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Abstract

We discuss the computation of randomization tests for clinical trials of two treatments when the

primary outcome is based on a regression model. We begin by revisiting the seminal paper of

Gail, Tan, and Piantadosi (1988), and then describe a method based on Monte Carlo generation of

randomization sequences. The tests based on this Monte Carlo procedure are design-based, in that

they incorporate the particular randomization procedure used. We discuss permuted block designs,

complete randomization, and biased coin designs. We also use a new technique by Plamadeala and

Rosenberger (2012) for simple computation of conditional randomization tests. Like Gail, Tan,

and Piantadosi, we focus on residuals from generalized linear models and martingale residuals

from survival models. Such techniques do not apply to longitudinal data analysis, and we

introduce a method for computation of randomization tests based on the predicted rate of change

from a generalized linear mixed model when outcomes are longitudinal. We show, by simulation,

that these randomization tests preserve the size and power well under model misspecification.
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1. Introduction

In randomized clinical trials comparing two treatments, randomization tests provide a

distribution-free test of the treatment effect. Under the null hypothesis, data are assumed to

be exchangeable, unaffected by random treatment assignment. In clinical trials, this

assumption of exchangeability can typically be ensured by the fact that differences due to

patient characteristics should be mitigated by the act of randomization. It is not uncommon

for the FDA to require a “re-analysis” of data using a randomization test. Typically Monte

Carlo simulation is used to sample randomization sequences under a specified

randomization procedure, and the p-value is computed as the proportion of sequences that

yield a test statistic as extreme or more extreme than the observed test statistic once it is

assumed that large values are evidence against H0. The test statistic can be any metric, such
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as the difference of means or proportions, or a linear rank statistic. In this paper we describe

how one might compute randomization tests in the context of regression modeling. Such

modeling might result in the primary outcome of a clinical trial, such as from a survival

model, a generalized linear model, or a generalized linear mixed model. Such models can

lead to randomization tests for adjusted or unadjusted treatment effects, which might be

continuous, binary, ordinal, time-to-event or rates of change in longitudinal assessment. In

most cases, we can rank residuals from the model as our outcome measure, as described in

the seminal paper by Gail, Tan, and Piantadosi [1]. These residuals can be score residuals or,

in the case of survival models, martingale residuals. For longitudinal data, we rank the

predictors of the random effects from a generalized linear mixed model (GLMM) to use as

our outcome measure. Our methods can be applied to complete randomization or common

restricted randomization procedures, such as the permuted block design, or Efron’s biased

coin design (BCD) [2]. Such tests are “design-based”, where inference is conducted

according to how the trial was designed. This differs from Gail, Tan, and Piantadosi’s

approach, which are based on equiprobable treatment assignments. We apply techniques of

Plamadeala and Rosenberger [3] to compute conditional randomization tests. The flexibility

of the approach allows investigators to compute a randomization test for virtually any type

of primary outcome measure encountered in modern phase III clinical trials.

2. Background

Let T1,…, Tn be a randomization sequence, where Ti = 1 if subject i is randomized to

treatment A; Ti = 0 if B, i = 1,…, n. Let  be the number of subjects

randomized to treatment A after j assignments, and NB(j) = j − NA(j). Rosenberger and

Lachin [4, Chapter 3] describe complete and restricted randomization procedures that are

used in clinical trials. The procedures can be defined by pj = P(Tj = 1|T1,…, Tj−1). In

complete randomization, T1,…, Tn follow i.i.d. Bernoulli(1/2) distributions. In restricted

randomization, prior information on imbalances are used to adaptively balance treatment

assignments. Restricted randomization induces correlation among the treatment

assignments. The permuted block design (PBD) is probably the most commonly used, and

divides the n subjects into B blocks of size b = n/B, assuming n/B is an integer. In practice,

the last block may go unfilled, resulting in NA(n) being random. If n/B is an integer and all

the blocks are filled, NA(n) = n/2, and NA(n) is no longer a random variable. One can use

either the random allocation rule (RAR) or truncated binomial rule (TBD) to fill each block.

Within a block of size b (even), a random allocation rule can be thought of as an urn with

b/2 balls representing treatment A and b/2 balls representing treatment B. Patients are

randomized by drawing balls without replacement. The truncated binomial design uses

complete randomization to fill each block. Once b/2 patients are assigned to one of the

treatments, all further patients in the block are assigned to the opposite treatment with

probability 1. Biased coin designs were introduced by Efron [2] and extended by Wei [5],

Smith [6], and Baldi Antognini and Giovagnoli [7], among others. In this paper, we consider

only Efron’s original design. Let Dj = NA(j) − NB(j) and let p ∈ [0.5, 1]. Then the BCD(p)

randomization procedure is given by
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For both complete randomization and the biased coin design, NA(n) is a random variable.

Let X1,…, Xn be some outcome measure, which could be residuals or some other derived

quantities, and let a1n,…, ann be a score function of X1,…, Xn, which could be simple rank

scores, van der Waerden scores, Savage scores, or other scores (see Rosenberger and Lachin

[4, Chapter 7]). The linear rank test can be written as

(1)

where . A valid test of the null hypothesis that there is no treatment effect

can be carried out by permuting the realizations of (X1,…, Xn) in all possible ways (e.g.,

Lehmann [8, Chapter 5]) and computing the test statistic under each permutation. Under a

randomization procedure, the sequences (T1,…, Tn) may not be equiprobable, and each

sequence will have an associated probability under the randomization procedure of πk,

. An exact p-value can be computed by summing the probabilities of the 2n

sequences where the test statistic |Sk| equals or exceeds the observed statistic |Sobs.| for a

two-sided test (Rosenberger and Lachin [4, Chapter 7]). We call this the unconditional p-

value (e.g., Rosenberger and Lachin [4, Chapter 7]). A Monte Carlo resampling procedure

can be used by generating K sequences under the particular randomization procedure used,

computing Sk, k = 1,…, K. A strongly consistent estimator of the p-value, , is the

proportion of sequences where |Sk| equals or exceeds |Sobs.|. A value of K around 2500 will

bound the MSE of the p-value by 0.0001.

Complete and restricted randomization can result in imbalances in the treatment

assignments. Since NA(n) is an ancillary statistic, and the unconditional reference set

contains sequences of little value such as NA(n) = n or 0, the conditional reference set is

often used in practice with only  possibilities instead of 2n, which finds probabilities

conditional on NA(n) = nA, where nA is the number of subjects assigned to A (e.g., [9, 10]).

While NA is ancillary, many statisticians argue that the realized design should be a part of

the analysis (see, for example, [10]). Plamadeala and Rosenberger [3] present a Monte Carlo

method for generating randomization tests with respect to this conditional reference set,

which requires the same number of sequences be generated as for an unconditional test.

When nA ≠ 0.5n, this leads to a massive reduction of computational complexity, and allows

these tests to be computed quickly. The idea they use is to generate sequences directly from

the conditional reference set. Let pj(mj−1) = P (Tj = 1|NA(j − 1) = mj−1). The Plamadeala and

Rosenberger method generates sequences via the rule
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We call the resulting p-value the conditional p-value. We use this technique to generate

conditional randomization tests for complete randomization, the permuted block design with

an unfilled final block, and Efron’s biased coin design.

3. Generalized Linear Models: Revisiting Gail, Tan, and Piantadosi (1988)

Gail, Tan, and Piantadosi [1] describe a method to compute randomization tests based on the

score residuals of the generalized linear model. Let Y be the outcome variable, X the

covariate, and T the treatment indicator (centered with values 1 and −1) which is

independent of X; and let h(·) be a known function, and η be the parameter representing the

linear relationship. The generalized linear model (GLM) is built as follows:

Under the population model, the null hypothesis of no treatment effect is α = 0. In the case

of linear regression, where h(η) = η, the estimate of α will be unbiased whether X is

included or not. But for certain non-linear regressions (e.g., Poisson regression with count

data), the estimator of α based on the traditional population model may lead to inflated type

I error rate when X is omitted because the estimated variance of the score function for α is

biased. Gail, Tan and Piantadosi [1] proposed to use the randomization distribution of score

residuals to estimate the variance; they employed three ways to examine the effect of model

misspecification on the population test and their proposed test: the size of the population

tests under the false population model, variance estimate ratios between the true variance

and the false variance, and the relative efficiency between their proposed test under the false

model and the test under the true model. Their proposed test is considered to be efficient

most of the time.

Define θ(·) to be the canonical parameter of an exponential family with first derivative θ′(·),

ϕ as a scale parameter, d(·) and b(·) as functions identifying the distribution of Y, and R(·) is

a function that does not contain any unknown parameters. The log likelihood of Y

conditional on X and T is as follows:

The regression model is thus E(Y|X, T) = h(η) = h(μ + Tα + Xβ), where h(η) = b′(θ(η)) and b′

(·) is the first derivative. Under the null hypothesis H0 of the randomization test, there is no
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difference between treatment groups A and B. Gail, Tan and Piantadosi [1] proposed to

construct randomization tests based on the randomization distribution of the residuals r from

the fitted model obtained from maximum likelihood estimation. Note that the use of

residuals from the fitted model may lead to exact conditional solutions if the parameter

estimates are permutationally invariant [11, 12, 13]. Suppose ϕ is known, let ,

where  and  represent maximum likelihood estimators of μ and β under the null

hypothesis α = 0. The score function then is

The residuals r have the following form:

Under the canonical link, θ′ (η) = 1.

As T and X are independent, under complete randomization, E(T) = 0 and Var(T) = 1. Given

the condition that E(∂ℓ2/∂α∂μ) = E(∂ℓ2/∂α∂β) = E(∂ℓ2/∂μ∂β) = 0 for each element of β, the

variance of the score function can be computed under the randomization of r and has the

form . This provides an asymptotically normal unconditional

randomization test, provided that complete randomization is employed. The test based on

this variance is efficient even when the covariates are omitted [1]. However, the variance is

difficult to compute under restricted randomization procedures which are often applied in

clinical trials. Instead, we directly perform the randomization test by ranking the residuals

and computing the linear rank test in (1) and applying the Monte Carlo approach described

in Section 2 for both conditional and unconditional tests. Such tests should be considered

“design-based” because they are conducted under the randomization procedure used in the

trial. We performed the simulation with the same settings as found in Table 1 of Gail, Tan,

and Piantadosi [1], and found that our Monte Carlo randomization tests preserve size under

model misspecification in the same way that their asymptotic test does, for complete

randomization, the permuted block design, and Efron’s biased coin design. Figure 1

demonstrates the type I error preservation for eight different generalized linear models,

including the Poisson, exponential, and logistic regression models, where X is removed. We

used van der Waerden scores for normally distributed data and Wilcoxon scores for all

others in the linear rank test (Rosenberger and Lachin [4, Chapter 7]). Note that the

randomization test preserves the size of the test under each model, as did Gail, Tan, and

Piantadosi’s asymptotic test. Since our results are design-based, there are minor variations

for different randomization procedures.
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4. Survival Data

We now apply our methods to time-to-event outcome data, using survival models and

ranking martingale residuals. Assume in a clinical study a patient with treatment T and

covariate X has failure time W. Because of potential right censoring, we observe Y = min(W,

C) and Δ = I(W ≤ C), where C is the censoring time. The censoring indicator Δ takes value 1

if we observe the failure time and takes value 0 otherwise. The survival function is given by

S(t) = P (W > t) and the hazard function by λ(t) = limδ→0 P (t ≤ W < t + δ|W ≥ t)/δ.

We consider the Cox proportional hazards (PH) model and the accelerated failure time

(AFT) model. Let λ0(·) be an unspecified baseline hazard, and Λ0(·) be the corresponding

baseline cumulative hazard function. Given the linear predictor η = Tα + Xβ, the hazard

function and survival function at time t for the PH model are given by λ(t|T, X) = λ0(t)

exp(η), and S(t|T, X) = exp(−Λ0(t) exp(η)). We maximize the partial likelihood function

based on n independent and identically distributed observations {(Yi, Δi, Ti, Xi), i = 1,…n} to

obtain the maximum likelihood estimators of (α, β), denoted . Inference can be

conducted by applying Wald, score, or likelihood ratio tests.

The AFT model is used when the failure time W is assumed to have a certain distribution,

and the impact of the covariates is proportional with respect to the time t. Common

distributions under the AFT model include exponential, Weibull, lognormal and log-logistic.

Let S0(t) be the baseline survival function. The AFT model specifies that the conditional

survival function of W, given T and X takes the form S(t|T, X) = S0{t/ exp(η)}, where η is the

linear predictor defined above.

For a given distribution, if the hazard function satisfies both assumptions of PH model and

the AFT model, such as the Weibull and exponential distribution, then these two models are

equivalent; the difference is only in the way we parameterize the regression and distribution

parameters. However, for some distributions like the log-logistic, only the AFT model can

be accommodated. The AFT model for the log-logistic distribution is also called the

proportional odds model, as its odds ratio is constant over time but not hazard ratio.

Following the strategy for performing randomization tests under the GLM, here we propose

to use residuals from the PH and AFT models as the outcome variable. It can be shown [14]

that E(Δ|T, X) = Λ(Y |T, X), where Λ(t|T, X) is the conditional cumulative hazard function of

W, given T and X. Assuming α = 0 (i.e., there is no treatment effect), the martingale

residuals under the PH model and the AFT model are given by  and

, where  and  are the maximum likelihood estimators

of (Λ0, η) and b(S0, η), respectively.

5. Longitudinal Data

In this section we provide a new algorithm for computing randomization tests for the

generalized linear mixed model (GLMM). In particular, we investigate the treatment effect

variation over the repeated measures, such as whether a treatment has time varying effect for

a patient. Here the residuals from a traditional GLMM model are not appropriate for
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evaluating a rate of change as the primary outcome of a clinical trial because they are not a

direct metric for the slope. Instead, we propose to use a linear rank test based on the

predictors of the random slopes from the GLMM. This novel approach differs from the

approaches used by Gail, Tan, and Piantadosi [1] outlined in Sections 3 and 4.

Let Yij be the response variable for jth measurement occasion of the ith subject, where i = 1,

…n, j = 1,…ni. Conditional on a q × 1 vector of random effects bi,  are

independent and each belongs to the exponential family. Let Xi be a ni × p matrix, Zi be a ni

× q design matrix, μ be a constant intercept, Ti = 1 if patient i is assigned to group A, 0 if

patient i is assigned to group B. Let h(·) be a known function, υ (·) be a variance function

and ϕ be a scale parameter. Then we have

where

and

Here μ, α, β are considered as fixed-effects parameters. In the above equations, Xij and ηij

denote the covariates and linear predictor of the jth occasion for the ith subject.

As it is of interest to relate the treatment effect to the repeated measures, let Xij be the vector

of independent variables and interactions given by Xij = (Qi, τij, τij × Ti), Zij = (1, τij), bi =

(b0i, b1i)′, where Qi is some covariate, τij is the jth time point for the ith patient, and b0i and

b1i are the random intercept and the random slope for the ith patient, respectively. We

assume that the random effects bi follow a bivariate normal distribution with mean zero and

variance-covariance matrix G. Then the linear predictor can be written as

(2)

Under the null hypothesis of the population test, there is no varying treatment via repeated

measures, and we have β3 = 0. As the random effects are not observed, we can estimate (β,

G) based on the likelihood function, given by

where fY is the conditional density function for the response variables and fb is the density

function of the random effects. This likelihood function is obtained by integrating out bi; it

depends on the variance-covariance of bi but not the unobserved bi [15]. Numerical
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integration techniques have to be used to obtain the solution of the likelihood function.

There is also no simple solution for the variance of  which depends on the variance-

covariance of the random effects. For the population test, the test statistic 

approximately follows a t-distribution. The robustness of the test for β3 then depends on the

accuracy of the specified variance-covariance structure of the random effects, the

distribution of the response, and whether all other assumptions are valid.

To avoid the distributional and variance-covariance assumptions inherent in the traditional

population-based inference procedures, we propose to use a randomization test to detect the

change of the treatment effects with repeated measures considering the predicted random

slope as the fixed outcome. Given maximum likelihood estimators of β, ϕ and G, the random

effects bi can be predicted as follows:

(3)

This is the conditional mean of bi given the responses for the ith subject, the estimated fixed

effects and variance parameters. Under the null hypothesis of the randomization test, for

each subject there is no difference in the repeated measure changes regardless of which

treatment is assigned. The algorithm for estimating p-values for unconditional tests and

conditional tests under the GLMM is then similar to the algorithm under the GLM.

Following (2), for a given data set, one performs the regression analysis assuming β3 = 0 and

obtain the estimates of β, ϕ and G. Then one predicts the random slope b1i by solving (3)

with adaptive Gaussian quadrature, and computes the linear rank test statistic by ranking

these . Monte Carlo techniques are then applied as for the GLM.

6. Simulation Results

In this section, we generate survival data and longitudinal data and compare the proposed

randomization test with the traditional population test. We compute size and power under

both correctly specified and misspecified models. Throughout the simulation studies, we

used the same randomization procedure for the generation of the observed statistic and for

the analysis.

6.1. Survival Models

To compare the efficiency of the randomization and parametric tests, we consider three

different cases of simulated survival data. In the first simulation, we generate the failure

time from

where T = 1 for the treatment group and T = 0 for the control group, and X is a Bernoulli

random variable with success probability 1/2. We compare the size and power of parametric

and randomization tests when X is omitted under the PH model. In the second simulation,

we replace 10 percent of the survival times generated from the above model by standard
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lognormal outliers and analyze data under the PH model. In the third simulation, we

generate failure time data from the proportional odds model

and analyze the data under the PH model.

In all simulations, we set β = 2 and the treatment effect α is set to be 0 under the null

hypothesis and varies from 1 to 3 under the alternative. We generate the censoring time from

an Exponential distribution with mean 1. The censoring rate varied from 5 to 20 percent

under different scenarios. Throughout the simulation studies in this section, we use

Wilcoxon scores in the linear rank test. For each simulation setting, we generate 5000

replications each with 60 subjects. The hypothesis testing results are based on two-sided

significance level of 0.05. Each randomization test is performed with K = 2500 sequences.

For all conditional randomization tests, we use nA = 30.

Table 1 gives the size and power of the traditional and randomization tests when there is an

omitted covariate. All tests exhibit type I error control at the nominal level of 0.05. When α

= 1, the complete conditional randomization test and the model-based test have comparable

powers and both of them are more powerful than other randomization tests. When α = 1.5,

the model-based test performs better than all randomization tests. Table 2 gives the size and

power of the traditional and randomization tests when there are lognormal contaminants

under the proportional hazards model. Here the traditional test has greatly inflated size and

loss of power. However, the randomization tests preserve the size of the test, and power is

slightly lower, but much better than that of the traditional tests. Table 3 gives the size and

power of the traditional and randomization tests when the model is misspecified. Failure

time data are generated from the proportional odds model, but the data are analyzed

according the PH model. One can see that all tests perform similarly except for the inflated

size of the model-based test. It appears that randomization tests (particularly the conditional

randomization tests) are most useful when there are outliers in survival times.

6.2. Longitudinal Models

We now simulate longitudinal data and compare the traditional population-based tests to our

Monte Carlo randomization tests. The simulation is performed assuming an identity

canonical link function h(·), corresponding to the classical linear mixed model. Specifically,

we generate data from the model (2) in Section 5 and assume the residual errors for the ith

patient ei are normally distributed with mean zero and ni × ni variance-covariance matrix Ri.

The confounding covariate Qi takes value 0 or 1 with equal probability. We use sample size

n = 100. For each patient, the repeated time τ varies from 1 to 5; for other parameters we

have μ = −3, α = 2, β1 = 2, and β2 = 1.5. The random effects have the multivariate normal

distribution with E(b0i) = E(b1i) = 0, var(b0i) = 4, var(b1i) = 4, and cov(b0i, b1i) = 0. The

error term has the standard normal distribution where E(ei) = 0 and Ri is an identity matrix.

Under the null hypothesis, there is no time-varying treatment effect, i.e., β3 = 0. All tests are
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two-sided with significance level 0.05. For all conditional randomization tests, we use nA =

46.

There are five scenarios considered as follows:

1. We analyze the data under the correct model specification (Table 4).

2. The conditional normal distribution of Yi is misspecified; by doing so, we replace

10 percent of the data with  and analyze data assuming the response

having a normal distribution (Table 5).

3. The variance-covariance matrix of the error term is misspecified. Here, instead of

generating standard normal distributed errors, the variance-covariance matrix 

has a first-order autoregressive structure, with ρ = 0.5. And we analyze data

assuming the error term has a standard normal distribution. The traditional and

conditional randomization tests have comparable performance, so we do not

present the results.

4. The distribution of bi is misspecified. We replace 20 percent of b1i’s with Cauchy

distributed random variables. We analyze the data assuming the bi’s are normally

and independently distributed (Table 6).

5. The variance-covariance matrix of the random effects is misspecified. Instead of

using the original variance-covariance structure, we use , ,

and the variance-covariance matrix G* has correlation 0.8. We analyze the data

assuming b0i and b1i are independent. The traditional and conditional

randomization tests have comparable performance, so we do not present the results.

Table 4 demonstrates that there is little loss of efficiency by using a randomization test

instead of the traditional model-based population test under the correct GLMM model. Table

5 suggests that the randomization test improves power over the traditional test when the

response distribution is misspecified. Table 6 indicates that the population-based test is

conservative when the random effects distribution is misspecified. On the other hand, the

proposed randomization tests maintain the appropriate size and are substantially more

powerful than the population-based test.

7. Examples

In this section we use simple user-friendly SAS macros to compute randomization tests from

actual clinical trials data. The SAS macros are available from the first author upon request.

7.1. Example 1. Survival Outcomes

The data for the first example is the remission data [16], which is from a study that assessed

the impact of a maintenance therapy 6-Mercaptopurine for prolonging the duration of

steroid-induced remission in patients under the age of 20 with acute leukemia. Patients in

remission were assigned to either treatment group with 6-Mercaptopurine therapy or placebo

using an unknown randomization procedure. There were 92 patients who entered the study,

and the study was stopped after the analysis of the first 42 patients (21 pairs). The outcome
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variable of this data is the remission survival time of patients; covariates include the log

form of white blood count (WBC) and the treatment indicator. The censoring rate was 0.3.

For the traditional model-based population test, we assume patients are randomized to

treatment and placebo using complete randomization. We fit the PH model. Under the null

hypothesis, α = 0. Using the PHREG procedure in SAS, we obtain the MLE  the p-value

for the test is computed based on comparing a Wald test statistic to critical values from the

chi squared distribution. The SAS macro computes the randomization test based on the

martingale residuals from the PH or AFT models under any of the randomization procedures

we have discussed. Both conditional and unconditional tests can be computed. For the

randomization test in this example, the PBD with block size 2 is used as the randomization

procedure, and blocks are filled using the random allocation rule. The p-value for the

traditional test based on the PHREG procedure is 0.002. The p-value from the randomization

test is 0.001 (S.E.=0.0002).

7.2. Example 2. Longitudinal Outcomes

The data set is from a randomized, double-blind and controlled clinical trial of AIDS

patients [17]. The purpose of this study is to compare the survival benefits of using different

HIV-1 inhibitors therapies. The benefit is measured by CD4 counts. A total number of 1309

patients were randomized into four groups with different reverse transcriptase inhibitors

therapies using a permuted block design of unknown block size. Measurements of CD4

counts were recorded based on 8 week intervals. The number of measurements ranges from

1 to 9. Since there are missing values due to skipped visits and dropouts, we only consider

the records of 729 patients with the first four visits. We combine groups 2, 3, and 4. The

response variable is the log form of the CD4 counts log(CD4 + 1); covariates include age,

gender, treatment, and visit time.

For the traditional test, we assume patients are randomly assigned to the two treatment

groups using complete randomization. Using the GLIMMIX procedure, we obtain parameter

estimates using restricted maximum likelihood, and compute the p-value of the test H0 : β3 =

0 from (2) based on a t statistic.

The SAS macro computes the randomization test based on ranking the best linear unbiased

predictor of the b1i’s, and can be applied to any randomization procedure mentioned in the

paper, as well as for conditional and unconditional tests. In this example, the randomization

procedure used was not specified. As only 197 out of 729 patients were in the treatment

group, we apply the conditional test based on complete randomization and BCD(2/3). All

tests demonstrate a significant time-varying treatment effect. Under the traditional model,

the p-value for a t test of the treatment effect on the rate of change is less than 0.0001; under

the randomization model, the p-value for the conditional complete randomization test is

0.0002 (S.E.=8.9 × 10−5) and less than 0.0001 for the conditional BCD(2/3) (S.E.< 6.3 ×

10−5).
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8. Discussion

We provide a uniform approach for testing the primary outcome of a clinical trial based on a

regression model. This approach is based on Monte Carlo resampling of randomization

procedures, and is therefore fully design-based. Both unconditional and conditional tests can

be computed for various restricted randomization procedures. The regression approach

allows us to deal with most any type of outcome that would be analyzed in a clinical trial of

two treatments. We have not discussed test for more than two treatments. These outcomes

include adjusted treatment affects from a generalized linear model, time-to-event outcomes,

and the rate of change from a longitudinal study. While the metrics used in the linear rank

test arise from a parametric or semi-parametric model, the procedure itself is nonparametric,

since it is based on the randomization distribution induced by the particular randomization

sequence. Such tests can be considered an alternative to fully parametric tests, or as a stand-

alone test of the primary outcome when a randomization test is desired.

In this paper, we have shown by simulation that the randomization test tends to preserve size

and power when the model assumptions are violated. In particular, for survival data where

there are outliers due to lognormal contaminants, the randomization test appears unaffected,

but the traditional population test based on the proportional hazards model has inflated size

and reduced power. For longitudinal data, the randomization test is robust with respect to

misspecification of response distribution and is significantly better in terms of size and

power when the distribution of the random effects are misspecified.

Stratified randomization can be incorporated easily into randomization tests by simply

computing a randomization test within each stratum, and then summing over strata (e.g.,

Rosenberger and Lachin [4, Chapter 8]). We have not addressed the issue of missing data.

Imputing worst ranks for missing data is one conservative analysis option. See Kennes,

Hilgers, and Heussen [18] for a simulation study.

We repeat that a series of SAS macros computes randomization tests for each of these

scenarios, and these macros are available upon request from the first author.
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Figure 1.
Size (95% confidence interval) of the traditional test and conditional randomization tests at

significance level of 0.05 under GLM for different types of distributions when X is omitted.

The traditional procedure gives the size of the population test Z* defined in Gail, Tan and

Piantadosi [1]; conditional randomization tests include complete, BCD(2/3) and PBD(RAR)

procedure respectively. These results are based on 500 replicates with the simulation setting

of n = 100, nA = 46, and K = 2500.
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Table 1

Size and power of the traditional model-based population test and randomization tests for the PH model with

omitted covariates under the PH model (n = 60, K = 2500, 5000 replications).

Test Size Power (α = 1) Power (α = 1.5)

Model-based 0.0504 0.5788 0.9174

Randomization (Complete unconditional) 0.0418 0.4200 0.7812

Randomization (Complete conditional) 0.0446 0.5708 0.8596

Randomization (BCD(2/3) unconditional) 0.3080 0.4904 0.8522

Randomization (BCD(2/3) conditional) 0.0394 0.4558 0.8200
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Table 2

Size and power of the traditional model-based population test and randomization tests for the PH model with

lognormal contaminants under the PH model (n = 60, K = 2500, 5000 replications).

Test Size Power (α = 2) Power (α = 3)

Model-based 0.1608 0.3018 0.5358

Randomization (Complete unconditional) 0.0403 0.5002 0.7948

Randomization (Complete conditional) 0.0396 0.5774 0.8418

Randomization (BCD(2/3) unconditional) 0.0388 0.5184 0.8012

Randomization (BCD(2/3) conditional) 0.0386 0.4542 0.7526
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Table 3

Size and power of the traditional model-based population test and randomization tests for the PH model under

the misspecified modeling assumption (n = 60, K = 2500, 5000 replications).

Test Size Power (α = 1.5) Power (α = 2)

Model-based 0.0610 0.7352 0.9196

Randomization (Complete unconditional) 0.0438 0.7472 0.9306

Randomization (Complete conditional) 0.0455 0.7482 0.9330

Randomization (BCD(2/3) unconditional) 0.0413 0.7516 0.9366

Randomization (BCD(2/3) conditional) 0.0406 0.7480 0.9212
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Table 4

Size and power of the traditional model-based population test and randomization tests under the correctly

specified GLMM (n = 100, K = 2500, 5000 replications).

Test Size Power (β3 = 1) Power (β3 = 1.5)

Model-based 0.0564 0.6968 0.9582

Randomization (complete) 0.0440 0.6878 0.9558

Randomization (conditional) 0.0426 0.6904 0.9546

Randomization (BCD(2/3) unconditional) 0.0445 0.6918 0.9572

Randomization (BCD(2/3) conditional) 0.0387 0.6824 0.9490
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Table 5

Size and power of the traditional model-based population test and randomization tests under the GLMM with

misspecified response distribution (n = 100, K = 2500, 5000 replications).

Test Size Power (β3 = 1) Power (β3 = 1.5)

Model-based 0.0596 0.3738 0.6220

Randomization (complete) 0.0550 0.4438 0.7470

Randomization (conditional) 0.0390 0.4472 0.7476

Randomization (BCD(2/3) unconditional) 0.0444 0.4346 0.7600

Randomization (BCD(2/3) conditional) 0.0459 0.4264 0.7434
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Table 6

Size and power of the traditional model-based population test and randomization tests under GLMM with

misspecified distribution for random effects (n = 100, K = 2500, m = 5000).

Test Size Power (β3 = 1) Power (β3 = 1.5)

Model-based 0.0288 0.2190 0.3792

Randomization (complete) 0.0451 0.5232 0.8488

Randomization (conditional) 0.0440 0.5246 0.8598

Randomization (BCD(2/3) unconditional) 0.0387 0.5460 0.8686

Randomization (BCD(2/3) conditional) 0.0465 0.5224 0.8588
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