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Conditional Inference Following Group 

Sequential Testing 

Abstract 

The work of Fisher1 and Buehler2 discuss the importance of con­

ditioning on recognizable subsets of the sample space. The stopping 

time is an easily identifiable divider of the sample space when con­

sidering group sequential testing. We present confidence intervals 

which are correct when conditioning on the subset of data such that 

a trial stopped at a particular analysis. Although these intervals 

may not be practical, they do have very desirable properties for ob­

servations which are highly unusual (given any value of the mean). 

In addition, they provide insight into how information about the 

mean is distributed between the two sufficient statistics. Condi­

tional coverage probabilities are used as a way to compare the sam­

ple mean, stagewise, and repeated confidence intervals. However, 

none of these intervals outperforms the others when conditioning on 

stopping time. 

Keywords: recognizable subsets, confidence intervals 
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1 Introduction 

In medical and industrial settings a group sequential approach to hypothesis testing 

is often used as a method of ending an experiment as soon as significant results 

are observed3 4 56• This testing approach results in two sufficient statistics for one 

parameter of interest, that is, a curved family. Consequently, inference following 

a sequential trial is not straightforward. Methods of finding point estimates and 

confidence intervals for the mean, upon termination of a group sequential trial, 

have proliferated. A review and comparison of both point estimates and confidence 

intervals is given by Emerson and Fleming7• 

Here, we propose yet another confidence interval. This interval is based on ideas 

stemming from the work of Kiefer8 who questions the classical approach of averag­

ing over all possible results and Fisher1 who stresses consideration of "recognizable 

subsets". Kiefer8 and Berger9 argue that in some cases the classical approach of 

averaging over all possible results gives incorrect perceptions about the amount of 

information that is given by the data. Certain characteristics of the data may give us 

some meaningful information about the parameter of interest which gets lost when 

averaging over outcomes that have not been observed. FUrther, Buehler2, Brown10 , 

and Olshen11 , in particular, discuss the importance of studying the behavior of con­

fidence statements conditional on subsets of the sample space. Buehler2 proposed 

these ideas in the context of betting strategies. Brown10 demonstrates that the 
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t-interval does not have correct conditional coverage when conditioning on the fact 

that the sample mean falls within some interval about zero. In fact, the coverage 

is uniformly below the stated level. Goutis and Casella12 show how to use this 

information, about the sample mean falling within an interval about zero, to con­

struct improved t inference from Student's t-interval. Similarly, Olshen11 studied 

the probability that Scheffe's S -method interval covers the parameter of interest 

conditioned on the fact that a preliminary F-test rejects the null hypothesis. Re­

call that the S -method creates simultaneous confidence intervals for a number of 

parameters with correct coverage probabilities and is often used following an F-test 

that rejects the null hypothesis that all of the parameters are equal to zero. Here the 

"recognizable" subset of the sample space is all the possible values of the data such 

that an F- test would reject the null hypothesis. Olshen found instances where the 

conditional coverage probability was always less than the unconditional probability, 

i.e., the stated confidence. In the context of group sequential analysis, the stopping 

time naturally divides up the sample space into distinct subsets. Additionally, this 

is a natural conditioning set since, in a sense, conditioning on the stopping time is 

analogous to conditioning on the sample size. 

An overview of the basic structure of group sequential tests is provided in Section 2. 

Section 3 presents the conditional confidence intervals, giving a summary of their 

properties. Section 4 compares the conditional coverage probabilities of previously 

proposed confidence intervals. The questions asked in this section are: Do the 
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confidence intervals display correct coverage probabilities when conditioning on the 

fact that we know the stopping time (which indeed we do)? Are these coverages 

uniformly above or below the stated confidence level? Do any of these intervals 

outperform the others as determined by conditioning on stopping time? Remaining 

discussion and conclusions are given in Section 5. 

2 Basics 

Group sequential allows the investigor to test a single hypothesis at multiple times 

during the course of the experiment, with the possibility of stopping early when 

significant results are observed. An overall pre-specified level of significance is main­

tained. Typically, there is a maximum period of time in which the experiment is 

to be conducted and the interim analyses are conducted at a few selected times, 

often equally spaced, during that period of time. Each interim analysis is usually 

conducted only after a large number of measurements have been accumulated. 

For example, consider testing the null hypothesis that some mean is equal to zero, 

Ho : f-L = 0, against the alternative Ha : f-L =/= 0 based on observations which are 

assumed independently and identically distributed as normal with known variance 

a 2• Let Xij represent the i'th observation during the j'th time interval. Further, 

assume that there are an equal number of observations (i = 1, ... , n) for each time 
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interval and the maximum number of analyses allowed is m (j = 1, ... , m). In a 

group sequential test, n is usually large enough for u2 to be considered known. To 

further summarize the data, let Y; = k Ei=l Xij· Note that theY; are independently 

and identically distributed since they are linear combinations of equal numbers of 

the independent and identically distributed Xij 's: More precisely, we assume 

so that 

Then, to further summarize the data available at each analysis k, let Sk represent 

the cumulative sum of these observed means at analysis k. These new statistics are 

no longer independent since each sk is the sum of the previous statistic sk-1 and 

the newly observed Yk. The distribution of these cumulative sums can be shown to 

be multivariate normal such that 

k 

sk = EYJ rv N (kp.,ku2 fn) 
j=l 

and the covariance of Si and Sj, such that i =/= j, has the form 

For the remainder of our discussion, we will restrict our attention to the Sk's since 

they completely summarize the data. Also, without loss of generality, we take 

u 2 fn = 1 in all of our calculations. 
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At each analysis, a Z-test based on the statistic Sk. can be used to test the null 

hypothesis. Equivalently, we can find critical values for each analysis such that if 

Sk falls outside those values then the null hypothesis is rejected. Since, the test 

is repeated several times with correlations existing between all the test statistics, 

corrections must be made to the individual tests with the correlation structure in 

mind in order to maintain some overall level of significance a. 

Lan and DeMets13 provide a general framework to determine which critical values 

to use at each analysis. First, one chooses an overall a-level and the rate at which 

one wants to "spend" the a and write this as a function of the time. For example, 

this function may be constructed so that the a is spent conservatively, i.e., very 

little of a is spent at the early analyses. For simplicity, we will continue to assume 

that the m analyses are equally spaced so that we can replace time by the indices 

of the analyses, k = 1, ... , m. Then, taking a(k) to be some function of k such that 

a(O) = 0 and a(m) =a, 1fk = a(k)- a(k -1) is the amount of a that is spent at 

the k'th analysis. (Note that 1r1 + · · · +1rm =a.) One can then find the appropriate 

critical values, ck for each analysis by calculating the probabilities 

1r1 Pr [l81l ~ c1] 

1r2 Pr[l81l < c1, l82l ~ c2J 

etc ... 

Alternatively, one could specify some relationship between the critical values, e.g., 
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c1 = c2 = · · · = Cm, and then determine their values by considering the probability 

Note, for example, that IS2I ~ C2 can be observed only if IS1I < c1, and thus the 

event that jS1I ~ c1 is mutually exclusive from the event that IS1I < c1 and IS2I ~ c2, 

and so on. Hence, 

Pr [!S1I ~ c1 or ... or ISm! ~ Cm] 

= Pr[IS1Il +Pr[IS1I < c1,IS2I ~ c2] + 

· · · + Pr [IS1I < c1, IS2I < c2, ... , ISm! ~ Cm] 

(which equals a as noted before). These critical values (c1, ... ,Cm) form a set of 

boundaries for the observed Sk, k = 1, ... , m. Once Sk goes outside the interval 

( -ck, ck), the null hypothesis is rejected and the experiment ends. Thus the set 

of critical values ( c1, ... , em) in a sequential test is ·sometimes referred to as the 

boundary conditions for the test. 

Various sets of boundary conditions have been proposed and their properties with 

respect to power, sample size, and practicality have been examined. Two of the 

most commonly studied are those of Pocock14 and O'Brien and Fleming15. 

The Pocock boundaries are among the least conservative, in that when using them 

it is relatively easy to reject at early analyses. These boundaries were originally 
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formed by letting ck = c x ..;k, where c is a constant chosen so that the overall a 

significance level is maintained. Lan and DeMets13 found this to correspond to a 

spending rate of approximately a( k) = a x log{ 1 + ( e - 1) x k / m}. In the case such 

that a= .05 and the maximum number of analyses, m, is 4, c = 2.361. Thus the 

null hypothesis would be rejected at the k'th analysis if the absolute value of Sk is 

greater than 2.361 x k. 

The O'Brien-Fleming boundaries correspond to a horizontal boundary, which is to 

say that c1 = c2 = · · · = Cm = c. The spending rate ·which gives this approximate 

relationship between the critical values is13 

{ 
0 

a(k) = 

2 - 2 X <I> ( Zaf2) / .Jk7Tii 

if k = 0 

if k = 1, ... ,m 

When m = 4, one can calculate c to be 4.048. Here, it is fairly difficult to reject 

the null hypothesis at the early analyses and thus is a more conservative set of 

boundaries. 

Recall that when using any of these boundary conditions, the trial will be continued 

until either I Ski exceeds ck for some k = 1, ... , m or the final analysis m is reached. 

Thus, for any particular k > 1, Sk will be observed if and only if the previous 

successive sums 81, ... , Sk-l all fall inside the critical values. Note that at the end 

of the trial, only the values of the stopping timeT, and the sum at that time, ST, are 

recorded. Thus, the density function for (T, S) can be written in an iterative manner. 
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(The subscript Twill be dropped from Sr. except when needed for clarity. Also, 

we will use ( t, s) to denote the observed statistics.) Starting at the first analysis, 

where ft(SIJ.L) refers to the density of (T, S) when T = t. We can then write the 

densities for (t, S) such that t > 1, using an iterative formulation as follows 

!Ct-1 1 { 1 (s- St- 1 - J.L) 2 } 
ft(siJ.L) = J 2 2/ exp --2 2/ ft-1 (st-1) dst-1 

-ct-1 1ru n u n 

Observe that the statistics (T, S) are sufficient and form a curved parametric family. 

3 Conditional Confidence Intervals 

These conditional confidence intervals will be defined conditional on two elements. 

Suppose that the sequential test is stopped at the t'th analysis, and the value of s 

is observed. Then given the time of the final analysis t and the direction of s away 

from the null value, an ordering of the sample space is defined as follows: 

Definition 1 For fixed T = t and s > JlO, a value (t, s*) will be considered more 

extreme than (t,s) if 

• s* > s 
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For fixed T = t and s < J.Lo, a value (t, s*) will be considered more extreme than 

(t, s) if 

• s* < s 

Otherwise, (t, s*) is less extreme. 

This ordering, conditional on the stopping time and the direction of the observation 

away from the null, leads to the stochastic ordering of the conditional probability 

with respect to the mean f.L, as given in the following theorem for negative values of 

s. 

Theorem 1 For any constant ct > 0 and s < -ct < 0, 

Pr [S <siS< -ct, T = t, f.L] (1} 

is a decreasing function of f.L· 

Likewise, for any constant Ct > 0 and s > Ct > 0, 

Pr [S > siS > ct, T = t, f.L] (2} 

is an increasing function of f.L. 

That is to say, that with respect to f.L, these conditional probabilities are stochastically 

ordered. 
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For proof of this theorem, see Appendix 1. 

Since the conditional probabilities are stochastically ordered with respect to f.L under 

these orderings, 1- a confidence intervals can be formed using the guaranteeing an 

interval method 16 • That is for s < -Ct, we can find a f.L L and f.Lu that satisfy 

Pr [S < siS < -ct, f.LL] = 1 - a/2 

and 

Pr [S < sJS < -ct,f.Lu] = a/2. 

The coverage of (f.L L, f.LU) conditioned on the stopping time t and direction of s 

from f.LO will then be 1- a. Of course, these conditional intervals are also correct 

unconditionally. 

As examples, these intervals were found using GAUSS17 for the set-up previously 

described using O'Brien-Fleming boundaries and assuming that the trial ended at 

the first or second analyses. These intervals are given for a range of sjt values in 

Table 1. 

First, note that all previously proposed unconditional orderings, which will be dis­

ussed in part in Section 4, reduce to this ordering after conditioning on the stopping 

time. 
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Table 1: Conditional 95% Confidence Intervals for t = 1, 2 with O'Brien-Fleming 

boundaries and m = 4 

8/t t 1 2 

-2.5 - (-4.04, 1.47) 

-3 - (-4.77, -0.93) 

-3.5 - (-5.53, -2.02) 

-4 - (-6.37, -2.84) 

-4.5 ( -6.28, 3.58) (-7.26, -3.63) 

-5 (-6.93, -0.89) (-8.18, -4.46) 

-5.5 (-7.45, -2.59) (-9.13, -5.34) 

-6 (-7.96, -3.60) (-10.10, -6.26) 

In examining particular characteristics of these intervals, observe that the intervals 

given a stopping time t = 1 are converging to the usual (s ± 1.96) fixed sample 

intervals as s gets very large. In addition, they have the property that for the same 

sample mean, they are different for different values of t. (This is in contrast to 

Sample Mean intervals discussed in Section 4.) 

Also, as 8 gets very large for t > 1, the intervals are increasing in width. The 

increasing width of the intervals seems to reflect the fact that as s gets very large 

for analyses t > 1, the observed value of the test statistic is becoming more unusual. 

This might reflect a large true mean. However with a large true mean, one would 

actually expect the analysis to end at the first analysis. Thus if a very large 8 

is observed with t > 1, then the very low probability of observing such an event 

should lead to very high uncertainty about the value of JL and hence to increasingly 

wider intervals. The conditional intervals reflect the uncertainty of the information 
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about f.L· This reflection of uncertainty is not present in the unconditional confidence 

intervals. 

A troubling property of these conditional intervals is that for values of s which are 

close to the critical values, the intervals become extremely wide. A particularly 

unsettling example is when -c1 = -4.048 and (t, s) = (1, -4.5). In this case, the 

conditional interval ( -6.28, 3.58) has a width of 9.86. By looking at a few numerical 

examples, it is suspected that ass approaches the boundary, the conditional interval 

converges to an interval of infinite length. Observe that as s approaches -Ct, the 

numerator and denomenator of the conditional probability are converging to the 

same value. Thus in order to find the same difference in the conditional probability, 

one needs greater differences in the value of J.L, resulting in a confidence interval 

which is suspected to converge to an interval of infinite length. The conditioning 

proposed here leads to conditioning on all of the information that is available about 

the parameter when sis close to the boundary. 

Also, when the null hypothesis that the mean is equal zero has been rejected and the 

value of s is close to the boundary, the null value will be included in the conditional 

interval. An example of this can be seen in the numerical example given in the 

paragraph above. 

In the last two mentioned properties of the conditional intervals, what is seen is 

the shifting of information between the two test statistics s and t. When s is very 
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close to a critical value, then most of the information about the mean is contained 

in t. To emphasize this point, observe that when there is continuous monitoring 

of a sequential experiment, then all of the information about p is contained in the 

stopping time since S equals the boundary value when the experiment is stopped. 

On the other hand, when sis very far from any critical value, then s carries most of 

the information about p. In this situation, t behaves more like an ancillary statistic 

and conditioning on it improves the confidence that can be placed in a statement 

about the parameter. 

Thus, the conditional intervals behave well when an improbable result is observed. 

However, they become quite wide when sis close to the boundary. 

4 Conditional Coverages of Usual Confidence Intervals 

Having discovered that it is difficult to control conditional confidence using a di­

rect construction, we next consider conditional properties of previously proposed 

confidence intervals in the group sequential setting. As discussed in Section 1, we 

are still interested in studing the validity of these inferences, conditioned on the 

recognizable subsets defined by stopping time. As in Brown10 or Olshen11 , if we 

can show that the coverage probabilities conditioned on any one of the recognizable 

subsets for any of the intervals fall uniformly below the stated (1- a) level, then 
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those confidence intervals are tenuous for inference purposes. In the framework of 

Buehler2 , suppose that one person were to produce a confidence interval for the 

mean and report that interval, along with the observed stopping time and how that 

interval was produced. Then another person could bet on whether the mean was 

contained in that confidence interval. If the second person knew that a particular 

combination of confidence procedure and stopping time resulted in a coverage that 

would be below the stated level, then that person could make a bet against the first 

person, and, on average, he would win. Or in other terms, if a confidence interval 

is known to have uniformly lower conditional coverage than that which is stated in 

a publication, the integrity of the published result would be undermined. Thus it is 

desirable to study the conditional coverages of currently used confidence intervals. 

We focus on confidence sets which are formed upon termination of a sequential 

experiment, such that the trial is terminated early only when the null hypothesis is 

rejected. These intervals include Stagewise intervals as proposed by Tsiatis, Rosner 

and Mehta18 19 20 and Sample Mean intervals as proposed by Emerson and Fleming7 • 

We also consider intervals which have been formed in the Repeated Confidence 

Intervals framework6 and are then reported as terminal intervals. For details of 

how these intervals are formed, see the relevant papers. Because of the additional 

computations needed, Likelihood Ratio confidence sets21 and Score Test confidence 

sets22 are not considered here. In addition, we considered both the O'Brien-Fleming 

and the Pocock boundary conditions. However, only results for the O'Brien-Fleming 
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Boundaries are shown in this paper. Results for the Pocock boundary conditions 

were similar. 

4.1 The Calculations 

Suppose a particular confidence interval, which is formed at following the t'th anal-

ysis is given by CT(t) = (SL(t), Su(t)). The conditional coverage probability can be 

written, applying Baye's rule, as 

( C7 ( ) IT = ) = Pr (J.L E CT, T-= tiJ.L) 
Pr J.L E .L t t Pr(T = tiJ.L) 

where 

Pr(T ~ t[l') ~ { 

Pr (reject Ho at T = tiJ.L) when t < m 

Pr (didn't reject Ho at analyses 1, ... , m -1IJ.L) when t = m 

More specifically to calculate the conditional coverage probability for each of the 

intervals, evaluate 

where 

Pr (J.L E CT(t)IT = t, J.L) 

Pr (s E (SL(t), Su(t)) IJ.L) 

Pr(T = tiJ.L) 

JSu(t) ( I ) 
SL(t) ft S J.L ds 

Pr(T = tiJ.L) 

{ 
f~~ ft(siJ.L)ds + fc'; ft(siJ.L)ds when t < m 

Pr(T = tiJ.L) = . 
f~~~~ 1 ft-l(xiJ.L)dx when t = m 

For each terminal procedure, with each stopping time and each set of boundary 

conditions, Su(t) and SL(t) and the resulting conditional coverage probability were 
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found using the programming language GAUSS17• This was done for negative values 

of fl ranging from negative five to zero. The probabilities are symmetric around fl 

equal to zero. Figure 1 shows the conditional coverage probabilities obtained from 

evaluating the expression above for the Stagewise intervals. Figure 2 shows the 

conditional coverages obtained for the Sample Mean intervals. It is comforting 

to note that conditional on stopping time, none of the coverage probabilities fall 

uniformly below the stated coverage. However, in all cases, they do show a large 

amount of variability. For the Stagewise intervals, these coverage probabilities range 

from exactly zero to one. Given some values of fl and stopping times, the coverage 

is exactly zero because that value of the parameter is never included in an interval 

when the trial has stopped at the given analysis. For example, using O'Brien­

Fleming boundaries and given that the trial stops at analysis 3, the coverages when 

fl = -0.5 or fl = -3.5 are zero. On the other hand for some stopping times, there 

are values of fl which are always included in the Stagewise interval. For example at 

time 3, the value fl = -1 is always included in the interval, given that the value of s 

is negative. Thus, the coverage at fl = -1 will be very close to one (not exactly due 

to the small chance that the trial ends with a positive sample mean). For the Sample 

Mean intervals, these coverage probabilities range from zero to one as well. When 

fl is close to zero and t = 1, 2, 3, the coverages are exactly zero for the same reasons 

described for the Stagewise intervals. For t = 4, the coverage is greater than 1 - a 

at fl = 0. As fl gets large, the coverage at analysis t = 1 converges to 1 - a. The 

coverages at analyses t = 1, 2, 3 converge to zero. They are never exactly zero due to 

the construction of the interval relying on probabity calculations from all 4 analyses. 

The sudden changes in direction for the coverage probabilities for the Sample Mean 

intervals result from transitions of the quantity 1\k = min(s/t x k, -ck) from -ck 

to s ft x k. In each case, the Pocock boundaries result in greater coverages for values 

of the mean fl which are small than when using the O'Brien-Fleming boundaries. 

Although, even here, the coverages for values of fl very close to zero are zero when 
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the experiment is terminated early. On the other hand, the Pocock boundaries result 

in coverages which go to zero much quicker as f1 gets large, fort> 1. 

Now, consider the third type of interval mentioned. Repeated confidence intervals 

were not designed to be used as terminal intervals. However, one proposal discussed 

is to use the RCI intervals in conjunction with the appropriate stopping rule6 . It 

is likely that under these conditions, the final confidence interval calculated would 

be reported at the end of the experiment with other results, and thus take on the 

stature of a terminal interval. For the experiment presented previously, suppose 

that the study was stopped as soon as the hypothesized null value of the parameter 

did not fall inside the interval. This would correspond to running a sequential study 

under a stopping rule that "spends" a in the same way that the Repeated Confidence 

Intervals do. 

These coverage probabilities (see Figure 3) performed in a manner similar to those 

from the Stagewise and Sample Mean confidence·procedures. However, the condi­

tional coverage probabilities did attain at least 95% for a larger interval of values 

of 1-L at each stopping time. This is probably due to the fact that the intervals from 

the Repeated Confidence Interval approach are wid~r than those from the other 

approaches. 

Note that in general, the unconditional coverages of the RCI intervals are correct 

when they are used as terminal intervals, i.e., when they are formed upon termina­

tion of a sequential trial due to rejecting the null hypothesis based on pre-specified 

boundaries. When 11 equals flO, the unconditional coverage is equal to 1- a::, that is 

the probability of accepting the null hypothesis. This is apparent by observing that 

J.Lo is always included in the interval when the null hypothesis is accepted and the 

null hypothesis is accepted (1- a::) x 100% of the time. For other values of fl, the 

unconditional coverage is greater than 1- a::. This is shown by Ohman23• 
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Ohman23 examines confidence intervals which are terminated for reasons other than 

rejection of the null hypothesis, again finding that conditional coverages are unable 

to differentiate between the possible confidence sets within each setting. That is, 

none of the previously proposed confidence procedures studied here behaved appre­

ciably better than any others, when judging them conditionally. A way to study 

this further is to take a partially Bayesian approach, which is carried out in the next 

section. 

4.2 A Bayesian Approach 

Suppose that in general, we expect the mean to have a tendency to be close to zero. 

We could model this prior belief by placing a normal prior distribution (with mean 

zero and variance T 2) on the mean of the sampling distribution. The size of the 

variance for this normal distribution would reflect the strength of our belief that f.L 

is close to zero. If one was quite sure that the mean was fairly close to zero, one 

would choose a small value for T 2 . If one was relatively unsure, then one would 

choose a large T 2 . 

Here we calculated the Bayesian coverage given stopping time with T2 = 2.5, 5, and 

10. These coverages were calculated only for the situation where the stopping rule 

is completely dependent on the data. They were claculated for all three confidence 

intervals, the Stagewise, the Sample Mean, and the RCI intervals, using the O'Brien­

Fleming boundary conditions. The bayesian conditional coverages are found in 

Table 2. 

It appears that as T2 gets larger, for analyses two through three, the average cov­

erages get smaller. At analysis one, it is reasonable to assume that the average 

coverage approaches the stated unconditional coverage of (1 - a)%. This is be-
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Table 2: Bayesian Conditional Coverages, r 2 = 2.5, 5, 10 

I T2 t II 1 2 1 3 4 

Stagewise 2.5 .154 .325 .321 .602 

5 .295 .286 .204 .331 

10 .377 .170 .108 .085 

Sample Mean 2.5 .309 .689 .724 .644 

5 .590 .688 .411 .353 

10 .752 .459 .199 .179 

RCI 2.5 .456 .454 .396 .329 

5 .478 .415 .258 .185 

10 .483 .271 .140 .095 

cause the conditonal coverage approaches 1 -a as J.L gets very large. Thus a fully 

non-informative prior would give average coverages that were near or at zero for 

t = 2, ... , 4 and near or at 1- a fort= 1. 

The Sample Mean intervals have average coverages which are much greater than the 

Stagewise intervals for the all priors considered here. Also, in the same manner, the 

Sample Mean intervals have better average coverage than the RCI intervals. Thus, 

given that the normal with variance r 2 equal to 2.5, 5 or 10 accurately reflects one's 

prior belief about the mean p, the Sample Mean intervals would be prefered over 

the other two kinds terminal intervals. 

5 Discussion 

Recent work in group sequential analysis has produced a number of confidence 

intervals to be used in various contexts. The most commonly used procedures and 

hence, the ones presented and examined here are the Stagewise and Sample Mean 
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terminal procedures and the Repeated Confidence Intervals procedure. We have 

shown that the confidence levels of these intervals conditional on the stopping time 

are extremely erratic. When it is believed that the mean is moderately close to zero, 

Bayesian calculations showed the Sample Mean interval to be preferable over the 

Stagewise and RCI intervals. 

AB an alternative, we proposed intervals which were correct conditional on the stop­

ping time and the direction of the sample mean away from the hypothesized null 

value. It was shown that these intervals also make more sense intuitively for unlikely 

results, that is, they seem to make better use of the information which is known at 

the time the experiment stopped when sis far from the boundary. 

Of interest is the observation that all of the orderings that have been proposed, 

the stage-wise ordering, the sample mean ordering, the likelihood ordering, and the 

score function ordering all reduce down to the ordering proposed here, when they 

are conditioned on the stopping time. Thus, the arbitrariness of these orderings is 

removed by conditioning. 

It appears that the amount of information contained in each of the sufficient statis­

tics, t and s, can be thought of as differing depending on the actual value of (t, s). 

When the observed value is close to the boundary, t appears to contain most of the 

information about the mean J.t. This reasoning stems from the observation that the 

conditional intervals become extremely wide when s approaches one of the critical 

values. Also, there seems to be more information about the mean in s when s is far 

from the boundary. The unconditional intervals, placing too much emphasis on t, do 

not seem to take full account of this information. In some sense, it seems as though 

t is acting as an ancillary statistic when s is large. Thus, although the conditional 

intervals can sometimes be unattractively large, they will always correctly process 

the sample information. Hence, calculation of these intervals seems an important 
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aid to any inference. 

6 APPENDIX 1 

Proof of Theorem 1: 

Proof of statement 1 of Theorem 1. 

Observe that24 with o-2 = 1, 

ft(s) = f(t,s;p.) 

f(t,s;O) X e(sp.-tp.2/2). 

Then, 

f(siT = t,s < -ct;p.) 

and so 

Pr [8 <siT= t, S < -ct;p.] 

f(t, s; O)e(sp.-tp.2 /2) 

f~oo f(t, w; O}e(wp.-tp.2f2)dw 

f_:;:, f(t, w; O}e(wp.-tp.2/2)dw 

f~oo f(t, w; O)ew~-'dw 

f_:;:, f(t, w; O)eWfLdw · 

The last step follows since e-tp.2 12 can come out of the integral in the numerator 

and denominator and cancels out. 

We will prove that for all p., :fL Pr[S < siT = t, S < -ct; p.] < 0. For ease of 

notation, in the next equation, let g(t, w, p.) = f(t, w; O)ewll > 0. 

a 
ap. Pr[S <siT= t,S < -ct;p.] 

J~oo wg(t,w,p.)dw J::.: g(t,w,/l)dw- f~oo g(t,w,/l)dw J::.: wg(t,w,p.)dw 

[r:_: u(t,w,p.)dw] 
(3) 

Note that the denomenator is> 0 for all p. and s. Therefore we only need to prove 

that the numerator is < 0. The numerator is < 0 if and only if 

f~oo wg(t,w,p.)dw J~ 00 g(t,w,p.)dw 

J_:;:, wg(t, w, p.)dw - f_:;:, g(t, w, JL)dw > 0 
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Note that the quantity J~~ wg(t, w, fl.)dw is negative. 

For each t and -oo < w < -ct < 0, define 

G (w) = wg(t,w,fi.) 
JL J~:;, wg(t, w, fl.) 

and 

H(w)= g(t,w,fl.) 
JL J~::,g(t,w,f1.) 

Both are > 0 and J~::, Gp.(w) = J~::, Hp.(w) = 1. 

In the new notation, showing ( 4) is equivalent to showing 

for any s < -ct,. 

Taking the derivative of ( 5) gives 

Gp.(s)- Hp.(s) = 

g(t,s,fi.) [ J~:::,wg(t,w,fi.)dwl 
= J~:;,wg(t,w,fi.)dw s- J~~g(t,w,fi.)dw 

(5) 

The quantity in []'sis an increasing function of sand the quantity outside is negative. 

Therefore the only possible sign change of ( 5) is from positive to negative. Thus, 

there can only be one interior extremum, and it must be a maximum. Then the 

only possible maxima are at the extremes. When s = -ct and when s = -oo, ( 5) 

is equal to zero. Thus for all values of s E ( -oo, -ct), ( 5) is > 0. Thus ( 3) is < 0 

and the original probability (1) is decreasing. • 

Proof of statement 2 of Theorem 1. 

Equation 2 is proven by observing that 

Pr[S >siS> Ct, T = t, fl-1 = Pr[S <-siS< -ct, T = t, -fl-1 (6) 

From the Theorem, we know that the right hand side of ( 6) is decreasing as ( -J-t) 

increases and therefore is increasing with fl.· Thus the probability ( 2) is an increasing 

function of fl.· • 
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S_tagewise Ordering and O'Brien-Fleming Boundaries 
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95% Confidence Intervals 
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Sam.ple Mean Ordering ·and O'Brien-Fleming Boundaries 
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Repeated Confidence Intervals and O'Brien-Fleming Boundaries 
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