
Received: 26 January 2021 Accepted: 27 May 2022 Published on: 2 November 2022

DOI: 10.1111/rssb.12544

O R I G I N A L A R T I C L E

Conditional independence testing in Hilbert
spaces with applications to functional
data analysis

Anton Rask Lundborg1,∗ Rajen D. Shah1,† Jonas Peters2,‡

1University of Cambridge, Cambridge,
UK
2University of Copenhagen, Copenhagen,
Denmark

Correspondence
Rajen D. Shah, University of Cambridge,
Cambridge, UK.
Email: r.shah@statslab.cam.ac.uk

Abstract
We study the problem of testing the null hypothesis that
X and Y are conditionally independent given Z, where
each of X , Y and Z may be functional random vari-
ables. This generalises testing the significance of X in
a regression model of scalar response Y on functional
regressors X and Z. We show, however, that even in the
idealised setting where additionally (X , Y , Z) has a Gaus-
sian distribution, the power of any test cannot exceed its
size. Further modelling assumptions are needed and we
argue that a convenient way of specifying these assump-
tions is based on choosing methods for regressing each of
X and Y on Z. We propose a test statistic involving inner
products of the resulting residuals that is simple to com-
pute and calibrate: type I error is controlled uniformly
when the in-sample prediction errors are sufficiently
small. We show this requirement is met by ridge regres-
sion in functional linear model settings without requir-
ing any eigen-spacing conditions or lower bounds on the
eigenvalues of the covariance of the functional regressor.
We apply our test in constructing confidence intervals
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for truncation points in truncated functional linear mod-
els and testing for edges in a functional graphical model
for EEG data.

K E Y W O R D S

functional graphical model, function-on-function regression,
significance testing, truncated functional linear model, uniform type
I error control

1 INTRODUCTION

In a variety of application areas, such as meteorology, neuroscience, linguistics and chemomet-
rics, we observe samples containing random functions (Ramsay & Silverman, 2005; Ullah &
Finch, 2013). The field of functional data analysis (FDA) has a rich toolbox of methods for the
study of such data. For instance, there are a number of regression methods for different functional
data types, including linear function-on-scalar (Reiss et al., 2010), scalar-on-function (Delaigle &
Hall, 2012; Goldsmith et al., 2011; Hall & Horowitz, 2007; Reiss & Ogden, 2007; Shin 2009; Yuan
& Cai, 2010) and function-on-function (Ivanescu et al., 2015; Scheipl et al., 2015) regression; there
are also nonlinear and nonparametric variants (Fan et al., 2015; Ferraty & Vieu, 2006; Ferraty
et al., 2011; Yao & Müller, 2010) and versions able to handle potentially large numbers of func-
tional predictors (Fan et al., 2015) to give a few examples; see Wang et al. (2016), Morris (2015) for
helpful reviews and a more extensive list of relevant references. The availability of software pack-
ages for functional regression methods, such as the R-packages refund (Goldsmith et al., 2020)
and FDboost (Brockhaus et al., 2020), allow practitioners to easily adopt the FDA framework
for their particular data.

One area of FDA that has received less attention is that of conditional independence test-
ing. Given random elements X , Y , Z, the conditional independence X ⫫Y | Z formalises the idea
that X contains no further information about Y beyond that already contained in Z. A precise
definition is given in Section 1.2. Inferring conditional independence from observed data is of
central importance in causal inference (Pearl, 2009; Peters et al., 2017; Spirtes et al. 2000), graph-
ical modelling (Koller & Friedman, 2009; Lauritzen, 1996) and variable selection. For example,
consider the linear scalar-on-function regression model

Y = ∫
1

0
𝜃X (t)X(t)dt + ∫

1

0
𝜃Z(t)Z(t)dt + 𝜀, (1)

where X , Z are random covariate functions taking values in L2([0, 1],R), 𝜃X , 𝜃Z are unknown
parameter functions, Y ∈ R is a scalar response and 𝜀 ∈ R satisfying ε⫫ (X , Z) represents stochas-
tic error. In this model, conditional independence X ⫫Y | Z is equivalent to 𝜃X = 0, that is,
whether the functional predictor X is significant.

For nonlinear regression models, the conditional independence X ⫫Y | Z still characterises
whether X is useful for predicting Y given Z. Indeed, consider a more general setting where Y is
a potentially infinite-dimensional response, and X1, … ,Xp are predictors, some or all of which
may be functional. Then a set of predictors S⊆ {1,… , p} that contain all useful information for
predicting Y , that is such that Y ⫫ {Xj}j∉S | {Xj}j∈S, is known as a Markov blanket of Y in the
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graphical modelling literature (Pearl, 2014; Section 3.2.1). If Y ⫫∕ Xj |{Xk}k≠j, then j is contained
in every Markov blanket, and under mild conditions (e.g. the intersection property Pearl (2009),
Peters (2014)), the smallest Markov blanket (sometimes called the Markov boundary) is unique
and coincides exactly with those variables j satisfying this conditional dependence. This set may
thus be inferred by applying conditional independence tests. Conditional independence tests may
also be used to test for edge presence in conditional independence graphs and are at the heart of
several methods for causal discovery (Peters et al., 2016; Spirtes et al., 2000).

Recent work (Shah & Peters, 2020), however, has shown that in the setting where X ,Y and Z
are random vectors where Z is absolutely continuous (i.e. has a density with respect to Lebesgue
measure), testing the conditional independence X ⫫Y |Z is fundamentally hard in the sense that
any test for conditional independence must have power at most its size. Intuitively, the reason for
this is that given any test, there are potentially highly complex joint distributions for the triple
(X , Y , Z) that maintain conditional independence but yield rejection rates as high as for any alter-
native distribution. Lipschitz constraints on the joint density, for example, preclude the presence
of such distributions (Neykov et al., 2020).

In the context of functional data, however, the problem can be more severe, and we show in
this work that even in the idealised setting where (X , Y , Z) are jointly Gaussian in the functional
linear regression model (1), testing for X ⫫Y |Z is fundamentally impossible: any test must have
power at most its size. In other words, any test with power 𝛽 at some alternative cannot hope to
control type I error at level 𝛼 < 𝛽 across the entirety of the null hypothesis, even if we are willing to
assume Gaussianity. Perhaps more surprisingly, this fundamental problem persists even if addi-
tionally we allow ourselves to know the precise null distribution of the infinite-dimensional Z.

Consequently, there is no general purpose conditional independence test even for Gaussian
functional data, and we must necessarily make some additional modelling assumptions to pro-
ceed. We argue that this calls for the need of conditional independence tests whose suitability for
any functional data setting can be judged more easily.

Motivated by the Generalised Covariance Measure (Shah & Peters, 2020), we propose a sim-
ple test we call the Generalised Hilbertian Covariance Measure (GHCM) that involves regressing
X on Z and Y on Z (each of which may be functional or indeed collections of functions), and
computing a test statistic formed from inner products of pairs of residuals. We show that the
validity of this form of test relies primarily on the relatively weak requirement that the regres-
sion procedures have sufficiently small in-sample prediction errors. We thus aim to convert the
problem of conditional independence testing into the more familiar task of regression with func-
tional data, for which well-developed methods are readily available. These features mark out our
test as rather different from existing approaches for assessing conditional independence in FDA,
which we review in the following.

One approach to measuring conditional dependence with functional data is based on the
Gaussian graphical model. Zhu et al. (2016) propose a Bayesian approach for learning a graphical
model for jointly Gaussian multivariate functional data. Qiao et al. (2019) and Zapata et al. (2019)
study approaches based on generalisations of the graphical Lasso (Yuan & Lin, 2007). These latter
methods do not aim to perform statistical tests for conditional independence, but rather provide a
point estimate of the graph, for which the authors establish consistency results valid in potentially
high-dimensional settings.

As discussed earlier, conditional independence testing is related to significance testing in
regression models. There is, however, a paucity of literature on formal significance tests for
functional predictors. The R implementation (Goldsmith et al., 2020) of the popular functional
regression methodology of Greven and Scheipl (2017) produces p-values for the inclusion of a
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1824 LUNDBORG et al.

functional predictor based on significance tests for generalised additive models developed in
Wood (2013). These tests, while being computationally efficient, however, do not have formal
uniform level control guarantees.

1.1 Our main contributions and organisation of the paper

1. It is impossible to test conditional independence with Gaussian functional data. In
Section 2 we present our formal hardness result on conditional independence testing for Gaus-
sian functional data. The proof rests on a new result on the maximum power attainable at any
alternative when testing for conditional independence with multivariate Gaussian data. The
full technical details are given in Section A of the supplementary material. As we cannot hope
to have level control uniformly over the entirety of the null of conditional independence, it is
important to establish, for any given test, subsets ̃0 of null distributions 0 over which we do
have uniform level control.

2. We provide new tools allowing for the development of uniform results in FDA. Uni-
form results are scarce in functional data analysis; we develop the tools for deriving such results
in Section B of the supplementary material which studies uniform convergence of Hilbertian
and Banachian random variables.

3. Given sufficiently good methods for regressing each of X and Y on Z, the GHCM can
test conditional independence with certain uniform level guarantees. In Section 3 we
describe our new GHCM testing framework for testing X ⫫Y |Z, where each of X , Y and Z may
be collections of functional and scalar variables. In Section 4 we show that for the GHCM, an
effective null hypothesis ̃0 may be characterised as one where in addition to some tightness
and moment conditions, the conditional expectations E(X |Z) and E(Y |Z) can be estimated
at sufficiently fast rates, such that the product of the corresponding in-sample mean squared
prediction errors (MSPEs) decay faster than 1/n uniformly, where n is the sample size. Note
that this does not contradict the hardness result: it is well known that there do not exist regres-
sion methods with risk converging to zero uniformly over all distributions for the data (Györfi
et al., 2002, Theorem 3.1). Thus, the regression methods must be chosen appropriately in order
for the GHCM to perform well. In Section 4.3 we show that a version of the GHCM incorpo-
rating sample splitting has uniform power against alternatives where the expected conditional
covariance operator E{Cov(X ,Y |Z)} has Hilbert–Schmidt norm of order n−1∕2, and is thus
rate optimal.

4. The regression methods are only required to perform well on the observed data. The
fact that control of the type I error of the GHCM depends on an in-sample MSPE rather than
a more conventional out-of-sample MSPE, has important consequences. While in-sample and
out-of-sample errors may be considered rather similar, in the context of function regression,
they are substantially different. We demonstrate in Section 4.4 that bounds on the former
are achievable under significantly weaker conditions than equivalent bounds on the latter by
considering ridge regression in the functional linear model. In particular the required predic-
tion error rates are satisfied over classes of functional linear models where the eigenvalues of
the covariance operator of the functional regressor are dominated by a summable sequence;
no additional eigen-spacing conditions, or lower bounds on the decay of the eigenvalues are
needed, in contrast to existing results on out-of-sample error rates (Cai & Hall, 2006; Crambes
& Mas, 2013; Hall & Horowitz, 2007).

5. The GHCM has several uses. Section 5 presents the results of numerical experiments on the
GHCM. We study the following use cases. (i) Testing for significance of functional predictors
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in functional regression models. We are not aware of other approaches that provide signifi-
cance statements in functional regression models and come with statistical guarantees. For
example, in comparison to the p-values from pfr, which are highly anti-conservative in chal-
lenging setups, the type I error of the GHCM test is well-controlled (see Figure 1). (ii) Deriving
confidence intervals for truncation points in truncated functional linear model. We demon-
strate in Section 5.2 the use of the GHCM in the construction of a confidence interval for the
truncation point in a truncated functional linear model, a problem which we show may be
framed as one of testing certain conditional independencies. (iii) Testing for edge presence in
functional graphical models. In Section 5.3, we use the GHCM to learn functional graphical
models for EEG data from a study on alcoholism.

We conclude with a discussion in Section 6 outlining potential follow-on work and open prob-
lems. The supplementary material contains the proofs of all results presented in the main text and
some additional numerical experiments, as well as the uniform convergence results mentioned
above. An R-package ghcm (Lundborg et al., 2022) implementing the methodology is available
on CRAN.

1.2 Preliminaries and notation

For three random elements X , Y and Z defined on the same probability space (Ω, ,P) with val-
ues in measurable spaces ( ,), ( ,) and (,) respectively, we say that X is conditionally
independent of Y given Z and write X ⫫Y | Z when

E(f (X)g(Y ) |Z)
a.s
= E(f (X) |Z)E(g(Y ) |Z)

for all bounded and Borel measurable f ∶  → R and g ∶  → R. Several equivalent definitions
are given in Constantinou and Dawid (2017, Proposition 2.3). As with Euclidean variables, the
interpretation of X ⫫Y | Z is that ‘knowing Z renders X irrelevant for predicting Y ’ (Lauritzen,
1996).

Throughout the paper we consider families of probability distributions  of the triplet (X , Y ,
Z), which we partition into the null hypothesis 0 of those P ∈  satisfying X ⫫Y | Z, and set of
alternatives  ∶=  ⧵ 0 where the conditional independence relation is violated. We consider
data (xi, yi, zi), i= 1,… , n, consisting of i.i.d. copies of (X , Y , Z), and write X (n) ∶= (xi)ni=1 and
similarly for Y (n) and Z(n). We apply to these data a test 𝜓n ∶ ( ×  ×)n → {0, 1}, with a value
of 1 indicating rejection. We will at times write EP(⋅) for expectations of random elements whose
distribution is determined by P, and similarly PP(⋅) = EP(1{⋅}). Thus, the size of the test 𝜓n may
be written as supP∈0

PP(𝜓n = 1).
We always take  = X and  = Y for separable Hilbert spaces X and Y and write dX

and dY for their dimensions, which may be ∞. When these are finite dimensional, as will typi-
cally be the case in practice, X (n) will be a n × dX matrix and similarly for Y (n). Similarly, we will
take = RdZ in the finite-dimensional case and then Z(n) ∈ Rn×dZ . However, in order for our the-
oretical results to be relevant for settings where dX and dY may be arbitrarily large compared to
n, our theory must also accommodate infinite-dimensional settings, for which we introduce the
following notation.

For g and h in a Hilbert space, we write ⟨g, h⟩ for the inner product of g and h and ||g|| for
its norm; note we suppress dependence of the norm and inner product on the Hilbert space. The
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bounded linear operator on given by x → ⟨x, g⟩h is the outer product of g and h and is denoted by
g⊗ h. A bounded linear operator A on is compact if it has a singular value decomposition, that
is, there exists two orthonormal bases (e1,k)k∈N and (e2,k)k∈N of and a non-increasing sequence
(𝜆k)k∈N of singular values such that

Ah =
∞∑

k=1
𝜆k(e1,k ⊗ e2,k)h =

∞∑

k=1
𝜆k⟨e1,k, h⟩e2,k

for all h ∈ . For a compact linear operator A as above, we denote by ∥A∥op, ∥A∥HS and ∥A∥TR
the operator norm, Hilbert–Schmidt norm and trace norm, respectively, of A, which equal the
𝓁∞, 𝓁2 and 𝓁1 norms, respectively, of the sequence of singular values (𝜆k)k∈N.

A random variable on a separable Banach space  is a mapping X ∶ Ω→  defined on a
probability space (Ω, ,P) which is measurable with respect to the Borel 𝜎-algebra on , B().
Integrals with values in Hilbert or Banach spaces, including expectations, are Bochner integrals
throughout. For a random variable X on Hilbert space , we define the covariance operator
of X by

Cov(X) ∶= E[(X − E(X))⊗ (X − E(X))] = E(X ⊗ X) − E(X)⊗ E(X)

whenever E||X||2 < ∞. For h ∈  we thus have

Cov(X)h = E
(
⟨X , h⟩2) − E(⟨X , h⟩)2.

For another random variable Y with E||Y ||2 < ∞, we define the cross-covariance operator of X
and Y by

Cov(X ,Y ) ∶= E[(X − E(X))⊗ (Y − E(Y ))] = E(X ⊗ Y ) − E(X)⊗ E(Y ).

We define conditional variants of the covariance operator and cross-covariance operator by
replacing expectations with conditional expectations given a 𝜎-algebra or random variable.

2 THE HARDNESS OF CONDITIONAL INDEPENDENCE
TESTING WITH GAUSSIAN FUNCTIONAL DATA

In this section we present a negative result on the possibility of testing for conditional inde-
pendence with functional data in the idealised setting where all variables are Gaussian. We
take  to consist of distributions of (X , Y , Z) that are jointly Gaussian with injective covari-
ance operator, where X and Z take values in separable Hilbert spaces X and Z respec-
tively with Z infinite-dimensional, and Y ∈ RdY . We note that in the case where dY = 1 and
X = Z = L2([0, 1],R), each P ∈  admits a representation as a Gaussian scalar-on-function
linear model (1) where Y is the scalar response, and functional covariates X , Z and error
𝜀 are all jointly Gaussian with ε⫫ (X , Z) (see Proposition 7 in the supplementary mate-
rial); the settings with dY > 1 may be thought of equivalently as multi-response versions
of this.
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For each Q in the set of alternatives , we further define Q
0 ⊂ 0 by

Q
0 ∶= {P ∈ 0 ∶ the marginal distribution of Z under P and Q is the same}.

Theorem 1 below shows that not only is it fundamentally hard to test the null hypothesis of 0
against  for all dataset sizes n, but restricting to the null Q

0 for Q ∈  presents an equally hard
problem.

Theorem 1. Given alternative Q ∈  and n ∈ N, let 𝜓n be a test for null hypothesis Q
0 against Q.

Then we have that the power is at most the size:

PQ(𝜓n = 1) ≤ sup
P∈Q

0

PP(𝜓n = 1).

An interpretation of this statement in the context of the functional linear model is that
regardless of the number of observations n, there is no non-trivial test for the significance of the
functional predictor X , even if the marginal distribution of the additional infinite-dimensional
predictor Z is known exactly. It is clear that the size of a test over 0 is at least as large as that over
the null Q

0 , so testing the larger null is of course at least as hard.
It is known that testing conditional independence in simple multivariate (finite-dimensional)

settings is hard in the sense of Theorem 1 when the conditioning variable is continuous. In
such settings, restricting the null to include only distributions with Lipschitz densities, for
example, allows for the existence of tests with power against large classes of the alternative.
The functional setting is, however, very different, simply removing pathological distributions
from the entire null of conditional independence does not make the problem testable. Even
with the parametric restriction of Gaussianity, the null is still too large for the existence of
non-trivial hypothesis tests. Indeed, the starting point of our proof is a result due to Kraft
(1955) that the hardness in the statement of Theorem 1 is equivalent to the n-fold product
Q⊗n lying in the convex closure in total variation distance of the set of n-fold products of
distributions in Q

0 .
A consequence of Theorem 1 is that we need to make strong modelling assumptions in order to

test for conditional independence in the functional data setting. Given the plethora of regression
methods for functional data, we argue that it can be convenient to frame these modelling assump-
tions in terms of regression models for each of X and Y on Z, or more generally, in terms of the
performances of methods for these regressions. The remainder of this paper is devoted to devel-
oping a family of conditional independence tests whose validity rests primarily on the prediction
errors of these regressions.

3 GHCM METHODOLOGY

In this section we present the Generalised Hilbertian Covariance Measure (GHCM) for testing
conditional independence with functional data. To motivate the approach we take, it will be help-
ful to first review the construction of the Generalised Covariance Measure (GCM) developed in
Shah and Peters (2020) for univariate X and Y , which we do in the next section. In Section 3.2 we
then define the GHCM.
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3.1 Motivation

Consider first therefore the case where X and Y are real-valued random variables, and Z is a
random variable with values in some space . We can always write X = f (Z)+ 𝜀 where f (z) ∶=
E(X |Z = z) and similarly Y = g(Z)+ 𝜉 with g(z) ∶= E(Y |Z = z). The conditional covariance of X
and Y given Z,

Cov(X ,Y |Z) ∶= E[{X − E(X |Z)}{Y − E(Y |Z)}|Z] = E(𝜀𝜉 |Z),

has the property that Cov(X , Y |Z)= 0 and hence E(𝜀𝜉) = 0 whenever X ⫫Y |Z. The GCM forms
an empirical version of E(𝜀𝜉) given data (xi, yi, zi)ni=1 by first regressing each of X (n) and Y (n) onto
Z(n) to give estimates f̂ and ĝ of f and g respectively. Using the corresponding residuals 𝜀̂i ∶=
xi − f̂ (zi) and 𝜉i ∶= yi − ĝ(zi), the product Ri ∶= 𝜀̂i𝜉i is computed for each i = 1, … , n and then
averaged to give R ∶=

∑n
i=1Ri∕n, an estimate of E(𝜀𝜉). The standard deviation of R under the null

X ⫫Y |Z may also be estimated, and it can be shown (Shah & Peters, 2020, Theorem 8) that under
some conditions, R divided by its estimated standard deviation converges uniformly to a standard
Gaussian distribution.

This basic approach can be extended to the case where X and Y take values in RdX and RdY

respectively, by considering a multivariate conditional covariance,

Cov(X ,Y |Z) ∶= E
[
{X − E(X |Z)}{Y − E(Y |Z)}⊤ |Z

]
= E(𝜀𝜉⊤ |Z) ∈ R

dX×dY .

This is a zero matrix when X ⫫Y |Z, and hence E(𝜀𝜉⊤) = 0 under this null. Thus, R defined
as before but where Ri ∶= 𝜀̂i𝜉

⊤

i can form the basis of a test of conditional independence. There
are several ways to construct a final test statistic using R ∈ RdX×dY . The approach taken in Shah
and Peters (2020) involves taking the maximum absolute value of a version of R with each entry
divided by its estimated standard deviation. This, however, does not generalise easily to the func-
tional data setting we are interested in here; we now outline an alternative that can be extended
to handle functional data.

To motivate our approach, consider multiplying R by
√

n:

√
nR = 1

√
n

n∑

i=1
𝜀̂i𝜉

⊤

i =
1
√

n

n∑

i=1
(f (zi) − f̂ (zi) + 𝜀i)(g(zi) − ĝ(zi) + 𝜉i)⊤

= 1
√

n

n∑

i=1
𝜀i𝜉

⊤

i

⏟⏟⏟

Un

+ 1
√

n

n∑

i=1
(f (zi) − f̂ (zi))(g(zi) − ĝ(zi))⊤

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

an

+ 1
√

n

n∑

i=1
(f (zi) − f̂ (zi))𝜉⊤i

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

bn

+ 1
√

n

n∑

i=1
𝜀i(g(zi) − ĝ(zi))⊤

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

cn

. (2)

Observe that Un is a sum of i.i.d. terms and so the multivariate central limit theorem dic-
tates that Un∕

√
n converges to a dX × dY -dimensional Gaussian distribution. Applying the

Frobenius norm ||⋅||F to the an term, we get by submultiplicativity and the Cauchy–Schwarz
inequality,
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||an||F ≤ 1
√

n

n∑

i=1
||f (zi) − f̂ (zi)||2||g(zi) − ĝ(zi)||2

≤√
n

(

1
n

n∑

i=1
||f (zi) − f̂ (zi)||22

)1∕2(
1
n

n∑

i=1
||g(zi) − ĝ(zi)||22

)1∕2

, (3)

where ||⋅||2 denotes the Euclidean norm. The right-hand side here is a product of in-sample mean
squared prediction errors for each of the regressions performed. Under the null of conditional
independence, each term of bn and cn is mean zero conditional on (X (n)

,Z(n)) and (Y (n)
,Z(n))

respectively. Thus, so long as both of the regression functions are estimated at a sufficiently fast
rate, we can expect an, bn, cn to be small so the distribution of

√
nR can be well-approximated by

the Gaussian limiting distribution of Un∕
√

n. As in the univariate setting, it is crucially the prod-
uct of the prediction errors in (3) that is required to be small, so each root mean squared prediction
error term can decay at relatively slow o(n−1∕4) rates.

Unlike the univariate setting, however,
√

nR is now a matrix and hence we need to choose
some sensible aggregator function t ∶ RdX×dY → R such that we can threshold t(

√
nR) to yield

a p-value. One option is as follows; we take a different approach as the basis of the GHCM for
reasons which will become clear in the sequel. If we vectorise R, that is, view the matrix as a
dX dY -dimensional vector, then under the assumptions required for the above heuristic arguments
to formally hold,

√
nVec(R) converges to a Gaussian with mean zero and some covariance matrix

C ∈ RdX dY×dX dY if X ⫫Y | Z. Provided C is invertible,
√

nC−1∕2R therefore converges to a Gaussian
with identity covariance under the null and hence ||C−1∕2

√
nR||22 converges to a 𝜒2-distribution

with dX dY degrees of freedom. Replacing C with an estimate Ĉ then yields a test statistic from
which we may derive a p-value.

3.2 The GHCM

We now turn to the setting where X and Y take values in separable Hilbert spaces X and Y
respectively. These could for example be L2([0, 1],R), or RdX and RdY respectively, but where X
and Y are vectors of function evaluations. The latter case, which we will henceforth refer to as
the finite-dimensional case, corresponds to how data would often be received in practice with the
observation vectors consisting of function evaluations on fixed grids (which are not necessarily
equally spaced). However, it is important to recognise that the dimensions dX and dY of the grids
may be arbitrarily large, and it is necessary for the methodology to accommodate this; as we will
see, the approach for the multivariate setting described in the previous section does not satisfy
this requirement whereas our proposed GHCM will do so.

In some settings, our observed vectors of function evaluations will not be on fixed grids,
and the numbers of function evaluations may vary from observation to observation. In
Section 3.2.1 we set out a scheme to handle this case and bring it within our framework
here.

Similarly to the approach outlined in Section 3.1, we propose to first regress each of X (n) and
Y (n) onto Z(n) to give residuals 𝜀̂i ∈ X , 𝜉i ∈ Y for i= 1,… , n. (In practice, these regressions
could be performed by pfr or pffr in the refund package (Goldsmith et al., 2011; Ivanescu
et al., 2015) or boosting (Brockhaus et al., 2020), for instance.) We centre the residuals, as these
and other functional regression methods do not always produce mean-centred residuals. With
these residuals we proceed as in the multivariate case outlined above but replacing matrix outer
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products in the multivariate setting with outer products in the Hilbertian sense, that is we define
for i = 1,… , n,

Ri ∶= 𝜀̂i ⊗ 𝜉i, and Tn ∶=
√

nR

where R ∶= 1
n

n∑

i=1
Ri. (4)

We can show (see Theorem 2) that under the null, provided the analogous prediction error
terms in (3) decay sufficiently fast and additional regularity conditions hold, Tn above converges
uniformly to a Gaussian distribution in the space of Hilbert–Schmidt operators. This comes as a
consequence of new results we prove on uniform convergence of Banachian random variables.
Moreover, the covariance operator of this limiting Gaussian distribution can be estimated by the
empirical covariance operator

Ĉ ∶= 1
n − 1

n∑

i=1
(Ri − R)⊗HS (Ri − R) (5)

where ⊗HS denotes the outer product in the space of Hilbert–Schmidt operators.
An analogous approach to that outlined above for the multivariate setting would involve

attempting to whiten this limiting distribution using the square root of the inverse of Ĉ. How-
ever, here we hit a clear obstacle: even in the finite-dimensional setting, whenever dX dY ≥
n, the inverse of Ĉ or Ĉ from the previous section, cannot exist. Moreover, as indicated by
Bai and Saranadasa (1996), who study the problem of testing whether a finite-dimensional
Gaussian vector has mean zero, even when the inverses do exist, the estimated inverse covari-
ance may not approximate its population level counterpart sufficiently well. Instead, Bai
and Saranadasa (1996) advocate using a test statistic based on the squared 𝓁2-norm of the
Gaussian vector.

We take an analogous approach here, and use as our test statistic

Tn ∶= ||Tn||
2
HS (6)

where ||⋅||HS denotes the Hilbert–Schmidt norm. A further advantage of this test statistic is that
it admits an alternative representation given by

Tn =
1
n

n∑

i=1

n∑

j=1
⟨𝜀̂i, 𝜀̂j⟩⟨𝜉i, 𝜉j⟩; (7)

see Section C.1 for a derivation. Only inner products between residuals need to be computed, and
so in the finite-dimensional case with the standard inner product, the computational burden is
only O(max(dX , dY )n2).

As Tn has an asymptotic Gaussian distribution under the null with an estimable covariance
operator, we can deduce the asymptotic null distribution of Tn as a function of Tn. This leads to
the 𝛼-level test function 𝜓n given by

𝜓n ∶= 1{Tn≥q
𝛼
} (8)
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where q𝛼 is the 1− 𝛼 quantile of a weighted sum

d∑

k=1
𝜆kWk

of independent 𝜒2
1 distributions (Wk)dk=1 with weights given by the d non-zero eigenvalues (𝜆k)dk=1

of Ĉ. Note that d ≤ min(n − 1, dX dY ).
These eigenvalues may also be derived from inner products of the residuals: they are equal to

the eigenvalues of the n×n matrix

1
n − 1

(Γ − JΓ − ΓJ + JΓJ)

where J ∈ Rn×n is a matrix with all entries equal to 1/n, and Γ ∈ Rn×n has ijth entry given by

Γij ∶= ⟨𝜀̂i, 𝜀̂j⟩⟨𝜉i, 𝜉j⟩; (9)

see Section C.1 of the supplementary material for a derivation. Thus, in the finite-dimensional
case, the computation of the eigenvalues requires O(n2 max(dX , dY ,n)) operations. In typi-
cal usage therefore, the cost for computing the test statistic given the residuals is dom-
inated by the cost of performing the initial regressions, particularly those correspond-
ing to function-on-function regression. Note that there are several schemes for approx-
imating q𝛼 (Farebrother, 1984; Imhof, 1961; Liu et al., 2009); we use the approach of
Imhof (1961) as implemented in the QuadCompForm package in R (Duchesne & de
Micheaux, 2010) in all of our numerical experiments. We summarise the above construc-
tion of our test function for the finite-dimensional case with the standard inner product in
Algorithm 1.

In principle, different inner products may be chosen, to yield different test functions. How-
ever, the theoretical properties of the test function rely on the prediction errors of the regressions,
measured in terms of the norm corresponding to the inner product used, being small. In the
common case where the observed data are finite vectors of function evaluations, that is, for
each i= 1,… , n, xik = WX ,i(k∕dX ) for a function WX ,i ∈ L2([0, 1],R), and similarly for yi, our
default recommendation is to use the standard inner product. The residuals, 𝜀̂i ∈ RdX and 𝜉i ∈
RdY , would then similarly correspond to underlying functional residuals via 𝜀̂ik = W𝜀̂,i(k∕dX ) for
W𝜀̂,i ∈ L2([0, 1],R), and similarly for 𝜉i. We may compare the test function computed based on
the computed residuals 𝜀̂i and 𝜉i with that which would be obtained when replacing these with
the underlying functions W𝜀̂,i and W

𝜉,i. As the test function depends entirely on inner products
between residuals, it suffices to compare

𝜀̂
⊤

i 𝜀̂j =
dX∑

k=1
W𝜀̂,i(k∕dX )W𝜀̂,i(k∕dX ) and ∫

1

0
W𝜀̂,i(t)W𝜀̂,j(t) dt. (10)

We see that the LHS is dX times a Riemann sum approximation to the integral on the RHS.
The p-value computed is invariant to multiplicative scaling of the test statistic, and so in the
so-called densely observed case where dX is large, the p-value from the finite-dimensional set-
ting would be a close approximation to that which would be obtained with the true underlying
functions.

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/article/84/5/1821/7072972 by guest on 19 Septem

ber 2023



1832 LUNDBORG et al.

Other numerical integration schemes could be used to make the approximation even
more precise. However, the theory we present in Section 4 that guarantees uniform asymp-
totic level control and power over certain classes of nulls and alternatives applies directly to
the finite-dimensional or infinite-dimensional settings, and so there is no requirement that
the approximation error above is small. In particular, there is no strict requirement that the
residuals computed correspond to function evaluations on equally spaced grids. However, in
that case 𝜀̂

⊤

i 𝜀̂j will not necessarily approximate a scaled version of the RHS of (10), and
an inner product that maintains this approximation may be more desirable from a power
perspective.

In the following section we explain how when the residuals 𝜀̂i and 𝜉i correspond to function
evaluations on different grids for each i, we can preprocess these to obtain residuals corresponding
to fixed grids, which may then be fed into our algorithm.

An R-package ghcm (Lundborg et al., 2022) implementing the methodology is available on
CRAN.

3.2.1 Data observed on irregularly spaced grids of varying lengths

We now consider the case where 𝜀̂i ∈ R
dX ,i with its kth component given by 𝜀̂ik = W𝜀̂,i(tik) for tX

ik ∈
[0, 1], and similarly for 𝜉i. Such residuals would typically be output by regression methods when
supplied with functional data xi ∈ R

dX ,i and yi ∈ R
dY ,i corresponding to functional evaluations on

grids (tik)
dX ,i

k=1 and (tik)
dY ,i

k=1 respectively.

In order to apply our GHCM methodology, we need to represent these residual vectors by
vectors of equal lengths corresponding to fixed grids. Our approach is to construct for each i,
natural cubic interpolating splines Ŵ 𝜀̂,i and Ŵ

𝜉,i corresponding to 𝜀̂i and 𝜉i respectively. We may
compute the inner product between these functions in L2([0, 1],R) exactly and efficiently as it
is the integral of a piecewise polynomial with the degree in each piece at most 6. This gives us
the entries of the matrix Γ (9) which we may then use in lines 7 and following in Algorithm 1.
Furthermore, Theorems 3 and 4 apply equally well to the setting considered here provided the
residuals are understood as the interpolating splines described above, and the fitted regression
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functions are defined accordingly as the difference between the observed functional responses
these functional residuals.

4 THEORETICAL PROPERTIES OF THE GHCM

In this section, we provide uniform level control guarantees for the GHCM, and uniform power
guarantees for a version incorporating sample splitting; note that we do not recommend the use
of the latter in practice but consider it a proxy for the GHCM that is more amenable to theoret-
ical analysis in non-null settings. Before presenting these results, we explain the importance of
uniform results in this context, and set out some notation relating to uniform convergence.

4.1 Background on uniform convergence

In Section 2 we saw that even when  consists of Gaussian distributions over X ×RdY ×Z,
we cannot ensure that our test has both the desired size 𝛼 over 0 and also non-trivial power
properties against alternative distributions in . We also have the following related result.

Proposition 1. Let Z be a separable Hilbert space with orthonormal basis (ek)k∈N. Let  be the
family of Gaussian distributions for (X ,Y ,Z) ∈ R ×R ×Z with injective covariance opera-
tor and where (X ,Y ) ⫫ (Zr+1,Zr+2, …) |Z1, … ,Zr for some r ∈ N and Zk ∶= ⟨ek,Z⟩ for all
k ∈ N. Let Q ∈  and recall the definition of Q

0 from Section 2. Then, for any test 𝜓n,

PQ(𝜓n = 1) ≤ sup
P∈Q

0

PP(𝜓n = 1).

In other words, even if we know a basis (ek)k∈N such that in particular the conditional expec-
tations E(X |Z) and E(Y |Z) are sparse in that they depend only on finitely many components
Z1, … ,Zr (with r ∈ N unknown), and the marginal distribution of Z is known exactly, there is
still no non-trivial test of conditional independence.

In this specialised setting, it is however possible to give a test of conditional indepen-
dence that will, for each fixed null hypothesis P ∈ 0, yield exact size control and power
against all alternatives  for n sufficiently large. These properties are for example satisfied
by the nominal 𝛼-level t-test 𝜓OLS

n for Y in a linear model of X on Y ,Z1, … ,Za(n) and an
intercept term, for some sequence a(n)<n− 1 with a(n)→∞ and n− a(n)→∞ as n→∞.
Indeed,

sup
P∈0

lim
n→∞

PP(𝜓OLS
n = 1) = 𝛼 and inf

Q∈ lim
n→∞

PQ(𝜓OLS
n = 1) = 1; (11)

see Section C.2 in the supplementary material for a derivation. This illustrates the difference
between pointwise asymptotic level control in the left-hand side of (11), and uniform asymptotic
level control given by interchanging the limit and the supremum.

Our analysis instead focuses on proving that the GHCM asymptotically maintains its level
uniformly over a subset of the conditional independence null. In order to state our results we first
introduce some definitions and notation to do with uniform stochastic convergence. Through-
out the remainder of this section we tacitly assume the existence of a measurable space (Ω, )
whereupon all random quantities are defined. The measurable space is equipped with a family
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of probability measures (PP)P∈ such that the distribution of (X , Y , Z) under PP is P. For a subset
 ⊆  , we say that a sequence of random variables Wn converges uniformly in distribution to W
over  and write if

Wn

⇉W if lim

n→∞
sup
P∈

dBL(Wn,W) = 0,

where dBL denotes the bounded Lipschitz metric. We say, Wn converges uniformly in probability
to W over  and write

Wn
P
⇉W if for any 𝜖 > 0, lim

n→∞
sup
P∈

PP(||Wn −W || ≥ 𝜖) = 0.

We sometimes omit the subscriptwhen it is clear from the context. A full treatment of uniform
stochastic convergence in a general setting is given in Section B of the supplementary material.
Throughout this section we emphasise the dependence of many of the quantities in Section 3.1
on the distribution of (X , Y , Z) with a subscript P, for example, fP, 𝜀P etc.

In Sections 4.2 and 4.3 we present general results on the size and power of the GHCM.
We take  to be the set of all distributions over X ×Y ×, and 0 to be the correspond-
ing conditional independence null. We, however, show properties of the GHCM under smaller
sets of distributions ̃ ⊂  with corresponding null distributions ̃0 ⊂ 0, where in particu-
lar certain conditions on the quality of the regression procedures on which the test is based
are met. In Section 4.1 we consider the special case where the regressions of each of X and
Y on Z are given by functional linear models and show that Tikhonov regularised regression
can satisfy these conditions. We note that throughout, the dimensions dX and dY may be finite
or infinite.

4.2 Size of the test

In order to state our result on the size of the GHCM, we introduce the following quantities. Let

uP(z) ∶= EP(||𝜀P||
2 |Z = z), vP(z) ∶= EP(||𝜉P||

2 |Z = z).

We further define the in-sample unweighted and weighted mean squared prediction errors of the
regressions as follows:

Mf
n,P ∶=

1
n

n∑

i=1
||fP(zi) − f̂

(n)
(zi)||2, Mg

n,P ∶=
1
n

n∑

i=1
||gP(zi) − ĝ(n)(zi)||2, (12)

M̃f
n,P ∶=

1
n

n∑

i=1
||fP(zi) − f̂

(n)
(zi)||2vP(zi), M̃g

n,P ∶=
1
n

n∑

i=1
||gP(zi) − ĝ(n)(zi)||2uP(zi). (13)

The result below shows that on a subset ̃0 of the null distinguished primarily by the product of
the prediction errors in (12) being small, the operator-valued statistic Tn converges in distribution
uniformly to a mean zero Gaussian whose covariance can be estimated consistently. We remark
that prediction error quantities in (12) and (13) are ‘in-sample’ prediction errors, only reflecting
the quality of estimates of the conditional expectations f and g at the observed values z1, … , zn.
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Theorem 2. Let ̃0 ⊆ 0 be such that uniformly over ̃0,

1. nMf
n,PMg

n,P

P
⇉ 0,

2. M̃f
n,P

P
⇉ 0, M̃g

n,P

P
⇉ 0,

3. infP∈̃0
EP(||𝜀P||

2||𝜉P||
2) > 0 and supP∈̃0

EP(||𝜀P||
2+𝜂||𝜉P||

2+𝜂) < ∞ for some 𝜂 > 0, and
4. for some orthonormal bases (eX ,i)

dX
i=1 and (eY ,j)

dY
j=1 of X and Y , respectively, writing

𝜀P,i ∶= ⟨eX ,i, 𝜀P⟩ and 𝜉P,j ∶= ⟨eY ,j, 𝜉P⟩, we have

lim
K→∞

sup
P∈̃0

∑

(i,j)∶i+j≥K
EP(𝜀2

P,i𝜉
2
P,j) = 0,

where we interpret an empty sum as 0.

Then uniformly over ̃0 we have

Tn

⇉(0,CP) and ||Ĉ − CP||TR

P
⇉ 0,

where

CP ∶= E{(𝜀P ⊗ 𝜉P)⊗HS (𝜀P ⊗ 𝜉P)}.

Condition (i) is the most important requirement, and says that the regression methods must

perform sufficiently well, uniformly on ̃0. It is satisfied if
√

nMf
n,P,

√
nMg

n,P

P
⇉ 0, and so allows

for relatively slow o(
√

n) rates for the mean squared prediction errors. Moreover, if one regres-
sion yields a faster rate, the other can go to zero more slowly. These properties are shared
with the regular generalised covariance measure and more generally doubly robust procedures
popular in the literature on causal inference and semiparametric statistics (Chernozhukov et al.,
2018; Robins & Rotnitzky, 1995; Scharfstein et al., 1999). Condition (ii) is much milder, and
if the conditional variances uP and vP are bounded almost surely, it is satisfied when simply

Mf
n,P, Mg

n,P

P
⇉ 0. We note that importantly, the regression methods are not required to extrapo-

late well beyond the observed data. We show in Section 4.4 that when the regression models are
functional linear models and ridge regression is used for the functional regressions, (i) and (ii)
hold under much weaker conditions than are typically required for out-of-sample prediction error
guarantees in the literature.

Conditions (iii) and (iv) imply that the family {𝜀P ⊗ 𝜉P ∶ P ∈ ̃0} is uniformly tight. Similar
tightness conditions are required in Chen and White (1998, lemma 3.1) in the context of functional
central limit theorems. Note that if dX and dY are both finite, this condition is always satisfied.

The result below shows that the GHCM test 𝜓n (8) has type I error control uniformly over
̃0 given in Theorem 2, provided an additional assumption of non-degeneracy of the covariance
operators is satisfied.

Theorem 3. Let ̃0 ⊆ 0 satisfy the conditions stated in Theorem 2, and in addition suppose

inf
P∈̃0

||CP||op > 0. (14)
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Then for each 𝛼 ∈ (0, 1), the 𝛼-level GHCM test 𝜓n (8) satisfies

lim
n→∞

sup
P∈̃0

|PP(𝜓n = 1) − 𝛼| = 0. (15)

4.3 Power of the test

We now study the power of the GHCM. It is not straightforward to analyse what happens to the
test statistic Tn when the null hypothesis is false in the setup we have considered so far. How-
ever, if we modify the test such that the regression function estimates f̂ and ĝ are constructed
using an auxiliary dataset independent of the main data (xi, yi, zi)ni=1, the behaviour of Tn is more
tractable. Given a single sample, this could be achieved through sample splitting, and cross-fitting
(Chernozhukov et al., 2018) could be used to recover the loss in efficiency from the split into
smaller datasets. However, we do not recommend such sample splitting in practice here and view
this as more of a technical device that facilitates our theoretical analysis. As we require f̂ and ĝ to
satisfy (i) and (ii) of Theorem 2, these estimators would need to perform well out of sample rather
than just on the observed data, which is typically a harder task.

Given that our test is based on an empirical version of E(Cov(X ,Y |Z)) = E(𝜀 ⊗ 𝜉), we can
only hope to have power against alternatives where this is non-zero. For such alternatives, how-
ever, we have positive power whenever the Hilbert–Schmidt norm of the expected conditional
covariance operator is at least c∕

√
n for a constant c> 0, as the following result shows.

Theorem 4. Consider a version of the GHCM test 𝜓n where f̂ and ĝ are constructed on inde-
pendent auxiliary data. Let ̃ ⊂  be the set of distributions for (X , Y , Z) satisfying
(i)–(iv) of Theorem 2 and (14) with ̃ in place of ̃0. Then writing KP ∶= EP(𝜀P ⊗ 𝜉P) =
EP(CovP(X ,Y |Z)), we have, uniformly over ̃ ,

T̃n ∶=
1
√

n

n∑

i=1
(Ri −KP)


⇉𝒩 (0,CP) and ||Ĉ − CP||TR

P
⇉ 0.

Furthermore, an 𝛼-level GHCM test 𝜓n (constructed using independent estimates f̂ and ĝ)
satisfies the following two statements.

1. Redefining ̃0 = ̃ ∩ 0, we have that (15) is satisfied, and so an 𝛼-level GHCM test has
size converging to 𝛼 uniformly over ̃0.

2. For every 0 < 𝛼< 𝛽 < 1 there exists c > 0 and N ∈ N such that for any n≥N,

inf
P∈c,n

PP(𝜓n = 1) ≥ 𝛽,

where c,n ∶= {P ∈ ̃ ∶ ||KP||HS > c∕
√

n}.

In a setting where X , Y and Z are related by linear regression models, we can write down
||ECov(X ,Y |Z)||HS more explicitly. Suppose Z, 𝜀 and 𝜉 are independent random variables in
L2([0, 1],R), with X and Y determined by

X(t) = ∫ 𝛽
X (s, t)Z(s) ds + 𝜀(t)
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Y (t) = ∫ 𝛽
Y (s, t)Z(s) ds + ∫ 𝜃(s, t)X(s) ds + 𝜀 + 𝜉(t).

Then ECov(X ,Y |Z) is an integral operator with kernel

𝜙(s, t) = ∫
1

0
𝜃(u, s)v(t,u) du,

where v(t, u) denotes the covariance function of ε. The Hilbert–Schmidt norm ||ECov(X ,Y |Z)||HS
is then given by the L2([0, 1]2,R)-norm of 𝜙. We investigate the empirical performance of the
GHCM in such a setting in Section 5.1.2.

4.4 GHCM using linear function-on-function ridge regression

Here we consider a special case of the general setup used in Sections 4.2 and 4.3 where we assume
that is a Hilbert spaceZ and that, under the null of conditional independence, the Hilbertian
X and Y are related to Hilbertian Z via linear models:

X = SX
P Z + 𝜀P (16)

Y = SY
P Z + 𝜉P. (17)

Here SX
P is a Hilbert–Schmidt operator such that SX

P Z = f (Z) ∶= E(X |Z), with analogous proper-
ties holding for SY

P , and it is assumed that EZ = 0. If X , Y and Z are elements of L2([0, 1],R), this
is equivalent to

X(t) = ∫
1

0
𝛽

X
P (s, t)Z(s) ds + 𝜀P(t), (18)

where 𝛽X
P is a square-integrable function, and similarly for the relationship between Y and Z. Such

functional response linear models have been discussed by Ramsay and Silverman (2005, chapter
16), and studied by Chiou et al. (2004), Yao et al. (2005), Crambes and Mas (2013), for example.
Benatia et al. (2017) propose a Tikhonov regularised estimator analogous to ridge regression
(Hoerl & Kennard, 2000); applied to the regression model (16), this estimator takes the form

Ŝ = argmin
S

( n∑

i=1
||xi − S(zi)||2 + 𝛾||S||2HS

)

, (19)

where 𝛾 > 0 is a tuning parameter.
We now consider a specific instance of the general GHCM framework using regression esti-

mates based on (19). Specifically, we form estimate ŜX of SX by solving the optimisation in (19)
with regularisation parameter

𝛾̂ ∶= argmin
𝛾>0

(

1
𝛾n

n∑

i=1
min(𝜇̂i∕4, 𝛾) + 𝛾

4

)

, (20)
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where 𝜇̂1 ≥ 𝜇̂2 ≥ · · · ≥ 𝜇̂n ≥ 0 are the ordered eigenvalues of the n×n matrix K with Kij =
⟨zi, zj⟩∕n. We form estimate ŜY of SY analogously but with the xi replaced by yi in (19). Note that
in the case where K = 0 and so 𝛾̂ does not exist, we simply take ŜX and ŜY to be 0 operators, that
is, no regression is performed.

The data-driven choice of 𝛾̂ above is motivated by an upper bound on the in-sample MSPE
of the estimators ŜX and ŜY (see Lemma 17 in the supplementary material) where we have omit-
ted some distribution-dependent factors of ||SX

P ||
2
HS or ||SY

P ||
2
HS and a variance factor; a similar

strategy was used in an analysis of kernel ridge regression (Shah & Peters, 2020) which closely
parallels ours here. This choice allows us to conduct a theoretical analysis that we present below.
In practice, other choices of regularisation parameter such as cross validation-based approaches
may perform even better and so could alternative methods that are not based on Tikhonov
regularisation.

In the following result, we take 𝜓n to be the 𝛼-level GHCM test (8) with estimated regression
functions f̂ and ĝ yielding fitted values given by

f̂ (zi) = ŜX zi and ĝ(zi) = ŜY zi, for all i = 1, · · · ,n. (21)

Note that in the finite dimensional setting where X (n) ∈ Rn×dX (which is also covered by the result
below), we have that the matrix of fitted values (f̂ (zi))ni=1 ∈ Rn×dX is given by

K(K + 𝛾I)−1X (n)
,

and similarly for the Y (n) regression.

Theorem 5. Let ̃0 ⊂ 0 be such that (16) and (17) are satisfied and moreover (iii) and (iv) of
Theorem 2 and (14) hold when f̂ and ĝ are as in (21). Suppose further that

1. supP∈̃0
max(||SX

P ||HS, ||SY
P ||HS) < ∞,

2. supP∈̃0
max(uP(Z), vP(Z)) < ∞ almost surely,

3. supP∈̃0
E||Z||2 < ∞ and lim𝛾↓0 supP∈̃0

∑∞
k=1 min(𝜇k,P, 𝛾) = 0 where (𝜇k,P)k∈N denote the

ordered eigenvalues of the covariance operator of Z under P.

Then the 𝛼-level GHCM test 𝜓n satisfies

lim
n→∞

sup
P∈̃0

|PP(𝜓n = 1) − 𝛼| = 0.

Condition (iii) is generally satisfied, by the dominated convergence theorem, for any family
̃0 for which the sequence of eigenvalues of the covariance operators are uniformly bounded
above by a summable sequence. As a very simple example where all the remaining conditions of
Theorem 5 are satisfied, we may consider the family of distribution ̃0 where Z, 𝜀P in (22) and
𝜉P in (23) are independent, and the latter two are Brownian motions with variances 𝜎2

𝜀,P and 𝜎2
𝜉,P

respectively. If the coefficient functions 𝛽X
P corresponding to X in (18) are in L2([0, 1]2,R) with

norms bounded above for all P ∈ 0, and an equivalent assumption for the coefficient functions
relating to Y holds, and 𝜎2

𝜀,P and 𝜎2
𝜉,P are bounded from above and below uniformly, we have that

0 satisfies all the requirements of Theorem 5.
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The proof of Theorem 5 relies on Lemma 17 in Section C.5 of the supplementary mate-
rial, which gives a bound on the in-sample MSPE of ridge regression in terms of the decay of
the eigenvalues 𝜇k,P, which may be of independent interest. For example, we have that if these
are dominated by an exponentially decaying sequence, the in-sample MSPE is o(log n/n) as
n→∞ (see Corollary 2). This matches the out-of-sample MSPE bound obtained in Crambes and
Mas (2013), corollary 5 in the same setting as that described, but the out-of-sample result addi-
tionally requires convexity and lower bounds on the decay of the sequence of eigenvalues of
the covariance operator, and stronger moment assumptions on the norm of the predictor. Sim-
ilarly, other related results (e.g. Cai & Hall, 2006; Hall & Horowitz, 2007) require additional
eigen-spacing conditions in place of convexity, and upper and lower bounds on the decay of the
eigenvalues. Furthermore, while some of these bounds are uniform over values of the linear coef-
ficient operator for fixed distributions of the predictors, our in-sample MSPE bound is uniform
over both the coefficients and distributions of the predictor. This illustrates how in-sample and
out-of-sample prediction are very different in the functional data setting, and reliance on the for-
mer being small, as we have with the GHCM, is desirable due to the weaker conditions needed to
guarantee this.

5 EXPERIMENTS

In this section we present the results of numerical experiments that investigate the performance
of our proposed GHCM methodology. We implement the GHCM as described in Algorithm 1
with scalar-on-function and function-on-function regressions performed using thepfr andpffr
functions respectively from therefund package Goldsmith et al. (2020). These are functional lin-
ear regression methods which rely on fitting smoothers implemented in themgcv package (Wood,
2017); we choose the tuning parameters for these smoothers (dimension of the basis expansions
of the smooth terms) as per the standard guidance such that a further increase does not decrease
the deviance. In Section 5.3 in the supplement, we study high-dimensional EEG data using the
GHCM with regressions performed using FDboost.

We note that, to the best of our knowledge, neither FDboost nor the regression methods in
refund come with prediction error bounds (such as the ones derived in Section 4.4) that are
required for obtaining formal guarantees for the GHCM; nevertheless they are well-developed
and well-used functional regression methods and our aim here is to demonstrate empirically
that they perform suitably well in terms of prediction such that when used with the GHCM,
type I error is maintained across a variety of settings. In Section D of the supplementary mate-
rial, we include additional simulations that consider among others, settings with heavy tailed
errors, test the GHCM with FDboost in further settings and examine the local power of
the GHCM.

5.1 Size and power simulation

In this section we examine the size and power properties of the GHCM when testing the condi-
tional independence X ⫫Y |Z. We take X ,Z ∈ L2([0, 1],R), and first consider the setting where Y
is scalar. In Section 5.1.2 we present experiments for the case where Y ∈ L2([0, 1],R), so all vari-
ables are functional. All simulated functional random variables are sampled on an equidistant
grid of [0,1] with 100 grid points.
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5.1.1 Scalar Y , functional X and Z

Here we consider the setup where Z is standard Brownian motion and X and Y are related to Z
through the functional linear models

X(t) = ∫
1

0
𝛽a(s, t)Z(s) ds + NX (t), (22)

Y = ∫
1

0
𝛼a(t)Z(t) dt + NY . (23)

The variables NX ,NY and Z are independent with NX a Brownian motion with variance 𝜎2
X , NY ∼

 (0, 1), so X ⫫Y |Z. Nonlinear coefficient functions 𝛽a and 𝛼a are given by

𝛽a(s, t) = a exp(−(st)2∕2) sin(ast), 𝛼a(t) = ∫
1

0
𝛽a(s, t) ds. (24)

We vary the parameters 𝜎X ∈ {0.1, 0.25, 0.5, 1} and a ∈ {2, 6, 12}. We generate n i.i.d. observations
from each of the 4× 3= 12 models given by (22), (23), for sample sizes n ∈ {100, 250, 500, 1000}.
Increasing a or decreasing 𝜎X increase the difficulty of the testing problem: for large a, 𝛽a oscillates
more, making it harder to remove the dependence of X on Z. A smaller 𝜎X makes Y closer to the
integral of X , and so increases the marginal dependence of X and Y .

We apply the GHCM and compare the resulting tests to those corresponding to the significance
test for X in a regression of Y on (X , Z) implemented in pfr. The rejection rates of the two tests
at the 5% level, averaged over 100 simulation runs, can be seen in Figure 1. We see that the pfr
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F I G U R E 1 Rejection rates in the various null settings considered in Section 5.1.1 for the nominal 5%-level
pfr test (top) and GHCM test (bottom). [Colour figure can be viewed at wileyonlinelibrary.com]
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test has size greatly exceeding its level in the more challenging large a, small 𝜎X settings, with
large values of n exposing most clearly the miscalibration of the test statistic. In these settings, Y
may be approximated simply by the integral of X reasonably well, and is also well-approximated
by the true regression function that features only Z. Regularisation encourages pfr to fit a model
where X determines the response, rather than X , and the p-values reflect this. On the other hand,
the GHCM tests maintain reasonable type I error control across the settings considered here.

To investigate the power properties of the test, we simulate Z as before with X also generated
according to (22). We replace the regression model (23) for Y with

Y = ∫
1

0
𝛼a(t)Z(t) dt + ∫

1

0

𝛼a(t)
a

X(t) dt + NY , (25)

where NY ∼ (0, 1) as before. Note that the coefficient function for X oscillates more as a
increases. The rejection rates at the 5% level can be seen in Figure 2. While the two approaches
perform similarly when a= 2, thepfr test has higher power in the more complex cases. However,
as the results from the size analysis in Figure 1 show, null cases are also rejected in the analogous
settings.

To illustrate the full distribution of p-values from the two methods under the null and the
alternative, we plot false positive rates and true positive rates in each setting as a function of
the chosen significance level of the test 𝛼. The full set of results can be seen in Section D of the
supplementary material and a plot for a subset of the simulations settings where n= 500 and 𝜎X ∈
{0.1, 0.25, 0.5} is presented in Figure 3. We see that both tests distinguish null from alternative
well in the cases with a small and 𝜎X large. The p-values of the GHCM are close to uniform in
the settings considered, whereas the distribution of the pfr p-values is heavily dependent on the
particular null setting, illustrating the difficulty with calibrating this test.
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F I G U R E 2 Rejection rates in the various alternative settings considered in Section 5.1.1 (see (25)) for the
nominal 5%-level pfr test (top) and GHCM test (bottom). [Colour figure can be viewed at wileyonlinelibrary.com]
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(light) and alternative (dark) settings when n= 500. [Colour figure can be viewed at wileyonlinelibrary.com]

In Section D of the supplementary material we also present the results of two additional sets
of experiments. We repeat the experiments above using the FDboost package for regressions
in place of the refund package. We see that the performance of the GHCM with FDboost is
broadly similar to that displayed in Figures 1 and 2, supporting our theoretical results which
indicate that provided the prediction errors of the regression methods used are sufficiently small,
the test will perform similarly.

We also consider the case where the noise is heavy tailed. Specifically, we present analogous
plots for setting where NY is t-distributed with different degrees of freedom, n= 500 and𝜎X = 0.25;
the results are similar to Figure 3, with the GHCM maintaining type I error control, and pfr
tending to be anti-conservative in the more challenging settings.

5.1.2 Functional X , Y and Z

In this section we modify the setup and consider functional Y ∈ L2([0, 1],R). We take X and Z as
in Section 5.1.1 but in the null settings we let

Y (t) = ∫
1

0
𝛽a(s, t)Z(s) ds + NY (t),

where NY is a standard Brownian motion. Note that this is a particularly challenging setting to
maintain type I error control as X and Y are then highly correlated, and moreover the biases from
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F I G U R E 4 Rejection rates in the various null (top) and alternative (bottom) settings considered in
Section 5.1.2 for the nominal 5%-level GHCM test. [Colour figure can be viewed at wileyonlinelibrary.com]

regressing each of X and Y on Z will tend to be in similar directions making the equivalent of the
term an in (2) potentially large.

In the alternative settings, we take

Y (t) = ∫
1

0
𝛽a(s, t)Z(s) ds + ∫

1

0

𝛽a(s, t)
a

X(s) ds + NY (t)

with NY again being a standard Brownian motion.
The rejection rates at the 5% level, averaged over 100 simulation runs, can be seen in Figure 4.

We see that, as in the case where Y ∈ R, the GHCM maintains good type I error control in the
settings considered, and has power increasing with n and 𝜎X as expected. We note that a compar-
ison with the p-values from ff-terms in the pffr-function of the refund package here does not
seem helpful. In our experiments the corresponding tests consistently reject in true null settings
even for simple models.

In Section D of the supplementary material we look at the subset of the settings considered
above with n= 500 and 𝜎X = 0.25 but where X and Y are observed on irregular grids of varying
length grids. We first preprocess the residuals output by the regression method as described in
Section 3.2.1 and then apply the GHCM. We observe that the performance is similar to that in the
fixed grid setting, although the power is lower when the average grid length is smaller, and type
I error increases slightly above nominal levels in the most challenging a= 12 setting.

5.2 Confidence intervals for truncated linear models

In this section we consider an application of the GHCM in constructing a confidence interval for
the truncation point 𝜃 ∈ [0, 1] in a truncated functional linear model (Hall & Hooker, 2016)
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Y = ∫
𝜃

0
𝛼(t)X(t) dt + 𝜀, (26)

where the predictor X ∈ L2([0, 1],R), Y ∈ R is a response and 𝜀 ⫫ X is stochastic noise. To frame
this as a conditional independence testing problem, observe that (26) implies that defining the
null hypotheses

H𝜃 ∶ Y ⫫ {X(t)}t>𝜃 | {X(t)}t≤𝜃 (27)

for 𝜃 ∈ (0, 1), we have that H𝜃 is true for all 𝜃 ≤ 𝜃 ≤ 1.
Given an 𝛼-level conditional independence test 𝜓 , we may thus form a one-sided confidence

interval for 𝜃 using
[
inf{𝜃 ∈ (0, 1) ∶ 𝜓 accepts null H𝜃}, 1

]
. (28)

Indeed, with probability 1− 𝛼, 𝜓 will not reject the true null H𝜃 , and so with probability 1− 𝛼 the
infimum above will be at most 𝜃.

To approximate (28) we initially consider the null hypothesis H𝜃 at five equidistant values of 𝜃
and then employ a bisection search between the smallest of these points 𝜃 at which H𝜃 is accepted
by a 5% level GHCM, and the point immediately before it or 0. We consider two instances of the
model (26) with 𝜃 = 0.275, 0.675 and with 𝛼(t) ∶= 10(t + 1)−1∕3, X a standard Brownian motion
and 𝜀 ∼ (0, 1). The simulated functional variables are observed on an equidistant grid of [0, 1]
with 121 grid points. The results across 500 simulations are given in Figure 5. We see that the
empirical coverage probabilities are close to the nominal coverage of 95%.

5.3 EEG data analysis

In this section we demonstrate the application of our GHCM methodology to the problem of
learning functional graphical models. In contrast to existing work (Qiao et al., 2019, 2020) which

coverage = 0.928 coverage = 0.958

θ = 0.275 θ = 0.675
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F I G U R E 5 Histograms of the left endpoints of 95% confidence intervals for truncation points 𝜃 = 0.275
(left) and 𝜃 = 0.675 (right), given by red vertical lines, in model (26) across 500 simulations. [Colour figure can be
viewed at wileyonlinelibrary.com]
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typically assumes a Gaussian functional graphical model and outputs a point estimate of the con-
ditional independence graph, here we are able to test for the presence of each edge, with type
I error control guaranteed for data generating processes where our regression methods perform
suitably well as indicated by Theorem 3.

We illustrate this on an EEG dataset from a study on alcoholism (Zhang et al., 1995;
Ingber, 1997, 1998). The study participants were shown one of three visual stimuli repeatedly and
simultaneous EEG activity was measured across 64 channels over the course of 1 second at 256
measurements per second. While the study included both a control group and an alcoholic group
we will restrict our analysis to the alcoholic group consisting of 77 subjects and further restrict
ourselves to a single type of visual stimulus. We preprocess the data as in Qiao et al. (2019), aver-
aging across the repetitions of the experiment for each subject and using an order 96 FIR filter
implemented in the eegkit R-package (Helwig, 2018) to filter the averaged curves at the 𝛼 fre-
quency bands (between 8 and 12.5 Hz). We thus obtain 64 𝛼-filtered frequency curves for each of
the 77 subjects.

Given the low number of observations compared to the 64 functional variables, there is not
enough data to reject the null of edge absence even if a true edge were to be present. We therefore
aim for a coarser analysis by grouping the variables by brain region and then further according to
whether the variable corresponded to the right or left hemispheres of the brain. This yields disjoint
groups G1, … ,G24 comprising 52 variables in total after omitting reference channels and midline
channels that could not easily be classified as being in either hemisphere, that is, G1 ∪ · · · ∪ G24 =
{1, … , 52}. We suppose the observed data are i.i.d. copies functional variables (X1, … ,X52), and
then test the null hypothesis

XGj ⫫ XGk | {XGm ∶ m ∈ {1, … , 24} ⧵ {j, k}}, (29)

for each j, k ∈ {1,… , 24} with j ≠ k; that is, we test for edge presence in the conditional indepen-
dence graph of the grouped variables. Here, the conditional independence graph over the grouped
variables is defined as an undirected graph over G1, … ,G24, in which the edge between Gj and
Gk, j≠ k is missing if and only if (29) holds; that is, rejection of the null in (29) for k and j indicates
that the conditional independence graph has an edge between Gk and Gj.

To construct p-values for the null in (29) using the GHCM, we must regress for each l ∈ Gj
and r ∈ Gk, each of the functional variables Xl and Xr on to the set of variables in the condition-
ing set. Since the regressions will involve large numbers of functional predictors, the refund
package is not suitable to perform the regressions. Instead, we use the FDboost package in R,
which is well-suited to high-dimensional functional regressions (Brockhaus et al., 2020). We fit a
concurrent functional model (Ramsay & Silverman, 2005) of the form

Xl(t) =
∑

m
𝛽m(t)Xm(t);

the inclusion of additional functional linear terms did not improve the fit. We assessed the appro-
priateness of this regression method to data of the sort studied here through simulations described
in Section D of the supplement.

Figure 6 summarises the results of GHCM applied to test the presence of each edge in the
conditional independence graph. We see that some of the brain regions located close to each other
appear to be connected, as one might expect.
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F I G U R E 6 Network summarising the output of conditional independence tests for each pair of groups.
Only edges with p-values of less than 5% are shown with thicker lines indicating smaller p-values. [Colour figure
can be viewed at wileyonlinelibrary.com]

Note that the network presented includes all edges that had a p-value less than 5%. The edge
PO-R—O-R has a Bonferroni-corrected p-value of 0.0027, and is the only edge yielding a corrected
p-value less than 5%. Applying the Benjamini–Hochberg procedure (Benjamini & Hochberg,
1995) to control the false discovery rate at the 5% level selects this edge and also PO-L—O-L. We
may compare these results with those of Qiao et al. (2019) and Qiao et al. (2020) who study the
same dataset but consider the different problem of estimation of the conditional independence
graph rather than testing of edge presence as we do here. We see that our results are broadly in
line with their estimates: for example, there are edges estimated between the groups represented
by PO-R and O-R (the group pair which yields the lowest p-value) even in some of their sparsest
estimated graphs.

6 CONCLUSION

Testing the conditional independence X ⫫ Y | Z has been shown to be a hard problem in the
setting where X , Y , Z are all real valued and Z is absolutely continuous with respect to Lebesgue
measure (Shah & Peters, 2020). This hardness takes a more extreme form in the functional setting:
even when (X , Y , Z) are jointly Gaussian with non-degenerate covariance and Z and at most
one of X and Y are infinite-dimensional, there is no non-trivial test of conditional independence.
This requires us to (i) understand the form of an ‘effective null hypothesis’ for a given hypothesis
test, and (ii) develop tests where these effective nulls are somewhat interpretable so that domain
knowledge can more easily inform the choice of a conditional independence test to use on any
given dataset.
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In order to address these two needs, we introduce here a new family of tests for func-
tional data and develop the necessary uniform convergence results to understand the forms
of null hypotheses that we can have type I error control over. We see that for our proposed
GHCM tests, error control is guaranteed under conditions largely determined by the in-sample
prediction error rate of regressions upon which the test is based. Whilst in-sample and more
common out-of-sample results share similarities in some settings, the lack of a need to extrap-
olate beyond the data in the former lead to important differences when regressing on func-
tional data. In particular, no eigen-spacing conditions or lower bounds on the eigenvalues of
the covariance of the regressor are required for the in-sample error to be controlled when
ridge regression is used. It would be interesting to investigate the in-sample MSPE properties
of other regression methods and understand whether such conditions can be avoided more
generally.

One attractive feature of the GHCM is that it only depends on inner products between the
residuals produced by the regression methods. An interesting question is whether different inner
products can be constructed to have power against different sets of alternatives, by emphasising
certain regions of the function domains, for example.

Another direction which may be fruitful to pursue is to adapt the GHCM so that it has
power against alternatives where ECov(X ,Y |Z) = 0. It is likely that further conditions will be
required of the regression methods than simply that their in-sample prediction errors are small,
and so some interpretability of the effective null hypotheses, and indeed its size compared to
the full null of conditional independence, will need to be sacrificed. There are however settings
where the severity of type I versus type II errors may be balanced such that this is an attractive
option.

It would also be interesting to investigate the hardness of conditional independence in the set-
ting where all of X , Y and Z are infinite-dimensional. For our hardness result here, at least one of X
and Y must be finite-dimensional. It may be the case that requiring two infinite-dimensional vari-
ables to be conditionally independent is such a strong condition that the null is not prohibitively
large compared to the entire space of Gaussian measures, and so genuine control of the type I
error while maintaining power is in fact possible. Such a result, or indeed a proof that hardness
persists, would certainly be of interest.
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