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Chromosomal translocations that fuse the mixed lineage

leukemia (MLL) gene with multiple partners typify acute

leukemias of infancy as well as therapy-related leukemias.

We utilized a conditional knockin strategy to bypass the

embryonic lethality caused by MLL-CBP expression and to

assess the immediate effects of induced MLL-CBP expres-

sion on hematopoiesis. Within days of activating MLL-CBP,

the fusion protein selectively expanded granulocyte/

macrophage progenitors (GMP) and enhanced their self-

renewal/proliferation. MLL-CBP altered the gene expres-

sion program of GMP, upregulating a subset of genes

including Hox a9. Inhibition of Hox a9 expression by

RNA interference demonstrated that MLL-CBP required

Hox a9 for its enhanced cell expansion. Following expo-

sure to sublethal c-irradiation or N-ethyl-N-nitrosourea

(ENU), MLL-CBP mice developed myelomonocytic hyper-

plasia and progressed to fatal myeloproliferative disorders.

These represented the spectrum of therapy-induced acute

myelomonocytic leukemia/chronic myelomonocytic leu-

kemia/myelodysplastic/myeloproliferative disorder simi-

lar to that seen in humans possessing the t(11;16). This

model of MLL-CBP therapy-related myeloproliferative

disease demonstrates the selectivity of this MLL fusion

for GMP cells and its ability to initiate leukemogenesis in

conjunction with cooperating mutations.
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Introduction

Hematopoiesis, the highly regulated process that produces

mature blood cells, depends on the coordinated proliferation,

differentiation, and survival of hematopoietic stem cells

(HSCs) and their committed progenitors. An additional level

of regulation is imposed on the HSC, which is the only

population capable of sustaining lifelong hematopoiesis by

undergoing self-renewal (Spangrude et al, 1988). Distortion

of any of these cellular programs is potentially oncogenic and

might contribute to leukemia.

Leukemia-associated chromosomal translocations have

revealed the identity of multiple transcriptional regulators

that control normal hematopoiesis (Rabbitts, 1994). The

mixed lineage leukemia (MLL) protein represents one

such transcriptional regulator. Chromosomal rearrange-

ments of the MLL gene typify acute leukemias of infancy as

well as therapy-related leukemias (Hunger et al, 1993;

Super et al, 1993; Felix et al, 1995; Behm et al, 1996).

However, the critical stage of hematopoietic development

targeted by each MLL fusion protein is unclear. The observa-

tion that leukemic cells bearing an MLL translocation

often coexpress both myeloid and lymphoid markers

raises the possibility that an MLL fusion selectively trans-

forms HSC. If so, this HSC population would have the

inherent self-renewal capacity that might be co-opted

for leukemogenesis. Alternatively, the translocation event

between MLL and a partner gene may affect a more com-

mitted population such as common myeloid progenitors

(CMPs), granulocyte/macrophage progenitors (GMPs), or

common lymphoid progenitors (CLPs). In this scenario,

the MLL fusion protein might confer a self-renewal/prolifera-

tive capacity to these short-lived progenitors to initiate

leukemogenesis. Finally, we require further models to

define the downstream mechanism by which MLL fusion

proteins disrupt the delicate balance of hematopoietic

self-renewal/proliferation and differentiation to result in

leukemogenesis.

MLL is involved in chromosomal translocations with

more than 40 different cytogenetic loci. Of these, the

t(11;16)(q23;p13) that fuses MLL to CBP (CREB binding

protein) is unique because it is almost exclusively associated

with therapy-related myeloproliferative diseases across the

gamut from acute myelomonocytic leukemia (t-AMML), to

chronic myelomonocytic leukemia (t-CMML) and myelodys-

plastic syndrome (t-MDS) (Rowley et al, 1997; Sobulo et al,

1997; Taki et al, 1997). This is in contrast to other MLL

translocations, such as the t(9;11) and t(4;11), which usually
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occur in de novo acute leukemias. The high incidence of

t-MDS among patients with the t(11;16) further distinguishes

the MLL-CBP fusion from other therapy-related MLL rearran-

gements that are more restricted to t-AML or t-ALL with no

preceding MDS.

The well-characterized biochemical roles of CBP provide

an excellent opportunity to assess its functional contribution

within the MLL-CBP fusion protein to leukemogenesis. CBP

serves as an important coactivator for a diverse set of

transcription factors (e.g. CREB, p53, GATA-1) (Kwok et al,

1994; Blobel et al, 1998; Van Orden et al, 1999). Coactivation

depends on the ability of CBP to recruit components of the

basal transcriptional machinery to promoters. It also depends

on the intrinsic ability of CBP to acetylate both histones and

transcription factors themselves (Bannister and Kouzarides,

1996; Gu and Roeder, 1997; Boyes et al, 1998). We hypothe-

size that one likely mechanism by which MLL-CBP contri-

butes to malignant transformation may involve constitutive

recruitment of CBP to MLL-regulated genes. Our finding that

the activation domain of MLL normally interacts with CBP

and utilizes CBP to activate transcription supports this hy-

pothesis (Ernst et al, 2001). In one testable model, the MLL-

CBP fusion would result in deregulated expression of MLL

target genes that contribute to leukemogenesis.

Gene targeting experiments in mice suggest that MLL

functions as a positive regulator of Hox gene expression

(Yu et al, 1995, 1998). Hox genes are involved in normal

hematopoiesis and leukemogenesis, making them attractive

oncogenic targets for MLL fusion proteins. HOX genes are

differentially expressed in hematopoietic lineages, suggesting

that they may play a role in lineage commitment and

maintenance (Shen et al, 1989; Magli et al, 1991, 1997).

Furthermore, a number of studies have already implicated

HOX genes in hematologic malignancies. Overexpression of

Hox a7 and Hox a9 by proviral integration caused myeloid

leukemia in BXH-2 mice (Nakamura et al, 1996; Afonja et al,

2000). In addition, the t(7;11), which fuses the Hox a9 gene

with the nucleoporin gene NUP98, is implicated in a subset

of acute myeloid leukemias (AMLs) (Borrow et al, 1996).

Together, these findings warrant an assessment of HOX gene

expression in models of MLL fusion leukemia.

In an attempt to assess the transformation capabilities

of MLL-CBP, we generated an Mll-Cbp knockin allele by

gene targeting. However, the standard Mll-Cbp knockin allele

resulted in embryonic lethality of mice and precluded the

use of this system to examine MLL-CBP in leukemogenesis

(data not shown). To circumvent this limitation, here we

generate mice with a conditional Mll-Cbp allele whose

expression can be controlled during murine development.

This allele was created by fusing the Cbp cDNA into exon 8

of Mll and inserting a transcriptional stop cassette flanked

by loxP sequences just 50 to the fusion site (Lasko et al, 1992;

Higuchi et al, 2002). Subsequent excision of the stop cassette

mediated by Cre recombinase then allowed us to assess

directly the effect of MLL-CBP on hematopoiesis in adult

mice. This conditional model of Mll-Cbp also has the advan-

tage of more accurately mimicking the human t(11;16) event

that occurs acutely in a somatic cell of hematopoietic origin

rather than in the germ line. Consequently, we are able to

examine the immediate effects of MLL-CBP expression on

hematopoiesis, avoiding any compensatory event that might

transpire in the setting of a germline knockin.

Results

Conditional Mll-Cbp knockin mice

We generated a knockin targeting construct for the condi-

tional expression of a Cbp cDNA fused with exon 8 of the

endogenous murine Mll gene. The construct was designed to

recapitulate the most common type of MLL-CBP fusion found

in human leukemias possessing a t(11;16) (Sobulo et al, 1997;

Taki et al, 1997) (Figure 1A). A polyadenylation signal from

simian virus 40 (SV40) was placed downstream of the Cbp

translation stop codon, and a PGK-puromycin gene was also

inserted to enable positive selection. In order to regulate

expression of the fusion gene in a lineage- and temporal-

specific manner, we inserted a transcriptional stop cassette

flanked by loxP sites just 50 to the site of Mll-Cbp fusion

(Figure 1B). This cassette arrests transcription within its

sequence, and prevented expression of full-length Mll-Cbp.

Subsequent excision of the stop cassette, mediated by Cre

recombinase, would enable expression of Mll-Cbp from the

endogenous Mll promoter.

Embryonic stem cells possessing the correct, homologous

recombination of the targeting construct were verified by

Southern blot and used to achieve germline transmission of

the knockin allele (Figure 1C). We always tested mice hetero-

zygous for this conditional knockin allele, Mll-CbpSTOP, which

were born at the expected Mendelian frequency and exhibited

no obvious abnormalities. RT–PCR analysis confirmed the

absence of Mll-Cbp expression in multiple tissues (data not

shown). In order to be able to activate expression the Mll-

CbpSTOP fusion allele in adult mice, we introduced the Mx-Cre

transgene in which Cre recombinase expression can be

activated by induction of interferon through administration

of polyinosinic-polycytidylic acid (pI-pC). Mx-Cre Mll-CbpSTOP

mice (4 weeks old) and control littermates received three

intraperitoneal injections of pI-pC over a 6-day period. To

assess the in vivo efficiency of Cre-mediated excision, we

determined the level of deletion of the stop cassette in various

hematopoietic tissues by Southern blot. High levels of Cre-

mediated excision were achieved in the bone marrow (BM),

liver, spleen, and thymus (Figure 1D and E). Furthermore,

RT–PCR analysis confirmed expression of the Mll-Cbp fusion

gene in those tissues following pI-pC treatment (Figure 1F).

MLL-CBP induced myeloid hyperplasia

To study the immediate effects of MLL-CBP, we monitored

myeloid and lymphoid hematopoiesis in Mx-Cre Mll-CbpSTOP

mice following the pI-pC treatments. There was no significant

difference in total white blood cell count or differential counts

between the Mx-Cre Mll-CbpSTOP mice and treated control

littermates. We also performed flow cytometric analysis

(FACS) of BM cells, splenocytes, and thymocytes, and noted

no significant differences in the lymphoid compartments.

However, we consistently observed an increase in Mac-1þ/

Gr-1þ myeloid cells in Mx-Cre Mll-CbpSTOP BM. This myelo-

monocytic expansion was evident as early as 4–10 days

following the last pI-pC treatment and was still present 4

weeks following activation of the Mll-Cbp allele (Figure 2A

and B). Histological examination of the BM revealed hyper-

cellularity with maturation of the myelomonocytic cell series

(data not shown). The onset of myeloid hyperplasia within

days of activating MLL-CBP expression indicates that MLL-

CBP alone is sufficient to induce myeloid hyperplasia.
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MLL-CBP increases GMP cells

The myeloproliferation induced by MLL-CBP could reflect a

direct effect of the fusion protein on HSCs and/or myeloid

progenitors. To explore this, we assessed the frequency of

cells that mark as HSCs and committed progenitors by FACS

in Mx-Cre Mll-CbpSTOP mice at 3 weeks following pI-pC

treatments. The percentages of HSCs, CMPs, and megakar-

yocyte/erythroid progenitors (MEPs) in the BM of Mx-Cre Mll-

CbpSTOP mice were similar to that of control littermates

lacking the MLL-CBP fusion. However, GMPs were substan-

tially increased in Mx-Cre Mll-CbpSTOP mice (Figure 3A).

Analysis of the total number of HSC, CMP, GMP, and MEP

cell populations in the BM indicated that Mx-Cre Mll-CbpSTOP

mice had an average three-fold increase in GMPs (Figure 3B).

In contrast, the CLP compartment was decreased in the BM of

Mx-Cre Mll-CbpSTOP mice (Figure 3A). Furthermore, the total

number of CLP was reduced by about three-fold (Figure 3B).

Together, these data indicate that MLL-CBP selectively
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expanded progenitor cells with GM differentiation potential,

warranting exploration of the mechanism.

Enhanced replating efficiency of MLL-CBP-expressing

HSC, GMP, and CMP

To determine which hematopoietic progenitor populations in

Mx-Cre Mll-CbpSTOP BM express the Mll-Cbp fusion gene, we

purified cells that mark as HSC, CLP, CMP, GMP, and MEP by

their cell surface markers. Mll-Cbp transcript was detected in

all of these progenitor populations by RT–PCR (Figure 4A).

High levels of MLL-CBP expression were noted in CLPs

although Mx-Cre Mll-CbpSTOP mice did not display detectable

abnormalities in lymphopoiesis. The isolated expansion of

GMP despite widespread expression of MLL-CBP argues for a

lineage-specific effect of MLL-CBP on myelomonocytic pro-

genitors.

To assess whether MLL-CBP might enhance the self-renew-

al/proliferative capacity of HSC or committed myeloid pro-

genitors, we turned to an in vitro serial replating assay.

Purified HSCs, GMPs or CMPs were plated in methylcellulose

cultures under conditions optimal for the differentiation of

multipotential progenitors. HSCs and progenitors derived

from control littermates exhausted their proliferative capacity

after a single round of replating and yielded very few sec-

ondary and tertiary colonies (Figure 4B). Instead, large

mature macrophages dominated these plates, indicating that

induction of terminal differentiation accompanied the loss of

clonogenic potential. In contrast, HSC, GMP, and CMP cells

expressing MLL-CBP demonstrated an enhanced proliferative

potential continuing to generate colonies upon serial replat-

ing (Figure 4B). The MLL-CBP-expressing MEP cells did not

demonstrate clonogenic activity in this assay (data not

shown). The majority of the colonies initiated from HSC,

GMP, and CMP populations were granulocyte–macrophage

colonies consistent with MLL-CBP selectively affecting pro-

genitors capable of giving rise to these differentiated cell

types. Cytospin analysis of these colonies revealed the pre-

sence of myeloblasts as well as mature macrophages and/or

mast cells, indicating that MLL-CBP does not completely

block myelomonocytic differentiation (Figure 4C).

We utilized a long-term reconstitution assay to test

whether MLL-CBP can enhance the self-renewal/proliferation

of progenitors in vivo. To this end, we examined the ability of

MLL-CBP-expressing HSC cells, the only preleukemic cell

type with long-term repopulating abilities, to reconstitute

the marrow compartment of lethally irradiated mice. Over a

3-month period, the Ly5.2 marked MLL-CBP cells increas-

ingly comprised a much higher percentage of the Gr-1þ
compartment in PB when compared to controls, which is

consistent with our in vitro observation that MLL-CBP can

enhance the self-renewal/proliferation of myeloid progenitors

(Figure 4D).

MLL-CBP alters the genetic program of GMP

To elucidate the mechanism by which MLL-CBP enhanced

the self-renewal/proliferation of GMP, we conducted gene
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expression profiling of purified GMP population. About

10 000 triple-sorted GMP cells were isolated from Mx-Cre

Mll-CbpSTOP mice and littermate controls at 5 weeks following

pI-pC treatments. Extracted RNA was amplified by two

rounds of in vitro transcription, biotinylated, and applied to

Affymetrix Mouse Expression Array 430A, which contains

Generation of plating
1 2 3

HSC1000

800

600

400

200

0N
um

be
r 

of
 c

ol
on

ie
s/

10
4  

ce
lls

W
BM

HSC
CLP CM

P
GM

P

Mll-Cbp

M
EPA

B

CMP600

500

400

300

200

0

100

N
um

be
r 

of
 c

ol
on

ie
s/

10
4  

ce
lls

Generation of plating
1 2 3

GMP

N
um

be
r 

of
 c

ol
on

ie
s 

/1
04

 c
el

ls

600

500

400

300

200

0

100

Generation of plating
1 2 3

Mx-Cre; +pI-pC
M-Cstop; +pI-pC
Mx-Cre M-Cstop; +pI-pC

0

10

20

30

40

50

60

70

80

90

%
 L

y5
.2

+
 G

r-
1+

 c
el

ls

Weeks post-reconstitution
4 8 12

Mx-Cre; +pI-pC
M-Cstop; +pI-pC
Mx-Cre M-Cstop; +pI-pC

C

D

Figure 4 Enhanced replating efficiency of MLL-CBP-expressing GMP. (A) RT–PCR analysis for the Mll-Cbp transcript in HSC, CLP, CMP, GMP,
and MEP cells. MLL-CBP is expressed in all of these cell populations. (B) Purified HSC, CMP, GMP cells were serially replated in methylcellulose
culture. Bar graphs show the number of colonies obtained after each round of serial replating (the mean and s.d. of triplicate cultures are
indicated). Similar results were obtained from two experiments. (C) Morphology of a typical tertiary colony derived from the MLL-CBP-
expressing HSC, CMP, or GMP cultures. Cytospins of these colonies revealed the presence of myeloblasts and terminally differentiated
macrophages. (D) Percent of donor-derived mature myeloid cells (% Ly5.2þGr-1þ ) as assessed by FACS of peripheral blood (PB). Percentage
values represent the average from 6–8 mice and representative PB smears from a recipient mouse that was reconstituted with MLL-CBP-
expressing HSC, which show mature neutrophils, monocytes, and lymphocytes (magnification � 60).

MLL-CBP initiates myeloproliferative disease
J Wang et al

&2005 European Molecular Biology Organization The EMBO Journal VOL 24 | NO 2 | 2005 373



approximately 22 600 probe sets (data can be accessed at

ArrayExpress, accession number E-MEXP-213). We assessed

for genes differentially expressed in the Mx-Cre Mll-CbpSTOP

sample as compared to controls that lacked the fusion gene

(Figure 5). The classes of genes represented included signal-

ing molecules, putative oncogenes, kinases, cell surface

molecules, and other transcription factors. Collectively,

these results indicate that MLL-CBP has a direct effect on

the gene program of GMPs.

Hox a9 is required for maintaining MLL-CBP-mediated

cell expansion

One of the most striking results of the microarray analysis

was that Hox a9 is upregulated by MLL-CBP. Using real-time

PCR analysis, we confirmed that MLL-CBP increased Hox a9

expression in GMP cells and the fold of induction was in close

agreement with the microarray data. In addition, we found

that the presence of MLL-CBP also upregulated Hox a9

expression in HSC, CLP, CMP, and MEP cells (Figure 6A).

This result is consistent with recent data from several groups

demonstrating an upregulation of HOX A9 expression in

human MLL fusion-bearing leukemias (Armstrong et al,

2002; Yeoh et al, 2002; Debernardi et al, 2003).

To test whether the high level of Hox a9 expression may be

critical for MLL-CBP-mediated expansion of BM progenitors,

we inhibited endogenous Hox a9 by RNA interference

(RNAi). Three short-hairpin RNAs directed against Hox a9

(shRNA-A9) were constructed and the efficacy of these

shRNAs in reducing Hox a9 expression was confirmed by

quantitative PCR analysis (data not shown). To investigate

the effects of reduced Hox a9 expression on MLL-CBP-

mediated expansion of progenitors in vitro, we transduced

BM cells with each of the three shRNA-A9 and subsequently

plated the cells in methylcellulose culture. We observed that

inhibition of Hox a9 expression significantly reduced the in

vitro growth of MLL-CBP progenitors (Figure 6B and C). Each

of the sh-RNA-A9 reduced the size as well as the number of

colonies (Figure 6B and C). In contrast, a control shRNA

directed against GFP did not substantially affect the colony-

forming capacity of MLL-CBP-bearing BM cells. Taken

together these data indicate that Hox a9 is a critical

downstream target of MLL-CBP, required for maintaining

the MLL-CBP mediated growth and expansion of progenitors.
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We also tested the effects of Hox A9 overexpression on the

replating efficiency of BM progenitors. We again utilized the

in vitro serial replating assay as described previously. Wild-

type BM cells were infected with a retrovirus that encoded for

human Hox A9 and subsequently plated in methylcellulose

culture. Whereas progenitors that were infected with empty

control virus exhausted their growth potential by the third

round of replating, cells that overexpressed Hox A9 continued

to grow and generated numerous colonies after four rounds

of replating (Figure 6D). In summary, these data are consis-

tent with our hypothesis that Hox a9 plays an important role

in MLL-CBP-mediated cell expansion and growth.

Mice expressing MLL-CBP develop ‘therapy-related’

myeloproliferative diseases

A cohort of 11 pI-pC-treated Mx-Cre Mll-CbpSTOP mice were

monitored over an 8-month period and none progressed to

leukemia. Since human t(11;16)-bearing leukemias usually

0

1

2

3

4

5

6

7

8

9

HSC CMP GMP MEPCLP

Hox a9

E
m

pt
y 

v
ec

to
r

R
N

A
i-A

9-
1

F
ol

d 
in

cr
ea

se

Mx-Cre; +pI-pC
M-Cstop; +pI-pC
Mx-Cre M-Cstop; +pI-pC

0 5 11 17 22

To
ta

l c
el

l #

Days

1015

1014

1013

1012

1011

1010

109

108

107

106

HoxA9
Empty vector

0
5

10
15
20
25
30
35
40
45
50
55
60

N
um

be
r 

of
 c

ol
on

ie
s/

50
00

 c
el

ls

Empty vector

RNAi-G
FP

RNAi-A
9-1

RNAi-A
9-2

RNAi-A
9-3

D

C

A B

Figure 6 Hox a9 is required for mediating the effects of MLL-CBP. (A) MLL-CBP upregulated Hox a9 gene expression. As measured by real-time
quantitative PCR, Hox a9 expression was increased in HSC, CLP, CMP, GMP, and MEP cells expressing MLL-CBP when compared to controls.
Relative transcript levels were internally normalized to GAPDH levels. Values represent the average of at least two independent experiments
performed in triplicate. (B) Effects of shRNA-HoxA9 constructs on BM cells expressing MLL-CBP. Three different shRNA constructs directed
against Hox a9 were used (lanes 3–5). Empty retroviral vector and an shRNA construct directed against GFP were used as controls (lanes 1 and
2, respectively) (C) Effects of shRNA-Hox a9 on the size of the colony formation. (D) Effects of Hox A9 overexpression on the in vitro growth
and replating efficiency of BM progenitors. Total cell numbers were counted at the specified days after the initial plating.

MLL-CBP initiates myeloproliferative disease
J Wang et al

&2005 European Molecular Biology Organization The EMBO Journal VOL 24 | NO 2 | 2005 375



follow therapy, we reasoned that additional mutations might

be required to complement MLL-CBP in leukemogenesis. To

test this hypothesis, 4-week-old Mx-Cre Mll-CbpSTOP mice

were treated with pI-pC to activate expression of the fusion

gene and 1 week later were subjected to a single dose of

sublethal g-irradiation (4 Gy). We also treated a cohort of Mx-

Cre Mll-CbpSTOP mice with a single injection of ENU (N-ethyl-

N-nitrosourea) (100 g/kg body weight) following pI-pC treat-

ment. Within 7 months, 60% (9/15) of the g-irradiated

(Figure 7A) and 73% (16/22) of the ENU-treated (Figure 7B)

Mx-Cre Mll-CbpSTOP mice succumbed to a spectrum of mye-

loproliferative diseases resembling the therapy-induced

t-AMML, t-CMML, and myelodysplastic/myeloproliferative

disorder (t-MD/MPD) observed in humans possessing the

t(11;16). In contrast, none of the g-irradiated or ENU-treated

control littermates that lacked MLL-CBP developed myeloid

disease during the same period, indicating that MLL-CBP

was required for the initiation of myeloid neoplasia. Among

the affected Mx-Cre Mll-CbpSTOP mice, anemia, thrombo-

cytopenia, leukocytosis, and splenomegaly were prominent

(Table I). The increased WBC was predominantly mature

monocytes and/or neutrophils with occasional immature

forms present (Figure 7C and F). We never observed any

incidence of lymphoid leukemia among the diseased mice.

However, the spectrum of myeloproliferative disease var-

ied between the g-irradiated and ENU-treated groups. The

g-irradiated mice demonstrated extensive disruption of the

splenic architecture by poorly to moderately differentiated

myeloid cells (Figure 7E) with leukemic infiltrates in the liver,

lung, and lymph nodes (data not shown). BM cytospins

showed a predominance of neutrophilic and monocytic cells

with an increase of immature forms and a variable number of

blast cells (Figure 7D). BM sections were also notable for the

presence of pseudo-Gaucher cells, which are indicative of

high cell turnover and often seen in human MD/MPD.

Overall, the g-irradiated Mx-Cre Mll-CbpSTOP mice represent

a spectrum of myelomonocytic leukemias, from a more acute

t-AMML (31% blasts) to others with more features of a

chronic t-CMML. To assess whether neoplasms showed evi-

dence of clonality, we performed spectral karyotypes on

tumor specimens from g-irradiated Mx-Cre Mll-CbpSTOP

mice. Of the two tumor samples we analyzed, both contained

a translocation. As seen in Figure 7J, all metaphase spreads

from a representative leukemia displayed a t(18;X). These

findings support the clonal origin of the tumor.

The typical myeloproliferative disease in ENU-treated mice

characterized by leukocytosis with substantial anemia did not

fulfill criteria for a nonlymphoid leukemia. BM cytospins and

histologic sections revealed well-differentiated myelopoiesis

without increased immature forms/blasts (Figure 7G).

Spleens demonstrated marked expansion of red-pulp with

megakaryocytes, prominent erythropoiesis, and well-differ-

entiated myelopoiesis (Figure 7H). Liver and lymph node

involvement were minimal. Given the cytopenias and leuko-

cytosis, the ENU-induced disorder most closely resembles

human disorders that would be classified as myelodysplastic/

myeloproliferative disease (t-MD/MPD). Transduction of BM

from g-irradiated and ENU-treated mice did not transfer the

disorder to lethally irradiated recipients, although transplan-

tation per se is not the sole defining criterion for murine

leukemias (Kogan et al, 2002).

FACS analysis of BM cells and splenocytes confirmed the

expansion of myeloid cell types with a significant increase in

either Mac-1þ/Gr-1lo mature monocytes or Mac-1þ/Gr-1þ

immature myeloid cells and mature neutrophils (Figure 8). B

and T cells were relatively deceased in the BM and spleen

(Figure 7B). Overall, the pathology represents a spectrum of

disease similar to human therapy-related myeloid neoplasms

bearing the MLL-CBP fusion.

We examined hematopoietic progenitor populations in the

BM of leukemic Mx-Cre Mll-CbpSTOP mice. A dramatic in-

crease in GMP cells was noted in the BM of these diseased

mice when compared to g-irradiated control littermates and

the preleukemic phase of mice expressing MLL-CBP

(Figure 3A). Overall, these data indicate that MLL-CBP has

its greatest effect on the GMP population, which is also the

most prominently expanded progenitor population in the

resultant leukemia.

Discussion

In the present study, we utilized a conditional knockin

strategy to generate mice in which expression of MLL-CBP

is temporally regulated. This model allowed us to bypass

the embryonic lethality caused by a standard Mll-Cbp

knockin and to assess the immediate effects of this fusion

protein on hematopoiesis. Our successful modeling of the

t(11;16)(q23;p13) revealed several important aspects of MLL-

CBP leukemogenesis and therapy-related myeloproliferative

disease.

MLL-CBP selectively expanded GMP in the BM and en-

hanced the self-renewal/proliferation of this progenitor po-

pulation in vitro. We demonstrate that populations of sorted

stem cells and progenitors that lacked MLL-CBP exhausted

their clonogenic capacity after a single round of plating in

methylcellulose, whereas cells expressing MLL-CBP contin-

ued to generate colonies after serial replating. This observa-

tion was confirmed in vivo when we found that MLL-CBP-

expressing HSC and progenitors had a greater capacity to

repopulate the marrow compartment of lethally irradiated

recipients. Furthermore, in cultures initiated from MLL-CBP-

expressing HSCs, CMPs, or GMPs, we consistently observed

an outgrowth of granulocyte/macrophage colonies, indicat-

ing that the fusion protein had its greatest effect on the

Table I Analysis of MxCre Mll-CBPSTOP mice that received irradiation or ENU

Mouse No. of leukemic
mice

Latency
(median)

WBC � 103/ml
(median)

RBC � 103/ml
(median)

PLT � 103/ml
(median)

Spleen wt mg
(median)

MxCre Mll-CBPSTOP+Irrad 9/15 116–219 (157) 7–70 (41.1) 2–9 (5.6) 122–1261(463) 320–2810 (1042)
MxCre Mll–CBPSTOP+ENU 16/22 47–177 (126) 9–51 (27.2) 1–4 (2.2) 193–1434 (698) 450–1530 (1057)
Wild-type control NA 9 10 1048 100

NA¼not applicable.
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MLL-CBP initiates myeloproliferative disease
J Wang et al

&2005 European Molecular Biology Organization The EMBO Journal VOL 24 | NO 2 | 2005 377



myelomonocytic lineage in vitro and in vivo. The presence of

mature granulocytes and macrophages in these cultures in-

dicates that MLL-CBP does not completely block terminal

differentiation. This observation recapitulates a notable fea-

ture of human t(11;16) leukemias in which MLL-CBP was

found in mature clonal cells with differentiation capacity

(Rowley et al, 1997). Finally, in leukemic Mx-Cre Mll-

CbpSTOP mice, the HSCs were almost undetectable, while
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the GMP compartment is even more dramatically expanded.

This suggests that MLL-CBP-mediated leukemogenesis is

likely to be initiated from the GMP population. In compar-

ison, a previous report that retrovirally introduced MLL-GAS7

fusion into BM appeared to transform selectively a multi-

potent hematopoietic progenitor (MPP), the progeny of HSC

with multilineage potential (So et al, 2003). Consistent with

this, MLL-GAS7 induced an acute biphenotypic leukemia in

mice. In contrast, MLL-CBP appeared to more selectively

target the GMP, a progenitor population committed to mye-

lomonocytic differentiation, and subsequently induce myelo-

monocytic leukemia in mice. MLL-AF9 knockin mice also

exhibited a myeloproliferation before progressing to AML in

adult animals (Corral et al, 1996; Dobson et al, 1999). It is

interesting to note that the total number of CLP is actually

decreased significantly in the Mx-Cre Mll-CbpSTOP mice de-

spite robust MLL-CBP expression in this progenitor popula-

tion. This argues that myelomonocytic progenitors may be

particularly susceptible to the transforming effects of MLL-

CBP, whereas this fusion may have deleterious effects on

lymphoid progenitors. In concert, these results suggest that

specific MLL fusion proteins target distinct stages of hema-

topoietic development and dictate the specific phenotype of

the leukemia.

In another report, Lavau et al (2000) have generated a

mouse model utilizing a truncated version of MLL-CBP in a

retroviral transduction approach. In contrast to our model,

the delivery of this fusion protein by retrovirus blocked

myeloid differentiation and induced AML in mice. Several

factors may account for the differences. In the conditional

knockin system, the endogenous Mll promoter regulates

transcription of the Mll-Cbp allele and its induction more

closely mimics the lineage- and temporal-specific expression

of the MLL-CBP fusion following a human chromosomal

translocation. Furthermore, the Mll-Cbp knockin recapitu-

lates the normal loss of one wild-type copy of Mll as a

consequence of the chromosomal translocation. In contrast,

expression of MLL-CBP directed by the retroviral long term-

inal repeat may vary and would not confer Mll haploinsuffi-

ciency. Together, these factors could have imparted biological

differences.

To our knowledge, our study is the first to analyze the

critical gene expression profiles of a phenotypically and

functionally defined progenitor population that express an

Mll fusion gene. Prior studies are usually based on composite

profiles of crude BM that may not reflect the biology of the

target cell of transformation or allow for analysis of early

transformation events (Kumar et al, 2004). We showed that

MLL-CBP altered the gene program of GMPs even before the

development of frank leukemia. Several of the genes induced

by MLL-CBP have been implicated in malignant transforma-

tion in human and mouse models. For example, GMP cells

expressing MLL-CBP showed upregulation of CD14, which

was previously shown to be induced by MLL-AF9 in vitro

(Caslini et al, 2000; Munoz et al, 2003). MLL-CBP also

induced Evi 2 expression. Disruption of this gene by proviral

integration has been implicated in causing myeloid leukemias

in BXH-2 mice, suggesting that this gene may contribute to

transformation (Buchberg et al, 1990).

An attractive candidate for an MLL-CBP-induced relevant

target is Hoxa9. This result is consistent with recent data from

several groups demonstrating elevated HOX A9 expression

in human MLL fusion-bearing leukemias (Armstrong et al,

2002; Yeoh et al, 2002; Debernardi et al, 2003). However,

recent experiments examining the role of Hox a9 in leuke-

mogenesis mediated by MLL fusion proteins came to mixed

conclusions. When Hox a9-deficient BM cells were tranduced

with a retrovirus expressing MLL-ENL, they failed to develop

leukemia upon transplantation, suggesting a requirement for

Hox a9 in the initiation of MLL-ENL-mediated leukemogen-

esis (Ayton and Cleary, 2003). In contrast, when Mll-AF9

knockin mice were mated with Hox a9 knockout mice, they

developed leukemias at similar rates in the presence or the

absence of Hox a9. The dichotomy in outcome of these well-

performed studies might reflect a difference in specific Hox

genes utilized by MLL-ENL versus MLL-AF9. Alternatively,

this may represent a difference in somatic versus germline

experimental models. In our approach, we asked whether

Hox a9 is required for maintaining a transformed phenotype,

cell growth, and expansion of premalignant BM progenitors

expressing MLL-CBP. We found that inhibiting Hox a9 ex-

pression reduced the capacity of MLL-CBP-expressing cells to

continually grow and expand in vitro. Furthermore, we also

observed that overexpression of Hox a9 in wild-type BM

progenitors significantly enhanced the replating efficiency

of these cells. Together, these results suggest a molecular

hierarchy in which the effects of MLL-CBP on hematopoiesis

and leukemogenesis are mediated at least in part through

sustained Hox a9 expression.

Notably, only the GMP population was significantly ex-

panded in the presence of MLL-CBP even though Hox a9 was

upregulated in HSC and all of the progenitor populations

tested. One possible explanation is that GMPs are particularly

sensitive to changes in Hox gene expression. Support for this

hypothesis comes from the observation that overexpression

of Hox a9 is predominantly associated with myeloid malig-

nancies in human and mouse models (Nakamura et al, 1996;

Kroon et al, 1998). Genes downstream of Hox a9 may help

mediate the effects of MLL-CBP on myelomonocytic progeni-

tors. Very few downstream targets of the Hox genes have been

definitively established, although two recent studies describe

Hox A9 upregulated genes following its overexpression in

transformed cell lines (Dorsam et al, 2004; Ghannam et al,

2004). Further analysis of gene expression profile in systems

such as the conditional MLL-CBP mouse model should help

identify the complete gene programs required for leukemo-

genesis.

Our strategy of inducing MLL-CBP in adult mice recapitu-

lated many aspects of the human myeloproliferative disease

associated with the t(11;16). Conditional MLL-CBP mice

demonstrate a stepwise progression in which MLL-CBP is

the initiating event that generates a pool of myeloid progeni-

tors with enhanced self-renewal/proliferative capacities.

Subsequent exposure to sublethal g-irradiation or ENU,

which are known strategies to induce cooperating mutations,

resulted in progression to fatal therapy-related myeloproli-

ferative disorders. This complementation of MLL-CBP to

induce full leukemic transformation is consistent with fea-

tures of human t(11;16) leukemia that are almost exclusively

therapy-related and are accompanied by other genomic ab-

normalities in addition to t(11;16) (Rowley et al, 1997).

Conditional MLL-CBP mice provide a much-needed model

of therapy-related myeloproliferative disease. Furthermore,

the spectrum of disorders varies following g-irradiation,
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which results in t-AMML and t-CMML, versus ENU, which

resembles t-MD/MPD. Perhaps, this mouse model will pro-

vide an experimental framework to characterize the comple-

menting mutations that cooperate with MLL-CBP and are

responsible for each distinct myeloproliferative disease.

Materials and methods

Generation of conditional Mll-Cbp knockin mice
The Mll-CbpSTOP targeting vector was assembled in the plasmid
vector Litmus 28 (NEB, Beverly, MA). A 1.8-kb SmaI–BamHI mouse
genomic clone (a gift from Jay L Hess), which includes sequences
from Mll intron 4 to the BamHI site of exon 8, was blunt-end ligated
to a 6.5-kb fragment of murine Cbp cDNA (codon 266 to codon
2441, GenBank accession no. S66385). A 0.5-kb fragment contain-
ing the Simian virus 40 polyadenylation signal (SV40 pA) was
added immediately downstream of the stop codon of the Cbp cDNA
sequence. To enable positive selection, the PGK-puromycin (PGK-
puro) resistance cassette was ligated to the 30 end of SV40 pA. A 1.5-
kb BamHI–BamHI mouse genomic clone containing the last 65 bp
of Mll exon 8 and part of intron 8 was cloned downstream of the
PGK-puro fragment. Finally, we inserted a 1.6-kb DNA fragment
containing a transcription termination sequence flanked by loxP
sequences (Lasko et al, 1992) (Invitrogen, Carlsbad, CA) into an
engineered NotI site in Mll intron 7. The targeting construct was
electroporated into RW4 ES cells (strain 129Sv/J) and clones were
selected in puromycin. Four out of 136 clones had undergone
homologous recombination. Those clones with normal karyotypes
were injected into C57BL/6 blastocysts, and male chimeras were
bred with C57BL/6 females to achieve germline transmission.

Mx-Cre Mll-CbpSTOP mice were generated by crossing Mll-
CbpSTOP/þ males with female mice transgenic for Mx-Cre. Mx-Cre
Mll-CbpSTOP mice (4 weeks old) and control littermates were
injected intraperitoneally with 400mg of pI-pC (Sigma, St Louis,
MO) three times at 2-day intervals.

HSC of reconstitution assay
At 5 weeks following pI-pC treatments, purified HSCs were obtained
from Mx-Cre Mll-CbpSTOP mice or control littermates. Subsequently,
500 HSCs (Ly5.2þ ) together with 500 ‘helper’ HSCs (Ly5.1þ ) were
injected intravenously into the tail veins of lethally irradiated
C57BL/6 recipients (Ly5.1þ ). Hematopoietic reconstitution was
followed in peripheral blood at 4, 8, and 12 weeks after the
transplantation.

Short hairpin RNA and retroviral infection
The oligos containing the AgeI and EcoRI restriction sites and
hairpin DNA were annealed and ligated into AgeI–EcoRI-digested
pmko-Neo (provided by William Hanh). Efficiency of the shRNAs
was confirmed by real-time PCR analysis of BM cells transduced
with the shRNA constructs. The shRNA sequences are available
upon request.

293T cells were transfected with retroviral vectors encoding
the shRNAs. Retroviral supernatants were collected at 48 h post-
transfection. BM cells were plated onto nontissue culture-treated
10-cm plates and exposed to the retroviral supernatant for 3 h at
371C in the presence of 8 mg/ml polybrene (Sigma). Cells were
centrifuged at 1900 r.p.m. for 90 min and infection was repeated
twice. Infected cells were then plated in methylcellulose culture in
conditions identical to the in vitro replating assay.

Hox A9 retrovirus and in vitro serial replating assay
Total BM was extracted from 8-week-old C57BL6 donors, and red
blood cells were lysed using Puregene RBC lysis Solution (Gentra
Systems). In total, 5�106 BM mononuclear cells were infected with
either an MSCV/EGFP retrovirus that encoded the human Hox A9
gene (NM_002142) or the control MSCV/EGFP retrovirus that
lacked Hox A9 sequences. Cells were incubated in IMDM
supplemented with 20% FBS, SCF (20 ng/ml), IL-6 (10 ng/ml), IL-
11 (10 ng/ml) and polybrene (7mg/ml). After 16 h, cells were plated
at 1�104 cells/ml in triplicate in MethoCultTM M3434 media
supplemented with GM-CSF (10 ng/ml). Cells were replated every
5–6 days in the same media at 1�104 cells/ml (Supplementary
data).

Supplementary data
Supplementary data are available at The EMBO Journal Online.
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