; ) =
1

n1=2

nX
j=1

Z
�1� (Vi; Vj) dP (Vi) ;

U(2)n (� ; ) =
1

n1=2 (n� 1)

nX
1�i<j�n

�
�1� (Vi; Vj)�

Z
�1� (Vi; Vj) dP (Vi)�

Z
�1� (Vi; Vj) dP (Vj)

�
;

and P (Vi) denotes the distribution of Vi: Noting that
R
�1� (Vi; Vj) dP (Vi) = h�dXEi[f (mi� jWi)

eT1H (� ;Xi)
�1
�j;iKij'i ] � ("j� ), it is straightforward to show that

U(1)n (� ; ) =
1

n1=2hdX

nX
j=1

Z
f (mi� jWi) e

T
1H (� ;Xi)

�1
�j;iKij'idP (Vi) � ("j� )

=
1

n1=2

nX
j=1

Z Z
f (m (� ; (Xj + hv; z

0)) jXj + hv; z
0) eT1H (� ;Xj + hv)

�1
� (v)K (v)

�' ((Xj + hv; z
0); ) f (Xj + hv; z

0) dvdz0  � ("j� )
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' 1

n1=2

nX
j=1

Z
f (m (� ; (Xj ; z

0)) jXj ; z
0) f (Xj ; z

0) eT1H (� ;Xj)
�1 B0' ((Xj ; z

0); ) dz0 � ("j� )

' c0
n1=2

nX
j=1

Z
f (Xj ; z

0) f (Xj)
�1
' ((Xj ; z

0); ) dz0 � ("j� )

=
c0
n1=2

nX
j=1

b (Xj ; ) � ("j� ) ; (B.6)

where we use the fact that H (� ;Xj) = f (m (� ;Xj) jXj) f (Xj)H and that m (� ;Wj) = m (� ;Xj) +

n�1=2� (� ;Wj) : For �1�w (Vi; Vj) de�ne Mn1s (s = 1; 2; 3; 4) and Mn2s (s = 1; 2; 3) as in Lemma C.2. It
is easy to verify that

Mn11 = Mn12 = O
�
h�dX�

�
; Mn13 =Mn14 = O(h�dX(1+�));

Mn21 = O(h�2dX ); Mn22 = O(h�2dX ); and Mn23 = O(h�3dX );

which implies that E
h
U(2)n (� s; l)

i4
= O

�
n�2(h�4dX�=(4+�) + h�2dX )

�
: Fix � > 0: By Lemma C.2(i)

and the Markov inequality,

P

�
max
1�l�n2

max
1�s�n1

���U(2)n (� s; l)
��� � �

�
� n1n2 max

1�l�n2
max
1�s�n1

P
�
U(2)n (� s; l) � n3=2�

�
� n1n2O

�
n�2(h�4dX�=(4+�) + h�2dX )

�
= O

�
n�1(h�4dX�=(4+�) + h�2dX )h�dX=2 log n

�
= o (1) .

Thus
max
1�l�n2

max
1�s�n1

���U(2)n (� s; l)
��� = oP (1) : (B.7)

Next, write���V(1)n3;1 (� ; )� V(1)n3;1 (� s; l)���
=

1

n3=2hdX

nX
j=1

�
 � ("j� )�  �s ("j�s)

� nX
i=1

f (mi�s jXi) e
T
1H (� s; Xi)

�1
�j;iKij'i

+
1

n3=2hdX

nX
i=1

h
f (mi� jXi) e

T
1H (� ;Xi)

�1 � f (mi�s jXi) e
T
1H (� s; Xi)

�1
i nX
j=1

 � ("j� )�j;iKij'i

+
1

n3=2hdX

nX
i=1

nX
j=1

 �s ("j�s) f (mi�s jXi) e
T
1H (� s; Xi)

�1
�j;iKij

�
'i � 'il

�
� Vn31 (� ; �s; ; l) + Vn32 (� ; �s; ; l) + Vn33 (� ; �s; ; l) :

First, by the boundedness of '; the absolute value of Vn31 (� ; �s; ; l) is no bigger than

c'
n1=2

nX
j=1

�� � ("j� )�  �s ("j�s)��� 1

nhdX

nX
i=1

���f (mi�s jXi) e
T
1H (� s; Xi)

�1
�j;iKij

��� :
The second term in the last expression is OP (1) uniformly in j whereas the �rst term is oP (1) uniformly
in � such that j� � � sj = o

�
n�1=2

�
by the stochastic equicontinuity of fn�1=2

Pn
j=1  � ("j� ) : � 2 T g

(cf. the proof of Theorem 4.3). It follows that max1�l�n2 sup2�l max1�s�n1 sup�2Ts jVn31 (� ; �s; ; l) j
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= oP (1) : Similarly, by the fact that that H (� ;Xi) = f (m (� ;Xi) jXi) f (Xi)H and m (� ;Wi) =
m (� ;Xi) + n

�1=2� (� ;Wi) under H1n; we can readily show that max1�l�n2 sup2�l max1�s�n1 sup�2Ts
jVn32 (� ; �s; ; l) j = oP (1) : By the boundedness of the conditional and marginal densities, we have

jVn33 (� ; �s; ; l)j �
C

n1=2

nX
i=1

���'i � 'il ���� 1

nhdX

nX
j=1

eT1H�j;iKij :

The second term is OP (1) uniformly in j whereas the �rst term is oP (1) uniformly in  such that
j � lj = o

�
n�1=2

�
: Hence max1�l�n2 sup2�l max1�s�n1 sup�2Ts jVn33 (� ; �s; ; l) j = oP (1) : These

results, together with (B.4) and the analysis of Un (� ; ) (esp. (B.5)-(B.7)), imply that uniformly in
(� ; )

V(1)n3;1 (� ; ) = �
c0
n1=2

nX
j=1

b (Xj ; ) � ("j� ) + oP (1) : (B.8)

Now we study V(2)n3;1 (� ; ) de�ned in (B.3). By Proposition B.5, uniformly in (� ; )

V(2)n3;1 (� ; ) =
1

n2hdX

nX
i=1

nX
j=1

f (mi� jWi)'ie
T
1H (� ;Xi)

�1
f (mj� jWj) � (� ;Wj)�j;iKij + oP (1)

' 1

n2hdX

nX
i=1

nX
j=1

Ei

h
f (mi� jWi)'ie

T
1H (� ;Xi)

�1
�j;iKij

i
f (mj� jWj) � (� ;Wj) + oP (1)

=
c0
n

nX
j=1

f (mj� jWj) � (� ;Wj) b (Xj ; ) + oP (1) ; (B.9)

where we have used the fact that f (mi� jWi) = f (m (� ;Xi) jXi) + OP (n
�1=2) under H1n: Combining

(B.3), (B.8), and (B.9) yields

Vn3;1 (� ; ) = �
c0
n1=2

nX
i=1

b(Xi; ) � ("i� )�
c0
n

nX
j=1

f (mj� jWj) � (� ;Wj) b (Xj ; ) + oP (1) ; (B.10)

where oP (1) holds uniformly in (� ; ) :

Analogously to the proof of V(1)n3;1 (� ; ) but with the application of Lemma C.2(ii) in place of Lemma
C.2(i), we can show that

sup
2�

sup
�2T

jVn3;2 (� ; )j = OP

�
n�2(�nh

dX )�6�=(�+6) + n�2(�nh
dX )�3)h�dX=2 log n

�
= oP (1) : (B.11)

Now, by Proposition B.1 and Assumption B6, uniformly in (� ; )

Vn3;3 (� ; ) =
1

n

nX
i=1

f (mi� jWi) � (� ;Wi)'i +OP (�
q
n) : (B.12)

Combining (B.2) and (B.10)-(B.12) yields the desired result.

Proposition B.7 Under H1n; Vn4 (� ; ) � n�1=2
Pn

i=1[G (�"i�=�n)�G (�bui�=�n)]'i = �c0n�1=2Pn
i=1

b(Xi; ) � ("i� ) +� (� ; ) + oP (1) uniformly in (� ; ) :
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Proof. By the Taylor expansion

Vn4 (� ; ) =
1p
n�n

nX
i=1

G(1) (�"i�=�n) (bui� � "i� )'i + 1

2
p
n�2n

nX
i=1

G(2) (�"i�=�n) (bui� � "i� )2 'i
+

1

6
p
n�3n

nX
i=1

G(3) (�"i�=�n) (bui� � "i� )3 'i +Rn1 (� ; )
� Vn41 (� ; ) + Vn42 (� ; ) + Vn43 (� ; ) +Rn1 (� ; ) ; (B.13)

where Rn1 (� ; ) � (1=6)n�1=2��3n
Pn

i=1

�
G(3) (�ui�=�n)�G(3) (�ui�=�n)

�
(bui� � "i� )3 'i with ui� ly-

ing between bui� and "i� : By Proposition B.6, it su¢ ces to show the last three terms in (B.13) are
uniformly oP (1) :
By Proposition B.3(ii) and the boundedness of ',

sup
2�

sup
�2T

jVn42 (� ; )j � Cn1=2 max
1�i�n

sup
�2T

jbui� � "i� j2 sup
�2T

(
1

2n�2n

nX
i=1

���G(2) (�"i�=�n)���)
= OP (n

�1=2h�dX log n)OP (1 + n
�1=2��3=2n

p
log n) = oP (1) :

Similarly, we have sup2� sup�2T jVn43 (� ; )j = OP
�
n�1h�3dX=2(log n)3=2

�
OP (1+n

�1=2��5=2n (log n)1=2)

= oP (1) : Assumption B5 implies that for all j"� "�j � � � AG; jG(3) ("�)�G(3) (") j � �G� (") :In fact,
one chooses G� (") = cG1(j"j � 2AG) if G(3) (") has compact support and is Lipschitz continuous, and
chooses G� (") = cG1(j"j � 2AG) + j" � AGj�01(j"j > 2AG). In each case, G� (") is bounded and
integrable and behaves like the kernel function K (�) : Let #n � max1�i�n sup�2T jbui� � "i� j: Then
#n = OP (n

�1=2h�dX=2
p
log n +n�1=2) = o (�n) so that #n=�n � AG with probability approaching one

(w.p.a. 1). It follows that w.p.a. 1
��G(3) (�ui�=�n)�G(3) (�"i�=�n)�� � #n�

�1
n G� (�"i�=�n) and

sup
2�

sup
�2T

jRn1 (� ; )j � Cn1=2#4n�
�3
n sup

�2T

1

n�n

nX
i=1

G� (�"i�=�n) = OP

�
n�3=2��3n h�2dX (log n)2

�
= oP (1)

because sup�2T
1

n�n

Pn
i=1G

� (�"i�=�n) = OP (1) following the proof of Proposition B.3(i).

Proposition B.8 max1�j�n sup2�
���bb (Xj ; )� b (Xj ; )

��� = OP (n
�1=2h

�dX=2
b

p
log n+ hpb+1b ):

Proof. Masry (1996) proved that the almost sure uniform convergence result holds (uniformly in
Xj) for general local polynomial estimates under strong mixing conditions. It is straightforward to
extend his result to allow the result also to hold uniformly in  by the standard chaining argument.
Note here we only need convergence in probability. See also Hansen (2008).

Proposition B.9 L�1=2
Pi+L�1

j=i [� � G (�"i�=�n)]e'i = L�1=2
Pi+L�1

j=i [� � 1 ("i� � 0)]'i + oP (1)

uniformly in (� ; ) 2 T � �; where we recall that e'i � ' (Wi; ) � c0bb (Xi; ) and 'i � ' (Wi; ) �
c0b (Xi; ) :

Proof. Write L�1=2
Pi+L�1

j=i [� �G (�"j�=�n)]e'j as
L�1=2

i+L�1X
j=i

[� � 1 ("j� � 0)]'j + L�1=2
i+L�1X
j=i

[1 ("j� � 0)�G (�"j�=�n)]'j

+c0L
�1=2

i+L�1X
j=i

[� �G (�"i�=�n)][bb (Xj ; )� b (Xj ; )]: (B.14)
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It su¢ ces to show that the last two terms are oP (1) uniformly in (� ; ) 2 T � �: The last term is no
bigger than

c0L
�1=2

i+L�1X
j=i

���bb (Xj ; )� b (Xj ; )
��� = L1=2OP (n

�1=2h
�dX=2
b

p
log n+ hpb+1b ) = oP (1) :

Now, write the second term in (B.14) as

L�1=2
i+L�1X
j=i

f1 ("j� � 0)� � �G (�"j�=�n) + Ej [G (�"j�=�n)]g'j

+L�1=2
i+L�1X
j=i

f� � Ej [G (�"j�=�n)]g'j :

The second term is OP
�
L1=2�qn

�
= oP (1) uniformly in (� ; ) by Proposition B.1(i). Partition (T � �) as

in the proof of Proposition B.4. By the stochastic equicontinuity of L�1=2
Pi+L�1

j=i [1 ("j� � 0) �� ]'j
and L�1=2

Pi+L�1
j=i fG (�"j�=�n) � Ej [G (�"j�=�n)]g'j as proved in Theorem 4.3 and Proposition

B.4, we have

sup
2�

sup
�2T

������L�1=2
i+L�1X
j=i

f1 ("j� � 0)� � �G (�"j�=�n) + Ej [G (�"j�=�n)]g'j

������
� max

1�l�n2
max

1�k�n1

������L�1=2
i+L�1X
j=i

f1 ("j�k � 0)� �k �G (�"i�k=�n) + Ei [G (�"j�k=�n)]g'il

������+ oP (1) :
Analogously to the proof of Proposition B.4, it is straightforward to show that the dominating term in
the last expression is oP (1) by another application of Lemma C.3.

Proposition B.10 L�1=2
Pi+L�1

j=i [G (�"i�=�n)�G (�bui�=�n)]e'i = oP (1) uniformly in (� ; ) 2 T ��:

Proof. The proof is analogous to that of Proposition B.7. The di¤erence is that one now needs to
apply Proposition B.8 and the fact that L = o

�
n1=2

�
:

C Some Technical Lemmas
This appendix presents some technical lemmas that are used in proving the main results.

Lemma C.1 Let fVi; i � 1g be a v-dimensional strong mixing process with mixing coe¢ cient � (�) : Let
Fi1;:::;im ; denote the distribution function of (Vi1 ; :::; Vim) : For any integer m > 1 and integers (i1; :::; im)

such that 1 � i1 < i2 < � � � < im; let � be a Borel measurable function such that max{
R
j� (v1; � � � ; vm)j1+e�

dFi1;��� ;ij (v1; � � � ; vj) dFij+1;��� ;im (vj+1; � � � ; vm) ;
R
j� (v1; � � � ; vm)j1+e� dFi1;��� ;img �Mn for some e� > 0.

Then j
R
� (v1; � � � ; vm) dFi1;��� ;im (v1; � � � ; vm) �

R
� (v1; � � � ; vm) dFi1;��� ;ij (v1; � � � ; vj) dFij+1;��� ;im(vj+1;

� � � ; vm)j � 4M1=(1+e�)
n � (ij+1 � ij)e�=(1+e�) :

Proof. See Lemma 2.1 of Sun and Chiang (1997).
Let P (Vi) denote the probability law of a random variable Vi: Let 1 � i1; i2; :::; ik � n be arbitrary

positive integers. For any j (1 � j � k), de�ne a collection of probability measures Pkj by

Pkj (Vi1 ; :::; Vik) �
n
P kj (Vi1 ; :::; Vik) � �

j
s=1P (V s) : V s is a subset of fVi1 ; :::; Vikg ;

[js=1V s = fVi1 ; :::; Vikg ; and V t \ V s = ? for all 1 � t 6= s � j
o
:

47



In the following, we frequently suppress the arguments of P kj and Pkj when no confusion can arise. For
example, when k = 2; we use max1�i1;i2�nmax1�j�2maxP 2

j 2P2
j

R
R3v j'(vi1 ; vi2 )jdP

2
j to denote

max
1�i1;i2�n

max

�Z
R2v
fj' (v

1
; v

2
)j dFi1i2(v1; v2);

Z
R2v
j' (v

1
; v

2
)j dFi1(v1)dFi2(v2)

�
:

Let Un = n�2
P

1�i1<i2�n � (vi1 ; vi2) ; where
R
� (v1; v) dFvi (v) =

R
� (v; v2) dFvi (v) = 0 for all i:

Let M (i1; � � � ; i8) � �4j=1�(vi2j�1 ; vi2j ) and N (i1; � � � ; i12) � �6j=1�(vi2j�1 ; vi2j ): Let I1 = fi1; � � � ; i8g
and I2 = fi1; � � � ; i12g : De�ne

Mn1s � max
1�i2k�1<i2k�n;1�k�4
exactly 9�s indices
in I1 are distinct

max
1�j�9�s

max
P 9�s
j 2P9�s

j

Z
jM (i1; � � � ; i8) j1+�=4dP 9�sj , s = 1; 2; 3; 4;

Mn2s � max
1�i2k�1<i2k�n;1�k�4
exactly 5�s indices
in I1 are distinct

max
1�j�5�s

max
P 5�s
j 2P5�s

j

����Z M (i1; � � � ; i8) dP 5�sj

���� ; s = 1; 2; 3;
Nn1s � max

1�i2k�1<i2k�n;1�k�6
exactly 13�s indices
in I2 are distinct

max
1�j�13�s

max
P 13�s
j 2P13�s

j

Z
jN (i1; � � � ; i12) j1+�=6dP 13�sj , s = 1; � � � ; 6;

Nn2s � max
1�i2k�1<i2k�n;1�k�6
exactly 7�s indices
in I2 are distinct

max
1�j�7�s

max
P 7�s
j 2P7�s

j

����Z N (i1; � � � ; i12) dP 13�sj

���� , s = 1; � � � ; 5:
Lemma C.2 Using the notation de�ned above,
(i) if

P1
s=1 s

3� (s)
�=(4+�)

< 1 for some � > 0; then E
�
U4n
�
= O(

P4
s=1 n

�3�sM
4=(4+�)
n1s +

P3
s=1

n�3�sMn2s);

(ii) if
P1

s=1 s
5� (s)

�=(4+�)
< 1 for some � > 0; then E

�
U6n
�
= O(

P4
s=1 n

�5�sN
6=(6+�)
n1s +

P3
s=1

n�5�sNn2s):

Proof. Write

E
�
U4n
�
= n�8

X
1�i1<i2�n

X
1�i3<i4�n

X
1�i5<i6�n

X
1�i7<i8�n

� (vi1 ; vi2)� (vi3 ; vi4)� (vi5 ; vi6)� (vi7 ; vi8) : (C.1)

It is easy to show that the terms in the above summation constitute seven cases: for s = 1; 2; � � � ; 7;
in case (s) there are exactly 9 � s distinct indices among i1; :::; i8: We will use EUn(s) to denote these
cases (s = 1; 2; ; � � � 7): For case (1), following Yoshihara (1976), let i1; :::; i8 be distinct integers with
1 � ij � n: Let 1 � k1 < ::: < k8 � n be the permutation of i1; :::; i8 in ascending order and let dc be
the c-th largest di¤erence among kj+1 � kj ; j = 1; :::; 7: De�ne

H (k1; :::; k8) = � (vi1 ; vi2)� (vi3 ; vi4)� (vi5 ; vi6)� (vi7 ; vi8) :

For any 1 � j � 7; put P (8)0

�
E(8)

�
= P

�
(vi1 ; ::; vi8) 2 E(8)

�
; and

P
(8)
j

�
E(j) � E(8�j)

�
= P

�
(vi1 ; ::; vij ) 2 E(j)

�
P
�
(vij+1 ; ::; vi8) 2 E(8�j)

�
;
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where E(j) is a Borel set in Rj� and � is the dimension of vi: Since
R
H (i1; :::; i8) dP

(8)
j = 0 for j = 1; 7;

we have, by Lemma C.1 with e� = �=4;

X
1�k1<:::<k8�n
k2�k1=d1

jE [H (k1; :::; k8)]j � 4M4=(4+�)
n11

n�7X
k1=1

n�6X
k2=k1+maxj�3fkj�kj�1g

n�5X
k3=k2+1

� � �
nX

k8=k7+1

�
�

4+� (k2 � k1)

� 4M4=(4+�)
n11

n�7X
k1=1

n�6X
k2=k1+1

(k2 � k1)6 �
�

4+� (k2 � k1)

� 4n4M4=(4+�)
n11

nX
j=1

j3�
�

4+� (j) ;

and similarly
P

1�k1<:::<k8�n
k8�k7=d1

jE [H (k1; :::; k8)]j � 4n4M
4=(4+�)
n11

Pn
j=1 j

3�
�

4+� (j) : If for some j� (2 �

j� � 6; 1 � � � 4); kj�+1� kj� = d�, then

X
1�k1<:::<k8�n

kj�+1�kj�=d�(1���4)

jE [H (k1; :::; k8)]j � 4n4M4=(4+�)
n11

nX
j=1

j3�
�

4+� (j) :

It follows that EUn(1) �
P

1�k1<:::<k8�n jE [H (k1; :::; k8)]j = O(n4M
4=(4+�)
n11 ):

For cases (2)-(4), by using Lemma C.1 repeatedly, we can show that

EUn(2) = O(n3M
4=(4+�)
n12 ); EUn(3) = O(n2M

4=(4+�)
n13 ); and EUn(4) = O(nM

4=(4+�)
n14 ):

For all other cases, we can calculate the expectations directly to obtain

EUn(5) = O(n4Mn21); EUn(6) = O(n3Mn22); and EUn(7) = O(n2Mn23):

The result in (i) follows. The proof of (ii) is analogous and thus is omitted.

Lemma C.3 Let f�t 2 Rq; t = 1; 2; :::g be a strong mixing process, not necessarily stationary, with the
mixing coe¢ cients � (t) satisfying

P1
t=1 � (t) <1: Suppose that &n : Rq ! R is a measurable function

such that E [&n (�t)] = 0; and j&n (�t)j �Mn for every t = 1; 2; ::: Then for any �� > 0;

P

 �����n�1
nX
i=1

&n (�t)

����� > �

!
� C0 exp

�
� npn�

�2

C1�2 (pn) + C2Mnpn (pn + 1) ��

�
+ C3

r
Mn

�

n

pn
� (pn + 1) ;

where 1 � pn � n=2; �2 (pn) = sup1�j�2pn max
�
�2j;pn ; �

2
j;pn+1

	
; �2j;pn = E

�Ppn
t=1 &n

�
�j+t

��2
; and C 0is,

i = 0; 1; 2; 3; are constants that do not depend on n; �; Mn; and pn:

Proof. See Lemma 5.2 in Shen and Huang (1998).
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