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Conditional Limit Theorems under 
Markov Conditioning 

IMRE CSISZAR, THOMAS M. COVER, FELLOW, IEEE, 

AND BYOUNG-SEON CHOI, MEMBER, IEEE 

Ahtract -Let Xi, X, , . be independent identically distributed ran- 

dom variables taking values in a finite set X and consider the conditional 

joint distribution of the first m elements of the sample Xt; . ., X, on the 

condition that A’, = x, and the sliding block sample average of a function 

h( ., .) defined on X2 exceeds a threshold OL > Eh( Xt, X2). For m fixed 

and M + co, this conditional joint distribution is shown to converge to the 

m-step joint distribution of a Markov chain started in x1 which is closest 

to X,, X2, in Kullback-Leibler information divergence among all 

Markov chains whose two-dimensional stationary distribution P( , .) 

satisfies EP( x, y ) h( x, y) 2 OL, provided some distribution P on X2 hav- 

ing equal marginals does satisfy this constraint with strict inequality. 

Similar conditional limit theorems are obtained when X,, X2, . . . is an 

arbitrary finite-order Markov chain and more general conditioning is 

allowed. 

I. INTRODUCTION 

S ANOV’S [13] large deviation theorem for the em- 
pirical distribution pn of an independent identically 

distributed (i.i.d.) sample Xi; * *, X,, says that 

lim llogPr{~,EII} =-,‘:‘,,“(P]]Q). 
t7-w n 

(1) 

Here II is a given set of probability distributions on the 
common range of the X;‘s satisfying some regularity condi- 
tions, Q is the distribution of the XI’s, and O(P]]Q) 
designates Kullback-Leibler information divergence (also 
called relative entropy or information for discrimination). 
General sufficient conditions for the limit relation (1) have 
been given by Groeneboom, Oosterhoff, and Ruymgaart 

[91. 
A result closely related to (1) is the convergence of the 

conditional joint distribution of Xi, * . ., X, under the con- 
dition @,, E II (for m fixed and n -+ co) to the mth Carte- 
sian power of the I-projection of Q on II, i.e., of the 
distribution minimizing O(P]]Q) subject to P E II (cf. 
Csiszbr [4] and previous literature cited there; the theorem 
in [4] covers also the case when a minimizing P E II does 
not exist). 
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An important special case is 

II= {P: E,hj2aj, j=l;..,k} (2) 

where h,; . a, h, are given functions defined on the range 
of the Xi’s and (pi,. . . ,e, 
event A,= {gnEII} is 

are given constants. Then the 

For II as in (2), the I-projection of Q on lI belongs, under 
weak regularity conditions, to the exponential family 
through Q determined by the hj’s; i.e. P(x) = 
cQ(x)exp(CX,h,(x)). In this case, the conditional limit 
theorem mentioned above was established by Van 
Campenhout and Cover [15]. As they pointed out, this 
result can be construed as a justification of the maximum 
entropy (or minimum discrimination information) princi- 
ple (cf. also Csiszar [5]). 

This paper is motivated by the question of what happens 
if the event (3) is replaced by 

where h,; . ., h, are given functions of two variables. This 
event is not determined by the empirical distribution of the 
sample Xi; f ., X,+i; rather it depends on its second-order 
empirical distribution k,, (‘1 (cf. Definition 1 in Section II). 
Thus we are led to consider events of form A, = { kJ*) E 

II } where II is now a set of two-dimensional distributions. 
We expect the limiting conditional distribution of 

XI,. * *> X,, given A,, to be first-order Markov. This sug- 
gests relaxing the assumption that Xi, X,, . . . is i.i.d. to 
include the possibility that Xi, X,, . . . is a Markov chain. 
For convenience, we restrict the state space to be finite. 
This enables us to use a simple but powerful counting 
approach (Whittle [17] and Billingsley [l]). 

For the event that the second-order empirical distribu- 
tion I;(*) of a finite state Markov chain with transition 
probability matrix W belongs to a given set II of two- 
dimensional distributions, the analog of (1) is 

lim 110gPr{FJ2)tH) =- 
II+M n min WIIW, (5) 

PEII, 

where II, is the set of those distributions in the closure of 
II whose two marginals are equal, and D( PIJ W) is defined 
by (12) in Section II. 
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Under suitable regularity conditions, (5) can be easily 
established by the mentioned counting approach (cf. Boza 
[2] and Natarajan [12]). Alternatively, it could be derived 
from the large deviation theorem of Donsker and Varad- 
han [8] for general Markov processes, though this would 
mean using much deeper tools than the problem requires. 

We will weaken the regularity conditions available for 
(5) in a manner essential for our purposes (Lemma 2). Our 
main result is, however, that whenever (5) holds, the condi- 
tional joint distributions of the random variables X, under 
the condition t(*) E II approach a Markov chain de- 
termined by the j* E II, attaining the minimum in (5), in 
a sense made precise in Theorems 2 and 3, provided that 
this P* is unique. Simple sufficient conditions for the 
latter are given in Lemma 1. A corollary of our main 
results for conditioning on events of form (4) will be 
formulated as Theorem 4. 

Intuitively, Theorems 2-4 provide a justification of the 
“maximum entropy principle” for the case of constraints 
on two-dimensional distributions (typically forcing depen- 
dence) in the same sense as discussed in [15] and [5] for 
constraints on one-dimensional distributions only. In par- 
ticular, when Xi, X2, . * . are i.i.d. and have uniform distri- 
bution, the conditional distributions converge to those of a 
Markov chain having maximum entropy rate among all 
processes with stationary two-dimensional distributions 
belonging to II 0. 

Our results easily extend to higher order empirical distri- 
butions and higher order Markov chains (cf. Section IV). 

II. PRELIMINARIES AND STATEMENTOF RESULTS 

Let X be a finite set and let Ack) designate the set of all 
probability distributions on Xk, the kih Cartesian power 
of X. Throughout this paper, distributions on finite sets 
are identified with their probability mass functions. The 
support of any P E Ack), k = 1,2; . . , will be denoted by 
S(P) and, for any subset II of Ack), the union of the 
supports of all P E II will be denoted by S(H). The 
cardinality of a finite set A will be denoted by IAl. 

Definition 1: The k th-order type of a sequence x = 

(x1,. . -> X,+&l ) of elements of X is the distribution P,‘) 
E Ack’, defined by the relative frequencies 

Ck’( Y> 

For a given sequence Xi, X2, . . . of random variables with 
values in X, the k th-order type of the sample 

(x,,*. -,,xfl+k-l ) is called the k th-order empirical distri- 
bution P,,‘“). 

The first-order type (empirical distribution) is com- 
monly called the type (empirical distribution). 

In this paper, limit theorems known for first-order em- 
pirical distributions of i.i.d. sequences of random variables, 
summarized in Theorem 1 below, will be generalized to 
second and higher order empirical distributions of Markov 
chains. Basic for these results is Kullback-Leibler infor- 

mation divergence, which is a nonsymmetric measure of 
distance between distributions in the sense that for any 
two distributions P and Q on Xk, say, 

WIIQ> = C 
p(x> 

PWog~ 
XEXk 

(6) 

is nonnegative and equals 0 if and only if P = Q. We use 
logarithms to the base e, with the standard notational 
conventions log0 = -co, log$=cc if a >O, OlogO= 
01og; = 0. 

Topological concepts for distributions will refer to the 
topology of pointwise convergence. The closure of any set 
II c Ack) of distributions on Xk will be denoted by cl II. 

For any fixed Q, the divergence D( PllQ) is a continuous 
function of P restricted to { P: S(P) c S(Q)}. Thus the 
minimum of D( PllQ) subject to P E cl II is attained, and 
if s(H) c S(Q), this minimum is the same as the infimum 
of D( P/Q) subject to P E II. 

Theorem 1: Let X1,X2, . . . be a sequence of i.i.d. ran- 
dom variables with common distribution Q such that 
S(Q) = X, and let $,, denote the first-order empirical 
distribution. 

a) A necessary and sufficient condition for a set II c A(‘) 
of distributions on X to satisfy 

lim llogPr{I;,,EII} =- en D(pllQ> (7) r1--‘cc n PEClrI 

is the existence, for every sufficiently large n, of distribu- 
tions P, E II equal to the (first-order) type of some n E X”, 
such that D(P,jlQ) converges to the minimum in (7) as 
n -+ co. A sufficient condition is that the infimum of 
D(PllQ) for P E II be the same as for P in the interior of 
II; this is satisfied if the closure of the interior of II equals 
cl II. 

b) If (7) holds and the I-projection P* of Q on clII 
exists, i.e., if the minimum in (7) is attained for a unique 
P*, then p,, converges to P* in conditional probability 
given that ?,, E II, and the conditional joint distribution of 

x1,-. ., X,, given that En E II, converges to the mth Carte- 
sian power of P* as n -+ cc, for any fixed m. 

Part a) of Theorem 1 dates back to Sanov [13]; the given 
form is effectively due to Hoeffding [lo]. Part b) does not 
appear in the literature under precisely the above condi- 
tions but is well-known to those working in this field. The 
convergence of P,, to P* in conditional probability given 
that fin E II has been termed a “conditional law of large 
numbers” by Vasicek [16] because it means that for every 
function h on X, the sample average n-lCycIh(X,) con- 
verges to E,,h-CxGx P*(x) h (x) in conditional probabil- 
ity given that P, E II. Following a referee’s suggestion, we 
will give a proof of Theorem 1, preceding the proof of our 
new results, to exhibit the main ideas in this simple case 
free of technical difficulties. 

In the rest of this paper, unless stated otherwise, 

Xl, x2, *. . will be a Markov chain with state space X, 
stationary transition probabilities W(. ] e), and initial distri- 
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bution Q(l): then (6), (8), and (13) imply that 

Pr( X1=x1,*--, X,+1=x.+1> =Q’(xl) I? J+‘(Xi+llXi). 
i=l 

(8) 

Clearly, the probability (8) depends on x = (xi, * . . , x, + i) 
only through its first element and second-order type. For 
convenience, we assume that the initial probabilities Q1( x), 
x E X, are all positive. The transition probability matrix W 
may have zero entries; i.e., 

W7W = C 
Prn(X1,--,Xm) 

XI,.“,X, 
fTxlye~~ ) hJ0g Qm(xl,. . 

*Al) 

= ~P(x,)log !Y@L 
Xl Q’(xI> 

+(m-l>CP(x,y)log 
P(YlX) 

X,Y W(Yl4. 

wq = {(x3 Y) : W(Yl4 > 01 (9) 

may be a proper subset of X2. At this point, we do not 
even require the irreducibility of the Markov chain 

Xl, x,, * * . ; this, however, will be implicit in the hypothe- 
ses of some of our results. 

Thus the divergence rate from X,, X2,. . . of the Markov 
chain defined by (13) is 

We shall be interested in the asymptotic behavior of the 
probability of the event 

A,, = { k;*’ E II } (10) 

where II c A(*) is some given set of distributions on X2, 
and of the conditional joint distribution of the Xi’s given 
A,. Notice that (4) is a particular case of (lo), with 

lim lD( Pm/Q”) = D( PllW). 
m+oO m 

(14 

It is easy to see that among all stationary processes with 
the same two-dimensional distributions, Markov chains 
have the smallest divergence rate from the given Markov 
chain Xi, X2,. . . . Hence the minimum divergence rate 
from Xi, X,, . . . of stationary processes with two-dimen- 
sional distribution in HI, is attained for the Markov chain 
determined by the Markov I-projection of W on II,. 

II= P: c P(x,y)hj(x,y) >cyj, j=l;.-,k . (11) 
1 

X>Y 
) 

For any P E AC2), we denote by P and F the two 
marginals of P. Let P(ylx) = P(x, y)/P(x), for P(x) > 0. 
We designate by A, c2) the set of all distributions P E Ac2) 

such that F = F. 
A key role will be played by the Kullback-Leibler 

information divergence of a distribution P E Ac2) from 
that defined by the probabilities P( x)W( y]x). For brevity, 
this divergence will be denoted by D(PIIW); i.k., 

We will say that a subset E of k* is irreducible if the 
directed graph with vertex set X and edge set E is strongly 
connected. If, in addition, the greatest common divisor of 
the lengths of all circuits in this graph is equal to 1, we say 
that E is aperiodic. A distribution=P E A(*) will be called 
irreducible (and aperiodic) if p = P and S(P) is an irre- 
ducible (and aperiodic) subset of X2. Clearly, this means 
that S(P) = X and the Markov chain defined by (13) is 
irreducible (and aperiodic). 

As D( PII W) is a continuous function of P restricted ‘to 
{P: S(P) c S(W)}, the infimum of D(PIIW), subject to 
P E HI,, equals its minimum, subject to P E cl H,,, for any 
HI, c A$) with s(H,) c S(W). The last minimum may be 
attained for several P* E cl II,,, but the uniqueness (and 
irreducibility) of the minimizing P* can often be asserted 
if II, is convex. 

p(x7 Y> 
wIlw = c p(x, Y)l% p(x)qylx) 

X,Y 

= c p(x, Y)l% 
P(YlX) 

WYIX) . 
(12) 

X,Y 

Definition 2: If for a subset H, of A$) there exists a 
unique P* E II,, with D( P*ll W) = min, E n,D( PII W) < 00, 
this P* is called the Markov I-projection on III, of the 
transition probability matrix W. 

Clearly, S( P*) c S(W). As motivation, we notice that 
every PEA,, (*) determines a stationary Markov chain with 
two-dimensional distribution P. The m-dimensional distri- 
bution of this Markov chain is given by 

I 
m-l 

P”(x1;. -, XJ = 
‘txl) ;vII, Cxi+llxi)~ 

if xiES(P), i=l;..,rn 

else. 

(13) 

If the joint distribution of Xi; . . , X, is denoted by Qm, 

Lemma 1: Let II,, be a closed convex subset of A$) 
such that s(H,,) c S(W). If, in addition, ,S(lI,) is irre- 
ducible, then the Markov I-projection P* of W on II, 
exists (i.e., min D(PIIW) subject to P E I&, is attained for 
a unique P*), S(P*) = S(II,), and 

for each P E II,. (15) 

If ,!?(H,) is not irreducible, the weaker uniqueness asser- 
tion holds that if P: and P? both attain min D(PJ/W), 
subject to PE&, then P2*.(-lx) = P2*(-Ix) for all x E 
S&)rl s(F**). 

A related result appears in [2, Theorem 5.51. Still, for the 
reader’s convenience, we will given a complete proof in the 
Appendix. Notice that (15) is equivalent to 

D(PllW) 2 D(W’*(+))+ D(P*IlW), 
for every P E II,. 
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This inequality is an analog of a well-known property of 
ordinary I-projections (cf. [3, Theorem 2.21). 

The extension of Theorem 1 to the Markov case is rather 
straightforward, except for the second assertion in part b). 
Lemma 2 below covers the easy part; the hard part will be 
the subject of Theorems 2-4. All these results will be 
proved in Section III. 

Since Pr { PJ2) = P} = 0 for every P E AC2) with S(P) C 
S(W), in the statement of our results we assume, without 
any loss of generality, that ,S(II) c S(W). 

To formulate Lemma 2, let 

U(P,c)=(P’: ~~lP’(~,y)-P(x,r)lir) (16) 

denote the e-neighborhood of a P E Ac2). Further, for any 
II c Ac2), let III’ be the set of those irreducible P E IIf) to 
which there exists c = c(P) > 0 such that every P’ E U( P, c) 
with S(P’) = S(P) also belongs to II. This II’ may be 
visualized as an “irreducible interior” of II, even though a 
P E II’ need not be in the topological interior of II (as 
elements of U( P, E) with support larger than S(P) are not 
required to belong to II); actually, the topological interior 
of II is empty whenever S(H) # X2. 

Lemma 2: Let II c AC21 with ,S(II) c S(W) be arbi- 
trary. Let II, = A$) ncl II, and write 

(17) 

a) lim sup, ~ M (l/n)logPr{Ij,(2)EII]X,=z4} I-D for 
every u E X. 

b) A necessary and sufficient condition of 

lim llogPr{pJ2)EH]X,=u} =-D (18) 
n+cc n 

is the existence, for every sufficiently large n, of P, E II 

equal to the second-order type of some x E X”+’ with 
xi = u, such that D(P,jIW) -+ D as n + co. A sufficient 
condition is that the infimum of D(PJIW) for P E Iii 

(defined in the paragraph preceding Lemma 2) be equal to 
D; this condition is fulfilled, e.g., if cl III’ = II,. 

c) If W has Markov I-projection P* on II,, the follow- 
ing are equivalent, for any given u E X: 

1) 

2) 

3) 

for every c > 0, Pr { tn. C2) E U( p*, c)pp E II, x, = u} 
is (defined and) posittve if n is sufficiently large; 
i,1(2) converges to P* in conditional probability given 
that pi’) E II and Xi = U; i.e., for every c > 0, 

lim Pr{~~‘)EU(P*,E)I~~‘)EH,X~=u} =l; 
n4cc 

the limit relation (18) holds. 

Similar equivalences hold when the conditions X, = u are 
everywhere deleted; for 3), this means replacing (18) by 

lim LlogPr{@i2)EII} =-D. 
,I~00 n 

(19) 

Remark: In Lemma 2 (part c), 2) is a “conditional law 
of large numbers”; it means that for every function h( *, *) 

defined on X2, 

Pr 
{I 

; ,g h(xi,xi+l)-Ep*h <~p;2)EII,Xl=U +l 
I-l I 

where E,,h denotes the expectation of h with respect to 
the distribution P*. 

Lemma 2 is related to previous results of Boza [2] and 
Natarajan [12] but their results were not immediately 
suitable for our purposes. Natarajan [12] proved an analog 
of (19) using a circular version of second-order types 
(called Markov types, following Davisson, Longo, and 
Sgarro [7]). He postulated strict positivity of W and his 
assumptions rule out those cases when no distribution in 
II, has support equal to X2. Removing these restrictions is 
relevant for generalizations to higher order empirical dis- 
tributions, cf. Section IV. (The device of sliding blocks to 
reduce order necessarily leads to excluded transitions 
W( x] u) = 0.) While our sufficient condition in Lemma 2 
(part b) appears somewhat artificial, it is often easy to use, 
as in the proof of Theorem 4 below. 

Theorem 2: Let II be any subset of AC2) with S(H) C 
S(W) such that W has Markov I-projection P* on II, = 
A$) ncl II. Then for every m 2 2 and (xi; * *, x,) E X” 
with x1 E S(P*) we have, writing 

P*m(X2,a * *, X,lXl) 

= 

‘i 

m-1 

lQl P*(xj+Jxi), if xi E S(P*), i =l; . ., m 

0, otherwise, 

1) if (18) holds for u =x1, then 

lim Pr{ X2=xZ;.,, Xm=X,p~2krI,Xl=X1} 
n-too 

= P*m(X2;. .) x,jx,); (20) 

2) if (19) holds, then 

lim (Pr{ X~=xl;..,Xm=x,)~~‘)E~} 
ll’cc 

-Pr{Xi=x,]~~2)EII}P*m(x2,~~~,x,]x1)) =O. (21) 

Remark: The hypothesis of assertion 2) is weaker than 
that of assertion 1). In fact, while obviously (18) * (19) 
(for any fixed u E X), the opposite implication holds if 
and only if 

lim llogPr{ X,=zQ~)EII} =O. 
n--c0 n 

As no assertion could be made for x1 G S(P*), Theorem 
2 is valuable mainly in the case when S(P*) = X, e.g, 
when P* is irreducible. If P* is also aperiodic then the 
following theorem holds. 

Theorem 3: Let II and P* be as in Theorem 2 and 
suppose, in addition, that P* is irreducible and aperiodic. 
Then for every m and (x1,. . . , x,J E X”, and every se- 
quence of positive integers I, with I, + cc, n - I, -+ 00, we 
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have 

lim Pr 
II 4 00 ( 

X, +1=~l,...,X,~,+m=~,1~~2)En) II 

I?, ~ 1 

= ‘*Cxl) II p*(xi+llxi) (22) 
i=l 

providing (19) holds. 

We notice that since S(P*) c S(W), the hypothesis of 
Theorem 3 implicitly includes the irreducibility and 
aperiodicity of the Markov chain Xi, X2, . * * . A similar 
remark applies to Theorem 4 below. 

Theorem 4: Let E be a given irreducible subset of X2 
such that E c S(W). Let h,; . 0, h, be given functions on 
X2 and (pi; . ., (Ye be constants, and put 

A,,= ‘~i~~h~(Xi,Xi+~)>y,j=l,...,k; 
i 

.(X,,Xi+l)~E,i=l,...,n . (23) 
1 

Suppose that there exists some P E A$) with 

C P(x> Y)hj(x, Y> ’ aj> jzl,. . ., k; S(P) c E. 
.x. , 

(24 

Then the Markov Z-projection P* of Won II, = A$) f~ II 
exists, where 

PI CP(x,y)hj(x,Y)‘ajy 
x. y 

jcl,. . ., k; S(P) c E , (25) 
i 

P* has support equal to E, and (18)-(21) hold with 
{ F,P’ E II } = A,. If, in addition, E is aperiodic, then also 
(22) holds with { @,,(‘) E II} = A,, whenever 1, -+ cc, n - I, 
‘co. 

Remarks: 1) Events of form (23) can always be repre- 
sented in form (4) as well, simply by introducing a new 
function hk+l =l, (i.e., hk+l =l on E and 0 outside E) 
and a corresponding constant LY~+~ = 1. The representation 
(23) was chosen to get a simple sufficient condition, viz. 
(24), for the limit relations (18)-(22). 

2) Theorem 4 applies, in particular, also with k = 0, i.e., 
for A, = {(Xi, X,,,) E E, i =l; * a, n}. Then II is simply 
the set of all distributions P E Ac2) with S(P) c E, and 
condition (24) becomes vacuous. In this case, P* has a 
simple explicit form, cf. (30). 

3) While in (23) the k-dimensional vector of the em- 
pirical means (l/n)Cy=, hj(Xi, Xi+l) is required to be in 
the set {(ti; . . ,t,): tj>aj, j=l;.*,k}, it could as well 
be required to be in some other convex set F in k-space. 
For events A, so defined, Theorem 4 remains valid, by the 
same proof, if hypothesis (24) is appropriately modified, 
namely, so that for some P E Ac2) with S(P) c E the 
vector with components CP(x, y)hj(x, y) is in the ‘inte- 
rior of F. In this generalization of Theorem 4, P* is the 

Markov Z-projection of W on II, = Ac2) ncl II where II 
consists of those P E Ac2) with S(P) c E for which the 
vector with components CP(x, y)hj(x, y) is in F. 

If xi, x2, . . . are i.i.d., one might expect (22) to hold 
even with I, = 0. In view of (21), this would be equivalent 
to 

lim Pr { Xi = xi]@:) E II} = P*(x,). 
,I + co (26) 

Unfortunately, (26) is false even in very “nice” cases, cf. 
Example 4 in Section IV. Actually, the (existence and) 
evaluation of this limit remains an open problem. 

Notice that if Xi, X2,. . . are i.i.d., (26) would im- 
mediately follow from 2) of Lemma 2 (part c) if the 
conditioning event were defined in terms of circular 
“Markov types,” e.g., if in (4) Xn+r were replaced by Xi. 
It is rather surprising that such an apparently minor 
change in the condition can substantially affect the condi- 
tional distribution. 

Finally, we mention that the Markov Z-projection P* in 
Theorem 4 can be represented as follows. Let X(S) denote 
the largest eigenvalue of the IX] X IX] matrix Q, whose 
(x, y) entry is 

Q& Y> = i 
W(.dx)exp ? ljhj(x> Y>, if(x,y)EE 

j=l 

else, 

(27) 
where {=({i;..,s;G), l,>O, j=l;..,k, and let uz and 
us be the corresponding left and right eigenvectors, nor- 
malized to have inner product 1. Then 

min D( PllW) = ml= 
PEII, 

f &Ol,-lOgX(l’) 
j=l 

where the maximum is taken subject to Sj 2 0, j = I, * * . , k. 
The Markov Z-projection P* of Won II, is given by 

p*b, Y> = 
usb)Qsb, Y)~(Y) 

w ’ 
(29) 

for 5 attaining the maximum in (28). In the simple case 
mentioned in Remark 2) to Theorem 4, (29) reduces to 

p*(w) = 
i 

A-‘u(x)W(ylx)~(~), if (x, Y) E E 
o 

7 if (x, y) @ E 

(30) 
where X is the largest eigenvalue of the matrix obtained 
from W by replacing the entries (x, y) @ E by zeros, and 
u and u are the corresponding left and right eigenvectors. 

The proof of (28) and (29) will be omitted. They can be 
derived from known properties of ordinary Z-projections 
(cf., e.g. 14, Theorem 2]), keeping in mind that P* equals 
the Z-projection on II, of the (two-dimensional) distribu- 
tion consisting of the probabilities F*(x)W(ylx). A result 
of Justesen and Hoholdt [ll] is equivalent to the special 
case W(ylx) = constant of (29). In this case P* gives what 
they call the “maxentropic Markov chain.” A result re- 
lated to theirs was obtained earlier by Spitzer [14]. 
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III. PROOFS 

First we give a proof of Theorem 1. This proof should 
be routine for information theorists familiar with the 
method of types (cf. Csisz&r and Kiirner [6]). Readers less 
practiced in working with types might find it helpful to get 
a first overview of our basic approach in this simple case. 

Proof of Theorem I: Let T,(P) denote the set of those 
sequences x E X” whose (first-order) type equals a given 
P E A(“), and let P,, = {P: T,(P) # (p}. Then for P E P,,, 

(n +l)‘x’exp { - &PIIQ)I 5 QVW) 

5 exp { - ~@PIIQ)>~ (31) 

(cf. [6, p. 321). Hence, using the obvious bound IP,I _< 

tn + 1) lx’, the probability 

Pr{jnEn} = c Qn(T,(P>) 
PsrlnP” 

can be bounded from above and from below as 

Pr{knEII} I(Kz+~)‘~‘~~~~~~Q~(T~(P)) 
n 

2 (n +l)lX’exp -n 
f pGy&,D(PllQ$ 

n 

(32) 

Pr { fin E “} 2 ppg;p Q%(p)) 
n 

2 (n +l)‘x’exp - n 
i pE~npD(PllQ))- 

n 

(33) 

The first assertion of part a) immediately follows from 
these bounds. Since an arbitrarily small neighborhood of 
any P E A(l) contains some P E P,, if n is sufficiently large, 
it follows by continuity that for any < > 0, 

if n is large enough, where int II denotes the interior of II. 
This and (32), (33) prove that the equality of the last 
infimum to inf,,,D(P](Q) = min,,,,D(P(lQ) = D is a 
sufficient condition for (7). Clearly, this sufficient condi- 
tion is satisfied if cl(int II) = cl II. 

Turning now to part b), notice that if D is attained for a 
unique P* E cl II, then the minimum D, of D(PljQ) for P 
ranging over the compact set 

II<: {P: PEclII,max]P(x)- P*(x)l2c} 

is larger than D, for every E > 0. The bound (32) applied to 
II’ instead of II gives that 

Pr{gnEII’} -<(n+l)‘X’exp(-nD,}. 

Hence if (7) holds, i.e., 

-)-D, 

then 

Pr(~~~[~,(x)-P*(x)l~~l~,En) 

for every E > 0. This means that $,, + P* in conditional 
probability given that P, E II, as claimed. 

Finally, fix any (xi,. . . , x,) E X”‘, denote by k(x) the 
number of indices 1 I i zz m with xi = x, and notice that 
for any P E P,, with nP(x) = f(x), say, we have 

(~l,...,~,,x,,+lr...,x,)~T,(P), 
iff (x,+r; . ., xm> E Lm(P’L 

where (n - m)P’(x) = f(x)- k(x). Since Pr{(X,;.., X,,) 
= x} is constant for x E T,(P), it follows that 

Pr(X,=x,;.., x, = x,,i), = P} 

= IT,-,(P’) i/IT,,(P) 1 

(n - m)! 
= 

x~x(f(4- k(x))! x;xk+ 

=n(n-l)..l(n-m+l) .r:kizO 

This shows that Pr{X,=x,;..,X,,=x,(~~=P} con- 
verges to 

xlxwx) = lpbi) 

as n -+ cc, uniformly in P E P,,. This, in turn, implies that 
to any n > 0, there exists < > 0 and n, such that 

Pr{X,=x,;.., x~=xml’n=p}- jfilp*(xi) <11 

(34) 

if P E P,, belongs to the e-neighborhood of P* and n 2 no. 
As 

.Pr{X,=x,;..,X,=x,(~~=P}, 

and here the contribution of the terms with P outside an 
arbitrarily small neighborhood of P* is negligible if n is 
large enough (because (7) was shown to imply that p,, + P* 
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in conditional probability), (34) gives rise to 

lim Pr{ X1=x1;.., 
il + co xw, = %*lk E rq = ;Qp*bJ. 

This completes the proof of Theorem 1. 

The proofs of Lemma 2 and Theorems 2-4 will be 
basically similar to that of Theorem 1, relying upon prop- 
erties of second-order types which we now summarize. 

For P E A(*) and u E X, let T,(P, U) designate the set of 
those sequences x E Xn+’ with xi = u whose second-order 
type equals P. Write P,(u) = {P: P E A(*), T,(P, u) # +}. 

Obvious necessary conditions for P E P,(U) are that the 
numbers f(x, y) = nP(x, y) be nonnegative integers satis- 
fying 

Cfb? Y> = n> (35) 
X,Y 

and for some u E X, 

Cf(x,Y)-~(u,x)=Cf(Y,x)-~(u,x)20, 
J’ Y 

XEX. (36) 

Here 6(x, y) = 1 if x = y, and 0 otherwise. Clearly, u is 
uniquely determined by P and U; it is the last element of 
any x E T,( P, u). 

Notice that (36) implies for P E P,(u) that P(x) f P(x) 
happens=only if=u # u and x equals u or u, in which case 
F(u)- P(u) = P(u)- P(u) =1/n. 

The following proposition counts sequences of a given 
second-order type and is due to Whittle [17]; for a simple 
proof see [l]. 

Proposition IV: If the numbers f(x, y) = nP(x, y) are 
nonnegative integers satisfying (35) and (36), then 

IT,(P+)l=F,:(P) n f(x)! 

XGX yyIXf(x. VI! 
(37) 

where f(x) = E,f(x, y) and I;,:(P) is the (u, u)-cofactor 
of the [X(X 1x1 matrix F*(P) whose entries are 

F*(x, Y> = 
i 
G, Y) - pb, YMW, ifxES(F) 

e, Y), else. 

(38) 

The conditions (35) and (36) are necessary but not suffi- 
cient for P E P,(U), because F*:(P) in (37) may be zero. 
Necessary and sufficient is that in addition to (35) and 
(361, for a suitable ordering x0, * . . , x[ of the elements of 
S(P) U { u} with x0 = U, x, = u, we have (xi-i, xi) E S(P), 
i=l . . . , 1. This follows from the proof of Proposition W 
in [l] but will not be used in this paper. 

The following consequence of Proposition W is an ana- 
log of (31); it suffices to prove Lemma 2. 

Lemma 3: For P E P,(u), we have 

(n +l)-lxl*-lxI 
exp { - nWWV) 

<Pr{Pi*)=P]Xi=u) 

5 exp { - nD( PllW)} . (39) 

This is effectively Theorem 3.1(a) of Boza [2]. Clearly, (39) 
trivially holds if S(P) c S(W) (with exp (- 00) = 0). 
Otherwise, it is an immediate consequence of (8), (37), and 
the standard rough bounds on multinomial coefficients (cf. 
[6, p. 301) since the factor F,:(P) in (37) can be neither 
less than (n + l)-lxl nor greater than 1. 

Proof of Lemma 2: As each P E II n P,,(u) is also in 

II,=IIn(P: mFiP(x)--?(x)/,i), 

we have 

Pr{PJ*)EII]Xi=U} =FcnCn~(,)Pr{~~2)=PlX~=u}. 
n n 

(40) 
If II,=+ for some m, then Pr{&*)EII]X,=u} =0 for 
n 2 m, and Lemma 2 assertion a) holds trivially. Otherwise 

D, = pkfI D( PllW) < 00, n =1,2;. . > (40 
n 

and from (40) and (39) we obtain 

Pr{$~*)EII]X1=u} IIP,(u)lexp(-nD,,). 

Since ] P,( u) ] grows only polynomially with II, this will 
prove assertion a) if we show that 

lim D, = D = pen D(PIJW). (42) 
n-+00 

By continuity, (41) implies that Dl equals the minimum of 
D(PIIW) subject to ‘P E cl II,; let P,, E clII, attain this 
minimum. Picking a convergent subsequence, say Pn, + PO, 
wehave P,,EIIO=A$)nclII, thus 

lim Dnk= >mmD(PnJW) = D(P,IIW) 2 D. 
k-+m 

As the sequence D,, is nondecreasing and cannot exceed D 
(because cl II,,, 3 cl II, 1 II, for m < n), this proves (42) 
and thereby assertion a). 

The first part of b) immediately follows from a) and 
Lemma 3. Next, notice that to any irreducible P E A$), 
6 > 0, and u E X there exists 

P’E P,(24)nU(P,c), with S( P’) = S(P) (43) 

for every sufficiently large n. This follows, e.g., from the 
law of large numbers applied to the irreducible Markov 
chain determined by P, cf. (13). 

Given any P E II’ and 6 > 0, pick e > 0 so small that 
(43) implies both P’ E II (possible by the definition of II’) 
and D( P’llW) < D(P/W)+ 6 (possible by continuity). 
Then by Lemma 3, 

Pr{!,(*)EII]Xi=U} 

>Pr{~~*)=P’IXi=u} 

> (n +l)-Ix12-lxl exp { - nD(P’IIW)) 
kexp{-n(D(PIIW)+28)} 

if n is large enough. This proves that 

inf D( Pll W) = D 
PEW 

is a sufficient condition for (18); this condition is clearly 
satisfied if cl Hi = II,. 
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Turning to part c), notice that 1) means that for every obtained by deleting the 0th row has entries 
sufficiently large n, there exists P, E Z’,(u) n II such that 
P, -+ P* as n + 00. Thus the necessary and sufficient con- 

G(x, Y) = F*(x, Y) =6(x, Y>- P(ylx), 

dition of part b) is satisfied, and 1) * 3). its row sums are 0. Hence the (0, j)-cofactors of G are the 

Further, if P* is the Markov I-projection of Won III,, same for all 0 I j I s; in particular, 

i.e., P* is the unique P E II, attaining the minimum in F,*, = G,, = G,, = F,* . 
(17), then 

PEne;cp* cjD(PJIW) > D, ‘foreveryc>O, 
Now denote by A the s X s matrix obtained by deleting 

the 0th row and column of G. Then G, = det A and 
0 

i 
a10 + a12 + al, - a12 

. . . 
- al, 

- a21 a,,+a,,+a,,+ a.. +a2S ... - a2s , .\ 
A= 

- as1 - as2 

(46) 

. . . aSo + a,, + :. . + as,S-l 

and thus, by assertion a), 

limsup~logPr{@~“)EII-U(P*,c)lX,=u} c--D. 
n--to0 

(44) 

Hence the implication 3) * 2) directly follows, since (18) 
and (44) result in 

The remaining implication 2) 3 1) is trivial. The mutual 
equivalence of the analogs of l), 2), and 3) obtained by 
deleting the conditions Xi = u can be proved similarly. 
Thus the proof of Lemma 2 is complete. 

While the bounds (39) were sufficient for Lemma 2, we 
will need the exact formula (37) to prove Theorems 2 and 
3. Also, two further lemmas will be needed (Lemma 5 for 
Theorem 3 only). 

Lemma 4: The factor’ F,r( P) in Proposition W equals 
F,r( P), which can be expressed as the sum of certain 
products of conditional probabilities P(ylx). More ex- 
actly, 

F,:(P) = F,:(P) = c rI ~~~(XM (45) 
r#lE@ x~S-{u) 

where S = S( F)u {u} and Q, is a set of mappings +: 
(S - { u }) 4 S uniquely determined by S and u. 

Proof: Without any loss of generality, we assume that 
x = {O,l;*-, N}, u = 0, and that S(P) is either 
{O,l; . ., s} or (1;. ., s} for some s with u<s<N. By 
se paragraph afteL (36), we have for each x f u ~0 either 
P(x) = P(x) or P(x) = P(x)-l/n, hence S(P) c S= 

{O,l,*. *3 s }. Thus if s # N, the matrix F* = F*(P) de- 
fined by (38) can be decomposed as 

where G is an (s + 1) x (s + 1) matrix and I is the (N - s) 
x (N - s) unit matrix. It follows that the (0, u)-cofactor of 
F* is equal to that of G. As the s X (s + 1) submatrix of G 

with axv =P(ylx), x=0,1;.-,s, y=l;.*,s, yzx. 
Lemma 4 will be proved if we show that for every s 21, 

there exists a set @s of mappings 9: { 1, * * . , s } + (0, * * *, s } 
with +(i) f i, i =l; . -, s, such that for every s x s matrix 
of form (46), 

det A = 1 I? a,,cij. 1 (47) 

For any A of form (46), det A is a polynomial of the aij’s 
consisting of terms alj, . . . ag (with ji # i, i =l; . ., s), 
possibly with coefficients depending on (j,, . . . , j,). To 
establish (47), we prove by induction that all the nonzero 
coefficients in this polynomial are equal to 1. This is 
obvious for s = 1 when there is a single term a,,. 

For s 2 2 we use the easily checked identity that for any 
s x s matrix B and diagonal matrix C = diag(c,, * * a, c,), 

det(B+C) = c( ivrci)detB(I). 
I 

Here the sum extends for all subsets I of (1; . . , s} and 
B( 1) denotes the matrix obtained by deleting the rows and 
columns of indices i E I of B (for I = { 1, * * -, s } we under- 
stand det B(I) = 1). We apply this identity to C = A, = 
diag(a,,; * a, a,,) and B = A - A,. Then the determinant 
of B(+) = B = A - A, is 0 because the row sums of A - A, 
are all 0. Thus we get that 

detA= c( j~Iaio)det(A-A,)(I) 
I 

where the sum extends to the nonvoid subsets I of 

(1;. -3 s }. Here all the matrices (A - A,)( 1) are of form 
(46), with Cj E Ic a,, playing the role of ajo (where I’= 

(1;. .> s } - 1). As the dimension of the matrices (A - 
A,)(I) is less than s, it follows that if the induction 
hypothesis is true for 1,. . *, s - 1, then it is true also for s. 

This completes the proof of (47) and thereby of 
Lemma 4. 

Lemma 5: ForeveryO<i<n and PEU.,xPn(u)with 
S(P) c S(W), we have 

Pr{~~*‘EU(P,~)~~~*)=P} 

>l-(n +1)2’x’2exp -i min 
( P’cEU(P,E) 

D(W’(+)) (48) 
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and and 

(4% 
where j/*) and p,$ are the second-order types of 

(Xl,. * *, Xi+l) and (Xi+l,*. -, Xn+r), respectively, and the 
minima are understood subject to the additional constraint 
that P’ is a possible value of p/*) resp. @Jn’,“i’ when 4:‘) = P. 

Remark: The point of Lemma 5 is that if i and n - i are 
sufficiently large, the conditional probabilities in (48) and 
(49) are arbitrarily close to 1. 

Proof: Fix P as above and consider any pair (PI, P2) 

such that for some x=(x1; m *, x,+r) E Xn+’ of second- 
order type P, (x1;. ., xi+l ) has second-order type Pl and 

(-%+1,*. -9 x,+1 ) has second-order type Pz; of course, then 
iP, + (n - i) P2 = nP. Let u E X be such that P E P,,. Then 

Pr (P/*) = P,(3j2) = P, XI = u} 

=Pr{~$=P,(fiJ*)=P,X,=u} 

=Pr{~~*)=P1,~~~~=P,IXl=u} 

/Pr{+~z)=PIXl=u}. (50) 

Here, by the Markov property and Lemma 3, we have 

Pr{?/*)=Pl,$J2j=P2JXl=U} 

5 Pr { $/*) = P,IX, = u} IJI~% Pr (&r] = P21Xi+, =x} 

S exe { - iD( PJW) - (n - i)D( P211W)}. 

Now we use an identity that can be easily verified from 
(12), namely, that if P = aP, +(l A a)P2 with some 0 < (Y 
<l, then 

d4lIW) + (I- ~)D(Wf’) 

= wIlw+ 4plIIm*)) 

+o- 4D(P*IIPt+w (51) 

Rewriting our last upper bound on the numerator in (50) 
according to (51) (with (Y = i/n) and using the lower 
bound on the denominator provided by Lemma 3, it 
foliows that the two equal conditional probabilities in (50) 
are upperbounded by 

(n +1> ‘x’2+‘x’exp { - iB(P,IIP(-1.)) 

-b - I’PP*IIpw)). 

Since IP,(u)l< (n +l) txl*-txt, this implies, in particular, 
that 

Pr~~~)~U(P,E)l~~*)=P,X~=U} 

-c (n +1)2’x(‘exp - 
i p,~p,,~,~~~‘lI~~~l~~~} 

As these.bounds hold for every u E X with Pr { XI = @i,‘“) 
= P } > 0, they remain valid also if the condition Xl = u is 
deleted. This proves (48) and (49). 

Proof of Theorewi 2: First we prove that to any P* E 

A$) with S(P*) c S(W) and to every m and q > 0, there 
exist z > 0 and n, such that if n 2 no then for every 

(Xl,’ * *7 x,,J E X& with x1 E S(F*) and P E u( P*, c)n 
P,(xl) with S(P) c S(W), 

JPr{X2=x,,.~.,X,=x,l&2J=P,Xl=xl} 

- P*m(X*;* * *, x,hj I < 17. (52) 

This will imply assertion 1) of Theorem 2 exactly as (34) 
implied the last assertion of Theorem 1. 

Fix an in-tuple (x1, * * . , XL) E X” and write 

k(x,y)=~{i:(x,,x,+l)=(x,y),l~i~m-l}). (53) 

Then a sequence (x1;. ., x,+J E Xn+l, whose initial m- 
tuple equals the given one, has the second-order type P 
with nP(x;y) = f (x, y) if and only if the second-order 
type P’ of (xm;. ., x,+~) is given by 

p,(x y)=f(x,~)-k(x,~) 
> 

n-m+1 

kb, Y> = n-;+1ptx9Y)- n-m+i’ w 

Since Pr {X, = x1; * 0, X,,, = x,+r} is constant for 
($9. . *,x,+1 ) E T,( P, x1), Proposition W yields 

Pr{X2=x2,..., x,=x*(~;*)=P,x~=xl} 

IT,-nt+lw~ %?Jl = 
IT,(K 41 

c:.,( P’) = 
I-I 

F,:,(P) x: k(x)> 0 

. ~,:k(~~)>Otf(x,~)...(f(x,y)-k(x,y)+l)] 

‘. f(x)*.-(f(x)-k(x)+l) 

e&t P’> 
l-I 

= F,:,(P) x:k(x)>o 

. y:k~~l>o[P(x~Y)*.-(P(x~y)- k(x7y)-1)] 
n 

k(x)-1 
3 

n 

where f(x) = F,,f(x, y), k(x,) =E,k(x; y), and V is the 
common last element x,+~ of the sequences in T,(P, xl). 
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whenever n 2 n,, say. Since (52) holds for every P E 
U(P*, e)n P,,(xl) and n 2 no, it follows that 

We claim that for n -+ bo the last expression in (55) 
converges to 

n ( n 
x: k(x) > 0 .)/: k(x,p) > 0 

p(,,y)x’“+--Qx’) jPr{X2=x 2,“‘, x, = Xml@J2) E IT, x1 = x1} 

- P*m(X*; f *, %nlx,) 1-c 217 (60) 

if n 2 max(n,, nl). This proves (20). 
If instead of (18), only (19) is postulated, we claim that 

(60) still holds at least for those sufficiently large n that 

= ~fJ’(Xi+llXi) (56) 

uniformly for (xi,. . a, x,) E X” and P E P,(xi) such that 

p(x,, xi+l) 2 6, i =I,-. . , m, (57) 
satisfy 

where 6 is an arbitrary but fixed positive number. Pr { Xl = x#J2) E II} 2 17. 

As (57) means that P(x,y)26 if k(x,y)>O, this 
claim will be established if ,we show that F,:?( P’)/F&( P j 

In fact, Lemma 2 c) (with the condition 

-+l uniformly; subject to (57). This is nontrivial, because 
guarantees that 

even though the numerator and denominator will be arbi- 
trarily close to each other if n is large, both may be 
arbitrarily close to 0. Actually, this is the point where we 
need Lemma 4. 

(61) 

Xl = u deleted) 

if n2n2, say. As this inequality’implies (59) if (61) holds, 
we get, as claimed, that (60) holds for n 2 max(n,, nJ 
satisfying (61). But then the left side of (60) multiplied by 
Pr{ Xl = x,lP, c2) E II} will be less than 217 for every n 2 

max(n,, n2). This proves (21). 

Now, as r’(x, y) 2 6 if k(x, y) > 0, (54) gives 
n m 

n-m+1 - (n-m+1>s 

P’(% Y) 

s P(X,Y) 

il 
3 

n-m+l’ 
if P(x, y) > 0. 

Thus S( P') = S(P) if n > ma-‘; further, P’(x, y)/P(x, y) 
and hence also P’(x)/P(x) and P’(ylx)/P(ylx) converge 

Proof of Theorem 3: Since P* is irreducible, S(P*) = 
X, thus 

Remark: After having submitted this paper, we learned 
from Persi Diaconis that Zaman [18] (cf. also Zaman [is]) 
had obtained results similar to (52) in a different context. 
The goals and method of his work were quite different 
from ours, and we could not easily determine whether his 
results could also have been used to prove Theorem 2. 

for all (xl; . . , xm) E X”‘. As P* is also aperiodic, to any 
n > 0 there exists a k such that the k-step transition 
probabilities of the Markov chain determined by P* differ 
by less than TJ from the stationary probabilities; that is, 

uniformly to 1 if (x, y) E S(P). Hence for n > ma-‘, the m-l 

same Q, appears in the expansions of F,:,( P’) and F,$( P) P*yX2;**, 
by Lemma 4, and the ratios of those corresponding terms 

x,Ix1) = iQ1 p*(xi+llxi> 

which do not both vanish converge to 1 uniformly as 
n -+ co. Since all terms are nonnegative, this implies the 
desired uniform convergence F,:m( P')/F,:l( P) --) 1. 

If (Xi,. * *, x,) E X” satisfies 

(x~,x~+~)ES(P*), i=l;..,m-1, (58) 

then (57) holds for all, P E lJ(P*, e) if c is sufficiently c 
p*(k+l) bz,*-‘, Uk, xlu) - P*(x) < Tj 

small (with any 6 such that S + E is less than the smallest 
(u,;~~.u,)EXk- 

positive P*(x, y)). Thus by the result just proved, Pr { X, for every u and x in X. Fixing such a k, apply (52) to 

=x . . . . X, = xmlPn = P, Xi = xi} will be arbitrarily 
closi’to (56), and hence also to P*m(x2,.. 

k + m instead of m and (X]-ki1n instead of 9. It follows 

‘,X&J, uni- that for any (ul; . *, uk, x1,.. ., x,,J E Xk+m, 
formly for all P E P,(xJn U(P*, e), if E is sufficiently 
small and n is sufficiently large. 

Pr{ x2=u2,“-, xk=uk~xk+l=xl~*--~ 

X k+m =XmJF;2)=P,Xl=U1} This already proves (52) for (x2;. ., x,) E X”-l with 
the property (58). As EP*"'(x~;~~,x~~x~) for all these 

(X2,’ . *3 x&j (with xi E S(F*) fixed) is 1, this in turn differs by less than ]X]-k+‘~ from 

implies that for all other (x2; . ., x,,,) E XmV1,*the condi- 
tional probabilities Pr { X, = x2, *, . . , X, = x,] P,‘“) = P, Xl 
= xi} must be close to 0 uniformly for P E Z’,(q)17 
U( P*, e j. This completes the proof of (52). 

Now suppose that P* is the Markov I-projection of W 
on II, and (18) holds for ZJ = xi. Then by the equivalence 
2) - 3) in Lemma 2 part c), we have 

Pr{fiJ2)EU(P*,~)]~~2)EII,Xl=xl} >l-)7 (59) 

if PE P,(t+)nU(P*,c) and nkn, (with suitable E and 
no). Summing for all (u,; . *, uk) E Xk-‘, we obtain that 
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Of course, this result is not affected when shifting the 
starting point of time, say by i = 1 - k; i.e., we also have 

,I -1 

2*(x,) n P*(x ,+A) ~211 (62) 
r=l 

whenever P E U(P*,c)n P,-,(u) and n -i 2 no, i = 1 -k. 
Here 12 k is arbitrary, it may depend on n, while k 
(depending on n) is fixed as above. 

Now, the hypothesis (19) implies by Lemma 2 c) that 

lim Pr{~~2)EU(P*,c’)l~~2)EH} =l, 
PI + cc 

for every f’> 0. (63) 

Further, there exist E’ > 0 and 6 > 0 such that in (49) of 
Lemma 5, 

min D(P’IIP(.I.)) >6, 
P’EU(P.E) 

for all P E U( P*, c’), 

(64) 

if n - i is sufficiently large. In fact, otherwise for certain 

;tPT[[‘,,‘, 
* and P’ +Z U(P*, ~/2) we would have 

(. 1.)) --) O,“xwhere Pink should be a possible 
valueh ofnhP~~~i, with nk - i, + co. Picking a convergent 
subsequence of P,‘,, the last condition implies that its limit 
P** must be in R(i), while by the previous ones P** # P* 
and D( P**ll P*(. 1.)) = 0. This contradicts the irreducibil- 
ity of P*. 

On account of (63) (64), and Lemma 5, for any se- 
quence of integers i, with 1 I i, I yn (for some fixed 

Y <l>, 

PI 
lim Pr(~~~~,,EU(P*,r)l~~)EH) =l, 
+ 00 

for every c > 0. (65) 

Since Pr { Pi,‘.‘) E U( P*, ~)lIjn(~) E II > 1 - n and (62) imply, 
using the Markov property, that 

Pr{ X/+l=xl,...,X,+m=x,IBEII} 

m-1 

-p*(xl> n p*(xi+llxi> <311, 

i=l 

this proves (22) for the case when I, -+ cc, 1, < yn. 
If instead of I,, < yn only n - 1, + 00 is assumed, our 

proof of (65) breaks down when n - i, goes to infinity too 
slowly. In the case 1, > yn, however, a similar argument 
can be used looking at the sample “backwards.” More 
specifically, we then set i = I+ m + k (rather than i = 
1 - k), we use instead of (65) the fact 

Pr{~~(2)EU(P*,t)l~~2)En} -1, for every E > 0, 

(also a consequence of Lemma 5), and we use instead of 
(52) its analog for the terminal m-tuple of the sample 
(giving the role of n and m to i and m + k). 

Proof of Theorem 4: Since E is an irreducible subset 
of X2, there exists P, E A$) with S( P1) = E. By assump- 
tion, some PO E A$) satisfies (24) and consequently so does 
Ps = (1 - /?)P, + BP1 if /3 > 0 is sufficiently small. Hence 
the set of those P E A$) which satisfy (24) with S(P) = E 

is nonvoid; denote it by Hb. Clearly, II;, is a subset of the 
“irreducible interior” III’ appearing in Lemma 2 b). As 
every P E II, belongs to the closure of II6 (take P = 

limp,,Kl - PIP0 + PPI with any PO E II;), Lemma 2 b) 
applies and gives (18) and (19). Further, II, = A$ n II 
satisfies the hypotheses of Lemma 1, thus the Markov 
I-projection P* of Won II0 exists and S(P*) = E. Now 
the remaining assertions of Theorem 4 follow from Theo- 
rems 2 and 3. 

IV. COMMENTSANDCOUNTEREXAMPLES 

The large deviation result (19) cannot hold for arbitrary 
II c Ac2). It may well happen, e.g., that II does not contain 
any P E P,(u), even though min,,nOD(PIl W) is finite. 
This is also possible when II is required to be convex. A 
necessary and sufficient condition for (19) appears in 
Lemma 2 b); that condition, however, may not be easy to 
verify. One merit of the sufficient condition given in 
Lemma 2 b) is that it easily applied to the important 
situation of Theorem 4. 

The first example shows that for the convergence of PF) 
in conditional probability to the Markov I-projection, the 
latter need not be irreducible. 

Example 1: Let Xl, X2, * * * be i.i.d. random variables 
uniformly distributed on X= {O,l}; thus W(ylx) =1/2 
for all (x, y) E X2. Let 

II = {P: P(l,O)P(O,l) = 0, 

- P(l,O) I P(1) - P(0) I P(O,l)}. 

Then II, consists of a single distribution P* with P*(O,O) 
= P*(l, 1) = l/2 and this P* is the Markov I-projection of 
W on II,. The second-order type of a sequence x = 
(x1; * *)x,+1) E xn+l belongs to II iff its first [n/21 
digits are O’s and the others are l’s, or the first [n/2] 
digits are l’s and the rest are O’s (where [ 1 denotes 
“smallest integer not less than”). In this example, the 
mutally equivalent conditions in Lemma 2 c) are clearly 
fulfilled (both for u = 0 and u = 1) and the assertions of 
Theorem 2 are immediately obvious. 

Notice that the Markov I-projection P* enters the asser- 
tions of Theorem 2 through the conditional probabilities 
P*( .I.) only. A minor modification of the proof shows that 
instead of the existence of Markov I-projection, i.e., of a 
unique P* minimizing D(PIIW) subject to P E II,, it 
suffices to adopt the weaker hypothesis that for any two 
minimizing -Pl* and P2*, both P1*(. 1.) = P2*(. 1 a) and 
S(Pi*) = S(P,*). By Lemma 1, the first one of these 
conditions is always satisfied if II, is convex. It appears 
likely that in the convex case, the last condition can be 
dispensed with, so that then (18) with u = xi always im- 
plies (20) whenever x1 E S( P*) for some P* E II, minimiz- 
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ing D(PIIW). In general, however, the uniqueness of function h (the indicator of the point (O,O)), and FL’) E II 
P*(. 1.) is not a sufficient substitute for that of P* in means that the count of (0,O) pairs in the sample 
Theorem 2, as the second part of the following example X,, . . . , X,,, 1 is at least an. By Theorem 4, the assertions 
shows. (18)-(22) are valid in this case, where P* minimizes 

Example 2: Let Xl, X2. . . be as in Example 1. Then for 
rI = {P: P(l,O) = O}, II0 consists of all distributions with 

c P(X? YhP(Yl4 

P(O,O)+ P(l,l) =l, and D(PIIW) = log2 is constant for 
(Jr,.I,) fz {0,112 

P E II,. Thus P* is not unique but P*(. 1.) is, and it 
subject to P(O,O) 2 (Y and P(O,l) = P(l,O). This example 

equals the unit matrix. Clearly, Theorem 2 is valid with represents about the most regular case conceivable. We 

this- P*(. 1.). On the other hand, let II = {P: P(O,O) = 1 
claim that (26) is false even in this “nice” case. 

or P(O,O) = 0, P(O,l) = 2P(l,O)}. Then II, consists of 
two elements, concentrated on (0,O) and (1,l); both achieve 

th~~~~p~~~te.by,%X anda$,2Xhe co,“it of (“O) pa!s in 

min D(PjIW) subject to P E II,, and P*(.l-) is again the 
In view of (2lri, our ciaiim will b3e’ establrshid 

respectively. 
if we show 

unit matrix. Now an (xl;. ., x,+i) E {O,l}n+l with xi = 0 
that 

belongs to II if and only if either xi = 0, i =l; . ., n + 1, Pr { Xi = OIN, 2 an } - Pr { X2 = OJN, r an } 

or xi=1 for i=2;.., n + 1 except for exactly one i 5 n. does not tend to 0 as n -+ cc. This difference equals 

Pr{X,=O, X2=1, N,>cun}-Pr{X,=l, X2=0, N,Twz} 

Pr{N,lan} 

1 Pr{N,,22an}-Pr{Nn,22~norX3=0, Nn,2=~~n]-l} 
=- 

4 Pr{N,lan} 

1 Pr{N,,,= [an]-11X,=0} 
=-- 

8 Pr[N,l(vn) . . 

As all these sequences have probability 2-“-i, we see that 
(18) is valid. Further, for u = 0, 

so that the assertion of Theorem 2 does not hold in this 
case. 

The next example shows that the aperiodicity of P* is 
essential for Theorem 3. 

Example 3: Let Xi, X2, . . . be i.i.d. Bernoulli random 
variables with Pr { X, = 0} = q, 0 -c q <l/2. Let II be the 
set of those distributions P on (0, l}’ for which P(O,O) = 
P(l,l) = 0. Then II, consists of a single distribution PO 
with P,,(O,l) = P,(l,O) =1/,2, and (18) and (19) hold as 
does (20). The condition PJ2) E II now means that the 
sample Xl;. ., X,,, is an alternating sequence of zeros 
and ones. The two possible such sequences of length n + 1 
are equiprobable if n is odd and have probabilities qa, 
and (l- q)a, if n is even, where a, = q”i2(1 - q)“12. It 
follows that for every 0 4 i I n + 1, 

Pr{Xi=01?~2)EII} 

i 

1 
2 ) if n is odd 

= 4, if n is even and i is odd 

l-q, if n and i are even. 

Thus in this example, lim n.+,Pr{X,~=01?~2)EII} does 
not exist for any choice of 1,. 

Example 4: Let Xl, X2. . . be i.i.d. random variables 
uniformly distributed on X = {O,l}. Let II be the set of 
those distributions P on X2 for which P(O,O) 2 (Y, with 
l/4 < (Y < 1. Then II is of the form (ll), with a single 

where [ 1 denotes “smallest integer not less than.” Using 
Proposition W, a simple calculation shows that this does 
not tend to zero as n -+ co; thus (26) is, indeed, false. 

The results in this paper easily generalize to kth-order 
empirical distributions with k > 2, i.e., to events F,,(k) E II 
where II is now a subset of Ack); at the same time, the 
hypothesis on Xl, X2, . . . may be weakened to Markovity 
of order higher than 1. If Xl, X2 is a Markov chain of 
order k - 1 with 

Pr{ Xt+k=xklXt+l=X1?‘~‘~ &+k-l=Xk-l} 

= w(x,lx,,’ ’ *> xk-l), l=O,l;.., 

then Y,, Y2,. . . defined by Y = (Xi;. ., Xi+k-2) is a 
(first-order) Markov chain wjth state space Xk-’ and 
transition probability matrix W where 

=I 

w(x,lx,,’ ’ ‘3 xk-1), if (xi;. ., xi-,) 
= (x2,-‘,xk) 

0, if (xi,. . . 9 XL-2 > . 

# (x,,’ ’ ‘> xk-l) 

For any distribution P E Ack’, let j denote its image 
under the mapping (x1;.., xk) --) ((xl;. ., xkpl), 

(x2,. . .> xk)). Then PJk) E II if and only if the second- 
order empirical distribution of Y,, . . t Y,, I belongs to 
fi={p:PEII},andforelementsof Ilwehave 

p(xklxl,-,xk-l) 
D(pII’)= c ‘txl,’ -,xk)log w(xklx, . . 

x1 / , Xk > hxk-l) ’ 

(66) 
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The extensions of Theorems l-3 to kth-order empirical 
distributions of Markov chains of order k - 1 are obtain- 
ed by applying these very theorems to the Markov 
chain Y,, Y,, *. . . In these extensions, the role of 
mm,, ,OD(PIIW) will&e played by the_minimum of (66) 
for P E cl II with F = P where p and P are now defined 

bY 

P(x,; . * > xk-l) = ~p(xl,’ * *, xk), 
Xk 

F(x2; *. , xk) = ~p(xl,* * ‘, xk)- 
x1 

(67) 

The role of the Markov I-projection will be played by the 
(k-dimensional) distribution attaining this minimum, and 
instead of the Markov chain determined by the former, we 
will have the Markov chain of order (k - 1) determined by 
the latter. Notice that I@ has many zeros, and the support 
of each P E I? is contained in a proper subset of Xk-’ X 
Xk-‘. Hence for the extensions of Theorems 2-4 just 
mentioned, it is essential that the hypotheses of these 
theorems do not require a strictly positive transition prob- 
ability matrix, nor the existence of a P E II, with support 
S(P) = x2. 

We formulate explicitly only the extension of Theorem 
4. To this end, let a subset E of Xk be called irreducible if 
to any (Xl,. * *, xkwl) E Xk-’ and x E X there exist some 
12 k and elements xk,. * a, x, of X with x, = x such that 
(x~,...,x~+~-~)EE, i=l,~~~,l-k+l.Ifsuchxk,~~~,x, 
exist for every sufficiently large 1, we say that E is 
aperiodic. 

Theorem 5: Let E be a given irreducible subset of Xk 
such that W(xklxl; . ., x~-~) > 0 for each (x1;. ., xk) E 
E. Let h,,: . ., h, be given functions on Xk and ,x1,. . . ,1y, 
be constants, and put 

x,+k-l) E E, i=l;.*,n . 
I 

Then there exists a unique P” E Ack) minimizing 

subject to 

and 

S(P)cE, P=P (68) 

C P(~l,...,Xk)hj(Xl,...,~k)2aj, 
II, , , XL 

j=l;..,r, (69) 

whenever there exists some P E Ack) satisfying (68) and the 
strict inequalities in (69). In this case for every m 2 k and 

(XI,. . ., x,,) E X”‘, 

lim Pr{Xk=xk;..,Xnt=x,IA,, 
II + 02 

x~=xl,~~*,xk-~=xk-l} 
m-k 

= ;Fo P*(Xi+klXi+l,‘. ’ ) Xi+k-l)’ 

If, in addition, E is aperiodic, then for any sequence of 
integers I,, with 1, + 00, n - 1, + co, 

II 
lim Pr{ X,,,+l=xl,...,X,,+m=x,lA,} 
+ cc) 

m-k 
= P*(xl,. . . 

) xk-l) ;F, P*(xj+k~Xi+l~‘~ ‘2 Xi+k-1). 

V. CONCLUSIONS 

If x1, x2,. a. is a Markov chain with transition prob- 
ability matrix W, the probability that Xi,. . *, X,,, 
has second-order type pJ2) = P is approximately 
exp { - nD( PJJ W)}. S ince these probabilities decrease ex- 
ponentially in n, the exponent of the probability that 
@?,(“) E II is determined by those second-order types in II 
which are close to P*, where P* minimizes D(P/W) over 
all P E II having equal marginals. Thus, under certain 
regularity conditions, Pr { Ei,‘*’ E II} will be approximately 

exp { - WP*llW}, and the conditional probability that 
@c2) is near P* given that @ c2)~II tendstolasn+oc.It 
is”then expected that the dnditional joint distribution of 
the Xi’s, given that P, * c2) E II, will be close to the distribu- 
tion of the Markov chain determined by P”. In fact, using 
the exact formula for the number of sequences of a given 
second-order type starting with a given x1 E X, and using 
the fact that all such sequences have the same probability, 
we have proved that 

Pr{X2=x2;-*, Xm=Xm(pEII, x,=x,} 

m-1 

+ p1 p*(-%+ll~i> 

as n + cc. The initial state Xl = x1 requires special treat- 
ment because 

Pr { Xi = x1, X2 = x2; * ., X, = xml&2) E II} 

does not converge to the unconditional Markov probabil- 
ity 

m-l 

P*k> ,Ql p*(~i+ll~i>. 

This sensitivity to end effects can be eliminated by looking 
at interior segments, where it is indeed true that 

Pr X,,,+1=x1,...,X,,+ml~~2’EH) 
f 

m-l 

--) p*(xl> iQl p*(xi+llxi) 

if both 1, and n - 1, go to infinity as n -+ 60. These results 
are then specialized to 

P: CP(x,y)hj(x,y)2aj> j=l,*..,k 

X,Y 



CSISZ~R et (II.: CONDITIONAL LIMIT THEOREMS UNDER MARKOV CONDITIONING 801 

in which case the condition @,,(‘) E II is identical to 

Our results support the so-called “maximum entropy” 
or “minimum discrimination information” principle: If 
new information requires “updating” of an original prob- 
ability assignment, the new probability assignment should 
be the closest possible to the original in the sense of 

Kullback-Leibler information divergence. 

APPENDIX 

Proof of Lemma I: Let P* E III, minimize D( PII W) subject to 
P E II, (since II, is closed, such a P* surely exists) and pick an 
arbitrary P E III,. Then 

P,=CYP+(l-a)P*ErI, 

for every 0 5 (Y 2 1 (by convexity) and D(P,IIW) is minimized for 
a = 0. A simple calculation yields, for 0 < (Y ~1, 

P,(X,Y> 
;qPAlw) = c (p(x~Y)-p*b~YNl%p (x)w(yJx). 

X,Y n 

AS 

Pa(X,Y> 

cEo F,(x) i 

P*(x,y)/F*(x), ifxES(P*) 

=’ P(x,y)/P(x), ifxES(P)-S(F*), 

it follows that 

odiliO;D(P#v) 

= c c (p(x~Y)-p*(x,Y))log- 
p*tx,y) 

xcs(P*) ysx p*(x)w(Ylx) 

+ c c P(X~Y)l% - 
P(X7Y> 

P(X)WYb) . 
(A.11 

xEX--S(F*) yax 

One consequence of (A.l) is that P*(x, y) > 0 whenever P(x, y) 
> 0 and P*(x) > 0. In particular, if P is irreducible, then 
necessarily S(P) c S( P*). This means that P* is irreducible if 
II,, contains some irreducible P. As, by convexity, there exists 
P E II, with S(P) = S(II,), this proves that S(P*) = S(&,) if 
S( II,,) is irreducible. Then S( F*) = X and thus (A.l) gives (15). 

To prove the last assertion and the uniqueness of P* in the 
case when s(II,) is irreducible, suppose that P;” and P2* both 
attain min D( PII W) subject to P E II,, and set P* = CUP;” +(l- 
CX) P2* (0 < (Y < 1). Then by the identity (51), it follows that 

D(PTJJP*(+)) =D(P,*I(P*(+)) =o, 

for otherwise D( P*llW) would be strictly less than D( P;” 11 W) = 

D(~~IlW). Thus P;“(.lx)= P;“(.Ix)= P*(.(x) for XES(P~)~ 
S( P,), as claimed. If S(II,) is irreducible, then a P* attaining 
min D( Pll IV) must be irreducible. Hence, the last result means 
that P* is unique. 
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