
Conditional Partial Order Graphs:
Model, Synthesis, and Application

Andrey Mokhov, Member, IEEE, and Alexandre (Alex) Yakovlev, Senior Member, IEEE

Abstract—The paper introduces a new formal model for specification and synthesis of control paths in the context of asynchronous

system design. The model, called Conditional Partial Order Graph (CPOG), captures concurrency and choice in a system’s behavior in

a compact and efficient way. It has advantages over widely used interpreted Petri Nets and Finite State Machines for a class of

systems which have many behavioral scenarios defined on the same set of actions, e.g., CPU microcontrollers. The CPOG model has

potential applications in the area of microcontrol synthesis and brings new methods for modeling concurrency into the application

domain of modern and future processor architectures. The paper gives the formal definition of the CPOGmodel, formulates and solves

the problem of CPOG synthesis, and introduces various optimization techniques. The presented ideas can be applied for CPU control

synthesis as well as for synthesis of different kinds of event-coordination circuits often used in data coding and communication in digital

systems, as demonstrated with several application examples.

Index Terms—Logic synthesis, concurrency, partial orders, asynchronous circuits, microarchitecture.

Ç

1 INTRODUCTION

THERE is an issue of finding an adequate model for system
description in the context of synthesis of processor

microarchitectures. While the complexity of processors and
multicore Systems-on-Chip has been increasing rapidly
over the recent years, the conventional models reveal more
and more limitations urging the development of new
paradigms to facilitate automatic synthesis of microarchi-
tecture hardware in many new applications [1]. There are a
number of requirements to the model: It should be
expressive enough to cover a wide range of solutions for
different optimization criteria, it should capture concur-
rency and multiple choice, and yet be manageable, i.e., it
should not overrefine the specification with unnecessary
details. The latter requirement becomes especially impor-
tant in designing asynchronous (or self-timed) systems [15]
which do not rely on global clocking for synchronization,
thus leading to massive parallelism and, in turn, to
difficulties in system modeling and validation.

To date there are several design methodologies for

asynchronous control logic, e.g., [14], [16]. Some approaches

such as Tangram [17] and Balsa [2] use CSP-like hardware

description languages (HDLs) and syntax-directed transla-

tion for synthesis. They are not well suited for control logic

specification because they describe the entire system as a

collection of processes and channels; control is implicit in

them. Other models such as Burst-mode Finite State

Machines (FSMs) [11], as well as Petri nets/Signal Transi-

tion Graphs (STGs) [4] are able to capture concurrency and

choice at a very fine level and are more suitable for control
logic design: they produce more compact and faster circuits
than the methods based on syntax-directed translation
from HDLs. However, these models are built on explicit
enumeration of all the event traces and causal relations of a
system and their applicability is limited to microcontrollers
with a small state space; specification of systems with many
similar behavioral patterns, or event orders, is inefficient as
have been demonstrated in [9] (see also Section 2 for a
practical example).

In this paper, we present a new design methodology
built around the Conditional Partial Order Graph model
introduced recently [9]. The key features of the model are:
ability to describe systems in a compact functional form,
and structural synthesis methods which significantly im-
prove performance of the whole design flow. These features
make the model very efficient for representation and
management of causal information in hardware and EDA
software. A CPOG is a superposition of a set of partial
orders which can be extracted from it by providing the
corresponding codewords, see Fig. 1(center). It can be
regarded as a custom associative memory for storing cause
and effect relations within a predefined set of events.

There are different kinds of systems which can be
described with the model. For example, a CPU microcon-
troller executes partial orders (or instructions) of primitive
computational steps (or microinstructions) defined on a set
of data path operational units, see Fig. 1(top). The order is
determined by an instruction code—a combination of logical
conditions presented to the controller by the environment
[6]. To this end, the microcontroller can be seen as an
entity which communicates with two parts of the environ-
ment: one part is the source of condition signals (an
instruction decoder) and the other part is a set of
controlled objects with request-acknowledgment interface
(data path operational units which execute the microin-
structions). Thus, the condition signals dynamically re-
configure the microcontroller according to the instruction

1480 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 11, NOVEMBER 2010

. The authors are with the School of Electrical, Electronic, and Computer
Engineering, Merz Court, Newcastle University, Newcastle upon Tyne,
NE1 7RU, United Kingdom.
E-mail: {andrey.mokhov, alex.yakovlev}@ncl.ac.uk.

Manuscript received 10 May 2009; revised 29 Dec. 2009; accepted 4 Jan. 2010;
published online 23 Feb. 2010.
Recommended for acceptance by I. Markov.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2009-05-0203.
Digital Object Identifier no. 10.1109/TC.2010.58.

0018-9340/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

being executed. Microcoded control synthesis presented in [6]
is applicable to this class of systems, however, it is based
on synchronous FSMs and stores the event orders
separately in look-up tables, thus having a limited degree
of parallelism and certain area penalties.

Another class of controllers suitable for CPOG specifica-
tion is a family of phase encoders [7]. A phase encoder is a
circuit that converts data between two conceptually
different information domains, see Fig. 1(bottom). The first
one corresponds to the combinatorial data encoding, e.g.,
binary or m-of-n encoded data symbols [18]. The second
domain is comprised of sequences of events ordered in
time. CPOGs are capable of specifying such controllers
without the explicit representation of all the contained
behavioral scenarios thereby avoiding the combinatorial
explosion of the specification (see Section 7).

Fig. 2 shows the proposed CPOG-driven flow for
automated synthesis of microcontrollers. At first, the
designer has to specify all the execution scenarios of the
controller. A scenario is a schedule of basic events or actions
that have cause and effect relationships between them.
Consider a simple scenario of adding two numbers which
consists of actions fa; b; c; dg:

1. Read input value X (a);
2. Read input value Y (b);
3. Compute sum Z ¼ X þ Y (c); and
4. Store the result value Z (d).

One can see that action c depends on actions a and b (there is
no way to compute sum Z without having values X and Y ;
actions a and b are so-called passive, or material causes for

action c), and action d in turn cannot happen until action c is
completed. This is captured by the following diagram:

The diagram depicts a partial order [5], a basic precedence
relation on the set of actions. Every scenario is specified
independently from the others.1 This makes our approach
substantially different from the STG or FSM-driven ap-
proaches that require the designer to specify the controller
as a whole, often resulting in complicated and incompre-
hensible specifications. This is demonstrated by a simple
controller with three basic scenarios used as an example in
Section 2.

As soon as all the scenarios of the controller have been
defined the flow proceeds to the stage of CPOG synthesis.
At this stage all the scenarios are combined within a single
mathematical structure—a Conditional Partial Order Graph
(introduced formally in Section 3). Later on every scenario
can be extracted from this structure by providing its code.
Therefore, it is necessary to set up a correspondence
between the scenarios and their codes. This correspondence
is called an encoding scheme. Section 4 presents a formal
method of synthesis and several encoding schemes which
are often encountered in practice.

The obtained CPOG can be mapped into an interconnec-
tion of logic gates to produce the physical implementation

MOKHOV AND YAKOVLEV: CONDITIONAL PARTIAL ORDER GRAPHS: MODEL, SYNTHESIS, AND APPLICATION 1481

Fig. 1. Examples of dynamically reconfigurable microcontrollers.

Fig. 2. CPOG-based flow for control specification and synthesis.

1. There are cases when many scenarios match a certain pattern and can
be specified together in a functional form without their explicit enumeration
as demonstrated in Section 7.1.

of the microcontroller as explained in Sections 5 and 7. The
area and speed of the microcontroller depends on the size
and structural properties of its CPOG representation.
Therefore, a CPOG can undergo various optimization
procedures which exploit similarities between the original
scenarios and functional characteristics of their encodings
(see Section 6). The obtained gate-level implementation of
the controller can be further processed using the standard
circuit design tools, e.g., it might require technology mapping
for a particular gate library, or a custom technology-
dependent performance optimization which are out of the
scope of this paper.

The CPOG-based synthesis flow requires the designer’s
involvement only at the stage of system specification and
scenario encoding. Therefore, the rest of the stages can be
automated and the designer might even be unfamiliar with
CPOGs and the underlying theory. It is also important to
note that all the CPOG-related stages (synthesis, optimiza-
tion, and mapping) rely only on structural methods and do
not require exploration of the entire controller state space or
explicit enumeration of all its behavioral scenarios, which
results in high efficiency of the whole design flow.

The paper is organized as follows: Section 2 presents a
motivational example demonstrating limitations of the
existing specification models. The CPOG model and
CPOG-based synthesis approach is formally introduced in
Sections 3-4 which are followed by application of the
proposed method to the previously discussed motivational
example in Section 5. Various CPOG optimization techni-
ques are presented in Section 6. The paper is concluded
with a practical CPOG application example (Section 7) and
Conclusions (Section 8).

2 MOTIVATIONAL EXAMPLE

There are many models targeted at microcontrol specifica-
tion and synthesis and a strong reason is demanded if yet
another model is to be introduced into this well-studied and
established domain. This section demonstrates limitations
of the existing control specification models, in particular
STGs [4] and FSMs [11]. The limitations arise in situations
when a specified system contains a mixture of data and
control path interfaces. This leads to combinatorial explo-
sion in the size of specification because data path modeling
requires exploration of all possible combinations of signal
arrivals within a single data codeword which in fact can be
avoided by using different abstraction levels for data and
control related events.

For example, consider a generalized ParSeq controller,2

which manages two handshakes A ¼ ðreq a; ack aÞ and
B ¼ ðreq b; ack bÞ on its right side according to the

operation code (opcode) provided by an asynchronous data
path interface on its left side as shown in Fig. 3.

Depending on the opcode signals the handshakes are to be
initiated either in parallel (concurrent events AkB) or in
sequence (in two possible event orders A! B or B! A),
hence the name of the controller. As soon as both handshakes
are completed the controller issues signal done. The reset
phase is similar but the handshakes are always reset
concurrently regardless of the opcode.

The three operational scenarios can be encoded (i.e.,
given distinct opcodes) in different ways. The following
sections demonstrate how a chosen data path encoding
affects the controller specification.

2.1 One Hot Encoding

One hot encoding [18] is the most natural data path encoding
in this case. It uses three signals fx1; x2; x3g to select one of
the three scenarios:

Note, that combination ð0; 0; 0Þ represents a spacer value
which separates two consecutive data symbols.

An STG specification of ParSeq controller with one hot
interface is shown in Fig. 4. The STG has a global choice
(place p) and the three scenarios are specified as three
independent branches starting with input signals x1þ, x2þ,
and x3þ. The upper branch corresponds to parallel hand-
shakesAkB; the two lower branches correspond to sequential
handshakes A! B and B! A. After the global merge
(place q) the handshakes are reset concurrently and the

1482 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 11, NOVEMBER 2010

2. ParSeq controller and its variations have several practical applications,
e.g., in Balsa synthesis flow [2] or in phase encoding controllers [7].

Fig. 3. ParSeq controller interface.

Fig. 4. An STG specification of one hot ParSeq controller.

system returns to the initial state. This STG seems to be
convenient, understandable, and can be designed by hand
but it duplicates events in different brancheswhich can cause
exponential explosion in the size of the specification for
larger controllers. This particular issue, however, is not
addressed in this paper as it has been investigated in [9].

Fig. 5 shows an FSM specification of one hot ParSeq
controller. Its structure is similar to the STG: it has a global
choice in the initial state S0, three separate branches
describing different scenarios, and the concurrent reset of
the handshakes via state S9. Apart from the same event
duplication issue, this specification is compact and can be
easily obtained manually.

The presented specifications do not exhibit any men-
tioned problems of data path interface communication
because of the fact that one hot encoding transfers all the
opcode information within a single input transition xkþ
(which is the essence of one hot encoding, being its
advantage and disadvantage at the same time). Unfortu-
nately, one hot encoding is generally not an option for data
path interfaces as it requires too many wires for data
transmission. The next section shows the effect of using
binary (dual rail) encoding for the opcodes.

2.2 Dual Rail Encoding

Dual rail encoding [18] uses two wires ða0; a1Þ for one data
bit a encoding: signal combination ð1; 0Þ stands for Boolean
value 0; ð0; 1Þ represents 1; and ð0; 0Þ is a spacer value. The
three scenarios can be encoded with two dual rail
signals fa; bg as shown below:

Here, bit a can be interpreted as a permission for
handshake A to happen without waiting for handshake B
(bit b has a symmetric interpretation).

As can be seen from Fig. 6, the STG specification changes
dramatically due to this modification of the data path
interface. The reason is that the new data encoding uses two
concurrent transitions to transfer an opcode (instead of only

one in one hot encoding) and all the arrival scenarios of

these two transitions have to be explicitly reflected in the

specification. Dummy events d1, d2, and d3 help to simplify

the specification: they do not correspond to any hardware

signals but rather represent the choice of the environment,

e.g., arrival of signals a1þ and b1þ signifies that the

environment has chosen the first scenario associated with

the d1 branch of the STG, etc. (note that signal a1þ alone is

not enough to deduce the choice).
Unexpectedly, the new STG has to model OR-causality

[20]: handshake A can be initiated as soon as at least one of

signals a1þ or b0þ is received. As a result the opcode

decoding process propagates further into the controller

specification, and it is already impossible to clearly separate

data and control related event flows in the STG.
The situation with the FSM specification is even worse

because FSMs are not well suited for modeling concurrency

in the arrival of dual rail bits, which, coupledwith OR-causal

behavior, leads to a very complicated FSM shown in Fig. 7.

2.3 Dual Rail Encoding (Concurrency Reduction)

In order to simplify the specification of dual rail ParSeq

controller one can try to get rid of OR-causality by

concurrency reduction: the controller can be restricted to

wait for both dual rail signals to arrive before generating

handshakes. This greatly simplifies both STG and FSM

specifications (see Fig. 8) bringing their sizes back to those

of one hot controller (cf. Figs. 4 and 5).
The presented examples demonstrate a high degree of

sensitivity of STG and FSM specifications to minor changes

in the data path interface protocol, yet from a high-level

designer perspective an actual data encoding may be

unimportant at all, or sometimes may even be unknown

(or undecided) until the later design stages. However, even

such a simple controller with three basic behavioral

scenarios becomes a real challenge for manual design in

MOKHOV AND YAKOVLEV: CONDITIONAL PARTIAL ORDER GRAPHS: MODEL, SYNTHESIS, AND APPLICATION 1483

Fig. 5. An FSM specification of one hot ParSeq controller.

Fig. 6. STG specification of dual rail ParSeq controller.

certain cases, and a subtle modification of data encoding
requires its complete redesign.

This motivated the authors of the paper to propose a new
specification model that has different levels of abstraction
for data and control events. The model, called Conditional
Partial Order Graph, separates control events flow within
scenarios from the encoding of these scenarios and
associated data path interface events. This allows specifica-
tion to stay structurally unchanged under different data
encodings. Moreover, the model provides an opportunity to
synthesize encodings of the scenarios targeting various
design optimality criteria, e.g., controller latency, average
length of encodings, power balancing, etc. The model is
introduced in the next section.

3 CONDITIONAL PARTIAL ORDER GRAPHS

Conditional Partial Order Graph [8], [9] is a quintuple HðV ;E;
X; �; �Þ, where V is a set of vertices, E is a set of arcs between
them, and X is a set of operational variables. An opcode is an
assignment ðx1; x2; . . . ; xjXjÞ 2 f0; 1gjXj of these variables; X
can be assigned only those opcodes which satisfy the
restriction function � of the graph, i.e., �ðx1; x2; . . . ; xjXjÞ ¼ 1.
Function � assigns a Boolean condition �ðzÞ to every vertex
and arc z 2 V [E of the graph.

Fig. 9a shows an example of a CPOG containing jV j ¼
5 vertices and jEj ¼ 7 arcs. There is a single operational
variable x; the restriction function is �ðxÞ ¼ 1, hence, both
opcodes x ¼ 0 and x ¼ 1 are allowed. Vertices fa; b; dg
have constant � ¼ 1 conditions and are called uncondi-
tional, while vertices fc; eg are conditional and have
conditions �ðcÞ ¼ x and �ðeÞ ¼ x, respectively. Arcs also
fall into two classes: unconditional (arc ðc; dÞ) and condi-
tional (all the rest). As CPOGs tend to have many
unconditional vertices and arcs we use a simplified
notation in which conditions equal to 1 are not depicted
in the graph—see Fig. 9b.

The purpose of vertex and arc conditions is to “switch off”

some vertices and/or arcs in the graph according to the given

opcode. This makes CPOGs capable of containing multiple

projections as shown in Fig. 10. The leftmost projection is

obtained by keeping in the graph only those vertices and arcs

whose conditions evaluate to Boolean 1 after substitution of

1484 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 11, NOVEMBER 2010

Fig. 7. FSM specification of dual rail ParSeq controller.

Fig. 8. STG and FSM specifications after concurrency reduction.

Fig. 9. Graphical representation of Conditional Partial Order Graphs:

(a) full notation, and (b) simplified notation.

the operational variable x with Boolean 1. Hence, vertex e
disappears, because its condition evaluates to 0: �ðeÞ ¼ x ¼
1 ¼ 0. Arcs fða; dÞ; ða; eÞ; ðb; dÞ; ðb; eÞg disappear for the same
reason. The rightmost projection is obtained in the sameway
but the the opcode is x ¼ 0. Note also that although the
condition of arc ðc; dÞ evaluates to 1 (in fact it is constant 1) the
arc is still excluded from the resultant graph because one of
the vertices it connects (vertex c) is excluded and obviously
an arc cannot appear in a graph without one of its vertices.

Each of the obtained projections can be treated as a
specification of a particular behavioral scenario of the
modeled system. For example, the leftmost projection
corresponds to the operation of addition (cf. the partial order
in Section 1). Potentially, a CPOGHðV ;E;X; �; �Þ can specify
an exponential number of different partial orders of events in
V according to one of 2jXj different possible opcodes.

Wewill use notationHj to denote a projection of a CPOG
H under opcode ¼ ðx1; x2; . . . ; xjXjÞ. A projection Hj is
called valid iff opcode is allowed by the restriction
function, i.e., �ðx1; x2; . . . ; xjXjÞ ¼ 1, and the resultant graph
is acyclic. The latter requirement is needed to guarantee that
the graph defines a partial order of events (otherwise it
would not be possible to schedule them without deadlocks).

A graph H is well-formed iff its every allowed opcode
generates a valid projection Hj . Let the set of all well-
formed CPOGs be denoted as W. The graph H in Fig. 10 is
well-formed, because both projectionsHjx¼1 (left) andHjx¼0

(right) are valid.

The set of all partial orders defined by a well-formed
graph H is denoted as PðHÞ. Graphs H1 2 W and H2 2 W
are called equivalent (denoted as H1 � H2) iff they define the
same set of partial orders:

ðH1 � H2Þ ¼
df
PðH1Þ ¼ PðH2Þ:

Fig. 11 shows three equivalent graphs Ha � Hb � Hc.
Graph Ha in Fig. 11a is taken from the previous example.
Fig. 11b shows graph Hb with the modified operational
vector. It contains two variables X ¼ fx; yg which are
restricted in the one hot manner: only opcodes 1 ¼ ð0; 1Þ
and 2 ¼ ð1; 0Þ are allowed with the restriction function
�ðx; yÞ ¼ x� y. Graph Hc in Fig. 11c does not contain any
arc conditions (which are in fact redundant), and it also has
inverted encodings compared to Ha. In spite of the seeming
difference between the three graphs, they are equivalent as
they define the same set of two partial orders PðHaÞ ¼
PðHbÞ ¼ PðHcÞ.

It is useful to introduce a measure of complexity of
graphs in order to be able to compare them within the same
equivalence class. For instance, graph Hc in Fig. 11 has
simpler description in comparison with graphs Ha and Hb

and is preferred in most cases.
The complexity (or size) CðHÞ of graph HðV ;E;X; �; �Þ is

measured in the number of literals contained in the
restriction function � and conditions �ðzÞ; z 2 V [E:

CðHÞ ¼
df
Cð�Þ þ

X

v2V

Cð�ðvÞÞ þ
X

e2E

Cð�ðeÞÞ;

where CðfÞ; f 2 FðXÞ denotes the literal count [19] of a
Boolean function f . Looking at graphs in Fig. 11 one can see
that CðHaÞ ¼ 0þ 2þ 6 ¼ 8, CðHbÞ ¼ 2þ 2þ 6 ¼ 10, and
CðHcÞ ¼ 0þ 2þ 0 ¼ 2. So, graph Hc can be called optimal in
this context. Methods for graphs size optimization are
addressed in Section 6. Size of the physical controller
implementation closely correlates with complexity CðHÞ of
its specification H. Therefore, we use CðHÞ as an adequate
estimate of CPOGH efficiency and aim to minimize CðHÞ in
the presented optimization procedures. The removal of all
the redundant conditions froma graph anduse of a canonical
representation of Boolean functions leads to the canonical
CPOG description of a set of encoded partial orders.

Two well-formed graphs H1 and H2 are said to be in
conflictw.r.t. their restriction functions �1 and �2 iff �1�2 6¼ 0.
A conflict implies the existence of an encoding such that

MOKHOV AND YAKOVLEV: CONDITIONAL PARTIAL ORDER GRAPHS: MODEL, SYNTHESIS, AND APPLICATION 1485

Fig. 10. Multiple projections contained within a single CPOG.

Fig. 11. Three equivalent graphs: (a) example graph (8 literals), (b) graph with two control variables (10 literals), and (c) no redundant conditional

arcs (2 literals).

both the restriction functions are satisfied. This leads to an
ambiguity in some cases (e.g., in case of graph addition
introduced in Section 3.1), when two graphs describe
different behavior under the same encoding .

3.1 Addition

The result of addition of graphs H1ðV1; E1; X1; �1; �1Þ and
H2ðV2; E2; X2; �2; �2Þ is graph HðV1 [V2; E1 [E2; X1 [X2;

�1 þ �2; �Þ, where the vertex/arc conditions � are defined as

8z 2 V1 [V2 [E1 [E2; �ðzÞ ¼
df
�1�2�1ðzÞ þ �1�2�2ðzÞ:

Addition is denoted using the standard notation
H ¼ H1 þH2.

Theorem 1. Pair ðW;þÞ is a commutative semigroup [5], i.e., set
of well-formed graphs W is closed under addition þ, which is
an associative and commutative operation [8].

Corollary 1. When adding more than two graphs the
redundant brackets can be omitted without any ambiguity:
H1 þH2 þH3.

In the same way as graphs H1 and H2 are considered to be
specifications of certain behavioral scenarios over event
domains V1 and V2, graph H1 þH2 is considered to be
specification of the scenarios from both the graphs over the
joint event domain V ¼ V1 [V2. This is formally stated in
the following theorem.

Theorem 2. If H1 and H2 are well-formed graphs that are not in
conflict then PðH1 þH2Þ ¼ PðH1Þ [PðH2Þ, i.e., graph H1 þ
H2 contains partial orders from both H1 and H2, preserving
their encodings [8].

Consider an example of addition in Fig. 12. Each of graphs
H1 and H2 specifies a single scenario. The graphs are not in
conflict (�1�2 ¼ xx ¼ 0), the result of their addition H1 þH2

is shown in Fig. 12c. It contains both of the scenarios (as was
demonstrated in Fig. 10). Another example of graph
addition is shown in Fig. 13.

3.2 Scalar Multiplication

Graph HðV ;E;X; �; �Þ can be multiplied by a Boolean
function f 2 FðY Þ (which can be called scalar). The resultant
graph is H 0ðV ;E;X [Y ; f�; �Þ. The standard notation will
be used for scalar multiplication: H 0 ¼ fH.

Theorem 3. For every Boolean function f and well-formed
graph H, graph H 0 ¼ fH is also well-formed and PðH 0Þ �
PðHÞ [8].

A linear combination of n � 1 graphs H1, H2; . . . ; Hn and

scalars f1, f2; . . . ; fn is

X

1�k�n

fkHk ¼
df
f1H1 þ f2H2 þ � � � þ fnHn:

Note that any linear combination of well-formed graphs

is also well-formed due to the closure of addition and scalar

multiplication operations over W (Theorems 1 and 3).
Fig. 13 shows linear combination H ¼ f1H1 þ f2H2 of

graphs ðH1; H2Þ w.r.t. scalars ðf1; f2Þ.

4 CPOG SYNTHESIS

The previous section showed that a CPOG can contain

several partial orders in a compressed form and thus can be

used to specify a system with several behavioral scenarios.

Mokhov and Yakovlev [9] showed how to synthesize a

compact CPOG system specification given its description as

a set of partial orders corresponding to different scenarios

in the modeled system.
Formally, let fP1; P2; . . . ; Png be a set of n given partial

orders. The objective is to synthesize a CPOG HðV ;E;

X; �; �Þ such that

PðHÞ ¼ fP1; P2; . . . ; Png: ð1Þ

The idea behind the synthesis approach presented in [9]

is to represent H as the following linear combination of

acyclic graphs Hk such that PðHkÞ ¼ Pk:

H ¼ f1H1 þ f2H2 þ � � � þ fnHn ¼
X

1�k�n

fkHk; ð2Þ

where encoding functionsfk 2 FðXÞ are orthogonal, i.e., fjfk ¼

0; 1 � j < k � n and are not contradictions: fk 6¼ 0; 1 �

k � n. According to Theorems 2 and 3, this guarantees that

PðHÞ ¼ PðH1Þ [PðH2Þ [� � � [PðHnÞ ¼ fP1g [fP2g [� � � [

fPng. Thus, (2) satisfies the synthesis requirement (1).
Opcode signals X and functions fk can be selected in

different ways depending on the chosen encoding scheme. The

following sections describe three most commonly used

encoding schemes. Note that in many practical applications

a scheme is given as part of system specification and every

scenario is assigned a particular opcode which cannot be

changed.However, in some cases a designer can choose from

several allowed encoding schemes and opcode assignments.

1486 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 11, NOVEMBER 2010

Fig. 12. Graph addition: (a) H1, (b) H2, and (c) H1 þH2.

Fig. 13. One hot CPOG synthesis.

It should be mentioned that an encoding scheme does not
necessarily have to be delay insensitive [18]—this depends on
the opcode interface of the microcontroller that is being
synthesized: if it is delay insensitive so must be the encoding
scheme, otherwise non delay insensitive codes can be used
allowing the microcontroller to make use of timing assump-
tions in order to simplify the decoding logic and decrease the
number of opcode wires. This is a usual trade-off between
robustness and performance of a system. The CPOG-based
design flow provides support for both types of controllers.

4.1 One Hot Encoding Scheme

In this scheme n operational signals X ¼ fx1; x2; . . . ; xng are
used to select a particular scenario (cf. Section 2.1).
Functions fk are set to

fk ¼ xk
^

1�j�n
j 6¼k

xj

establishing one hot encodings of the scenarios:
P1 is encoded as ðx1; x2; x3; . . .Þ ¼ ð1; 0; 0; . . .Þ, P2—as
ðx1; x2; x3; . . .Þ ¼ ð0; 1; 0; . . .Þ, etc.

Fig. 13 shows an example of synthesis of a CPOG
containing partial orders P1 ¼ fa � bg and P2 ¼ fb � ag.
The opcode signals set is fx1; x2g and the encoding functions
are f1 ¼ x1x2 and f2 ¼ x1x2. The result H ¼ f1H1 þ f2H2

contains both partial orders as projections Hjx1¼1;x2¼0 and
Hjx1¼0;x2¼1. It is possible to optimize it reducing the literal
count from 16 to 4 (see Section 6 for details):

One hot scheme provides a simple and intuitive way of
encoding partial orders but it is inefficient because of the
large size of opcode signals set: jXj ¼ n. It is not practical for
synthesis of CPOGs containing large number of scenarios.

4.2 Binary Encoding Scheme

Inbinary schemeonlym ¼ log2 nd eoperational variablesX ¼
fx1; x2; . . . ; xmg are used to encode n given scenarioswhich is
the theoretical minimum. Let bjk denote jth bit of integer
number k. Then we can define encoding functions fk as:

fk ¼
m̂

j¼1

�

xj , bjðk	1Þ

�

:

For example, if n ¼ 3, we get f1 ¼ ðx1 , 0Þðx2 , 0Þ ¼
x1 x2, f2 ¼ ðx1 , 1Þðx2 , 0Þ ¼ x1x2 and f3 ¼ ðx1 , 0Þðx2 ,
1Þ ¼ x1x2 resulting in natural binary encodings of the three
partial orders: 1 ¼ ð0; 0Þ, 2 ¼ ð1; 0Þ, and 3 ¼ ð0; 1Þ.

Application of the binary encoding scheme to synth-
esis of a CPOG containing partial orders P1 ¼ fa � bg and
P2 ¼ fb � ag leads to a very compact (only two literals)
specification:

Observe the difference between this result and the
optimized version of the one hot solution (3). As one can
see the selected encoding scheme does not affect the
structure of the synthesized CPOG. However, it affects
complexity of the functions and size of the physical
controller implementation.

4.3 Matrix Encoding Scheme

Size of the opcode signals set in this scheme does not
depend on the number of scenarios. It depends only on the
number of different events in the system—jV j. In particular,
operational variables form an operational matrix X ¼
fxjk;j ¼ 1 . . . jV j; k ¼ 1 . . . jV jg. The matrix has enough in-
formation capacity to describe any partial order P ðV 0;�Þ on
a subset V 0 � fe1; e2; . . . ; ejV jg of jV j events:

 ðxjkÞ
j6¼k

¼
1 if ðej2V

0Þ ^ ðek2V
0Þ ^ ðej�ekÞ

0 otherwise;

�

 ðxkkÞ ¼
1 if ðek 62 V 0Þ

0 otherwise:

�

ð4Þ

Instead of direct application of this encoding scheme to
(2), we can use a generic solution with its subsequent
optimization taking into account the given scenarios. The
optimization removes the variables that remain constant
throughout all the scenarios and makes the corresponding
vertices and arcs unconditional.

Generic solutions for systems with two and three events
are given below3:

For example, using (4) to encode partial orders P1 ¼
fa � bg and P2 ¼ fb � ag gives us these encoding matrices:

 1;2 ¼
x11 x12
x21 x22

� �

: 1 ¼
0 1

0 0

� �

; 2 ¼
0 0

1 0

� �

:

Diagonal elements xkk are constant zeros therefore
vertices a and b become unconditional. As a result, the
generic matrix graph is reduced to one hot solution (up to
control variables renaming—see (3)):

MOKHOV AND YAKOVLEV: CONDITIONAL PARTIAL ORDER GRAPHS: MODEL, SYNTHESIS, AND APPLICATION 1487

3. A generic solution for an arbitrary number of events V ¼ fe1; . . . ; ejV jg
is a fully connected graph KjV j with conditions �ðekÞ ¼ xkk and
�ððej; ekÞÞ ¼ xjk.

Matrix encoding scheme is general in the sense that it
can be used to encode any possible behavioral scenario of
a system with n events in a reasonably compact and
intuitive way. It is a trade-off between one hot encoding
which is straightforward but inefficient in terms of the
number of opcode signals and binary encoding which has
the least possible encodings length but more complicated
encoding functions which are not affordable in some
cases. The efficiency of matrix encoding scheme allowed
us to specify and synthesize phase encoding repeaters (see
Section 7.1) for up to 10 wires having 10! ¼ 3;628;800

different behavioral scenarios.

5 SYNTHESIS OF PARSEQ CONTROLLERS

This section shows how the ideas presented above can be
applied to specification and synthesis of one hot and dual
rail ParSeq controllers introduced in Section 2.

The event domain in this case consists of two events V ¼
fA;Bg corresponding to the handshakes. The behavioral
scenarios can be represented with partial orders as shown in
Table 1. Note that the spacer scenario is explicitly defined.

5.1 One Hot Encoding

At first, consider synthesis of a CPOG H for one hot
ParSeq controller (Section 2.1). Operational signals are X ¼
fx1;x2; x3g. The table below shows the encodings of partial
orders PðHÞ ¼ fP1; P2; P3; P4g and the corresponding en-
coding functions fk:

Note that the four unused encodings represent a don’t care
set [6] and can be used for logic optimization of CPOGs and
final signal equations (e.g., by using ESPRESSO [13] logic
minimization tool which supports don’t cares). Moreover, a
restriction function � of the synthesized graph describes this

don’t care set in a very compact form: all encodings such
that �j ¼ 0 are don’t cares. See Section 6.1 for details.

The resultant graph H ¼ f1H1 þ f2H2 þ f3H3 þ f4H4

(where PðHkÞ ¼ Pk) after logic minimization is shown in
Fig. 14a. It can now be mapped into logic gates to produce a
physical implementation of the controller. Event ek is
enabled to fire (reqk is excited) if all the preceding events
have already fired (ackj have been received)4:

reqk ¼ �ðekÞ �
^

1�j�jV j
j6¼k

ð�ðejÞ � �ððej; ekÞÞ) ackjÞ: ð5Þ

For example, signal req a is mapped as

req a ¼ ðx1 þ x2 þ x3Þððx1 þ x2 þ x3Þx3) ack bÞ;

which can be optimized taking into account don’t cares
defined by the restriction function � ¼ x1 x2 þ x1 x3 þ x2 x3:

req a ¼ x1 þ x2 þ x3ack b:

This final equation is very easy to interpret: request to
event A can be generated immediately in two first scenarios
(AkB and A! B) while in the third scenario (B! A) it
should happen only upon arrival of acknowledgment from
event B; opcode ð0; 0; 0Þ forces req a to reset (the spacer
scenario). Equation for req b is similar which leads to the
controller shown in Fig. 14b. Signal done acknowledges the
completion of both handshakes. It was verified that both
PETRIFY [3] and 3D [21] synthesis tools generate the same
controller given the STG and FSM specifications from Figs. 4
and 5, so all the three specifications (in STG, FSM, and
CPOG models) describe exactly the same controller.

5.2 Dual Rail Encoding

Dual rail ParSeq controller (Section 2.2) has four opcode
signals: X ¼ fa0; a1; b0; b1g. The scenarios are encoded as
follows:

Note that scenarios P2 and P3 have more than one
encoding: this reflects the fact that the controller can start
generating events after receiving only a partial opcode (OR-
causality modeling has been shifted to the stage of
scenarios encoding in CPOG-based synthesis flow). Graph
containing all these scenarios encoded with functions fk is
shown in Fig. 15a.

The final equations obtained using (5) are

req a ¼ a1 þ b0 þ ða0 þ b1Þack b;

req b ¼ a0 þ b1 þ ða1 þ b0Þack a:

Signal done should acknowledge completion of both
handshakes and also the arrival of a complete opcode (this

1488 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 11, NOVEMBER 2010

4. Here, a) b stands for Boolean implication indicating “b if a” relation. It
shouldn’t be mixed with Boolean equivalence a, b or “b if and only if a”
relation [5].

TABLE 1
Four Scenarios of a ParSeq Controller

is needed because in some cases the controller can finish the
handshakes having only partial opcode information). Gate-
level implementation of the controller is shown in Fig. 15b.
Signal done is decomposed into several 2-input gates
outlined with a dotted line. There can be several possible
decompositions (note that complex gates generating signals
req a and req b may have to be decomposed as well). Logic
decomposition is one of the key problems of circuit
synthesis [4] and is out of scope of this paper. PETRIFY
and 3D produce the same controller (without signal done
decomposition) given the specifications from Section 2.2.

Once again the CPOG specification stays structurally
unchanged for different scenario encodings as can be seen
from Figs. 14a and 15a. This is a very important and
convenient feature: it gives designer an opportunity to
change encoding without graph resynthesis because it is
possible to substitute opcode variables with different ones
and to rewrite the corresponding conditions.

The CPOG model has different levels of abstraction for
data and control path events and is beneficial for specifica-
tion and synthesis of controllers that have both kinds of
interfaces. Data path events and all the choice in the system
are modeled with Boolean functions, while control path
events and concurrency associated with them are modeled
with partial orders. This combination of comprehensively
studied Boolean algebra and graphs allows a lot of powerful
optimization techniques to be reused.

6 OPTIMIZATION TECHNIQUES

The size of the physical controller implementation is
proportional to the size of its CPOG specification measured
as the total number of literals in its conditions [9]. There are
different optimization techniques reducing the size of a
given CPOG by functional logic minimization and/or by
exploiting structural graph properties.

All the techniques presented here preserve the equiva-
lence class of a given CPOG (i.e., the resultant optimized
graph is equivalent to the given one) and the original
encodings of partial orders (i.e., the opcodes of scenarios
remain the same).

6.1 Logic Minimization

The most evident optimization opportunity comes from the
fact that all Boolean conditions � in a CPOGHðV ;E;X; �; �Þ

can be minimized by taking into account the don’t care set
defined with restriction function �.

Let z 2 V [E be an arc or a vertex in a graph HðV ;E;
X; �; �Þ having condition f ¼ �ðzÞ. Then it is possible to
substitute function f with another (possibly simpler) func-
tion g iff the following Boolean equation is a tautology5:

�) ðf , gÞ: ð6Þ

The intuition here is that function g must evaluate to the
same value as f only under valid opcode variable assign-
ments (when �j ¼ 1) and is unconstrained otherwise.

In particular, substitution g ¼ ð�) fÞ appears to be quite
good in practice (it forces the condition to evaluate to 1 in
don’t care entries of the truth table thus simplifying the min-
terms). According to (6) it is a valid substitution, because

�) ðf , gÞ ¼ �) ðf , ð�) fÞÞ ¼

�) ðf ð�þ fÞ þ fð�þ fÞÞ ¼ �) ð�þ fÞ ¼ 1:

For example, the original condition

�ðAÞ ¼ x1x2 x3 þ x1x2x3 þ x1 x2x3

obtained after one hot synthesis of ParSeq controller in
Section 5.1 is minimized into

�optðAÞ ¼ ð�) �ðAÞÞ ¼ x1 þ x2 þ x3;

which is shown in Fig. 14a. � ¼ x1 x2 þ x1 x3 þ x2 x3 in
this case.

6.2 Implicit Arc Exclusion

Whenever a vertex is excluded from a graph all its adjacent
arcs are also excluded even if their conditions evaluate to
Boolean 1. This can be exploited as follows:

Let arc e ¼ ða; bÞ have condition f ¼ �ðeÞ and connect
vertices with conditions va ¼ �ðaÞ and vb ¼ �ðbÞ. It is
possible to substitute function f with another function g

iff the following relation is a tautology:

vavb�) ðf , gÞ: ð7Þ

MOKHOV AND YAKOVLEV: CONDITIONAL PARTIAL ORDER GRAPHS: MODEL, SYNTHESIS, AND APPLICATION 1489

Fig. 14. Specification and implementation of one hot ParSeq controller:

(a) CPOG specification, and (b) implementation.

Fig. 15. Specification and implementation of dual rail ParSeq controller:

(a) CPOG specification, and (b) implementation.

5. A Boolean function is called tautology iff it is true under any possible
assignment of its parameters [5].

In other words, the don’t care set is extended to include
those opcodes in which arc e is implicitly excluded because
of the exclusion of one of its vertices (cf. (6)).

For example, consider arc ðA;BÞ in the CPOG from
Fig. 15a: � ¼ a0 b0 þ a1 b0 þ a0 b1, vA ¼ vB ¼ a0 þ b0 þ a1 þ
b1, and f ¼ b0 þ a1b1 (this is the original unoptimized
condition on the arc). We would like to substitute f with
a simpler function g ¼ a0 b1 (which is used in the figure).
However, this is not a valid substitution according to (6)
because f 6¼ g in the spacer scenario (a0 ¼ a1 ¼ b0 ¼
b1 ¼ 0). On the other hand, vertices A and B are excluded
from the graph in this scenario, thus the actual value of
the condition on arc ðA;BÞ is not important. This is
captured in (7) which considers g to be a valid
substitution of f .

6.3 Transitive Arc Reduction

Another optimization opportunity is to reduce the
transitive arc conditions. For instance, arc e ¼ ða; bÞ in
Fig. 20(left) is transitive w.r.t. path a! c! b when x2 ¼ 1.
Clearly, an indirect dependency between events a and b is
enough to establish the order relation between them,
hence the condition �ðeÞ ¼ x1 þ x2 þ x5 can be optimized
into �optðeÞ ¼ x1 þ x5. All the other arcs in the graph from
Fig. 20 can be optimized in the same way leading to the
graph shown to the right.

Formally, let arc e ¼ ða; bÞ have condition f ¼ �ðeÞ and a
transitive path ha; bi exist in graph Hnfeg if condition t is
true. Then it is possible to substitute function f with
function g iff the following relation is a tautology:

t�) ðf , gÞ:

In other words all the opcodes in which the transitive
path ha; bi is activated (t ¼ 1) are added to the don’t care set
of arc ða; bÞ. It is possible to combine this technique with the
previous one to obtain the general arc optimization equation:

vavbt�) ðf , gÞ: ð8Þ

6.4 Common Factors Extraction

The three optimization techniques presented above can be
applied to every vertex or arc independently from the others
thereby increasing the efficiency of CPOG optimization

algorithms. However, the actual circuit implementation of
the controller may share the common factors (subexpres-
sions) of the conditions for the purpose of area minimiza-
tion. This requires the joint optimization of the conditions,
which is a more time consuming procedure and may not be
affordable for large designs.

The CPOG specification from Fig. 15a can serve as a
simple demonstration of common factors extraction. Vertex
condition �ðAÞ ¼ a0 þ b0 þ a1 þ b1 can be expressed in terms
of arc conditions � ¼ a0 b1 and � ¼ a1 b0 as �optðAÞ ¼ ��.
This reduces the CPOG size by four literals. However,
utilization of common factors may slow down the resultant
controller in some cases, therefore, finding an appropriate
trade-off between area and performance is necessary.

7 APPLICATION EXAMPLE: PHASE ENCODERS

This section demonstrates application of CPOG-based
approach to synthesis of phase encoding controllers [7].

Themultiple rail phase encoding protocol uses several wires
for communication and data is encoded in the order of
occurrence of transitions in the communication lines. Fig. 17
shows an example of a data packet transmission over a
4-wire phase encoding communication channel. The order
of rising signals on wires fa; b; c; dg indicates that permuta-
tion abdc is being sent. In total it is possible to send
n! different permutations over an n-wire channel. This
makes the multiple rail phase encoding protocol very
attractive for its information efficiency [7].

Phase encoding controllers contain an exponential num-
ber of behavioral scenariosw.r.t. the number ofwires and are
very difficult for specification and synthesis using conven-
tional approaches. The CPOG model suits perfectly for this
class of systems and provides a compact specification and
efficient synthesis method which is demonstrated below.

7.1 Phase Encoding Repeater

Phase encoding repeater is a circuit that regenerates the
deteriorating phase difference between signals in the phase
encoding communication channel, i.e., it receives a phase
encoded data packet and retransmits it further over the
channel. Hence, it consists of two functional parts: a
receiver (a phase detector, which determines the order of
the incoming transitions) and a sender (a phase encoder
generating a series of transitions in the order they were
received).

Phase detector for an n-wire communication channel
consists of n

2

� �

mutual-exclusion (mutex) elements. They
determine the order of n transitions by comparing their
arrival times pairwise (see Fig. 16 for an example of a
simple mutex element implementation and three-wire
phase detector).

The result of phase detection can be converted into a
more common encoding domain, e.g., into binary codes,

1490 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 11, NOVEMBER 2010

Fig. 16. Phase detection: (a) Mutex element, and (b) three-wire phase

detector.

Fig. 17. Data symbol in multiple rail phase encoding channel.

which can be processed using the binary sender. However,
one can notice that the outputs of the mutex elements form
an operational matrix (4) with zeroes on its main diagonal.
Therefore, it is possible to use the matrix encoding scheme
directly (see Section 4.3) to avoid additional binary
conversion circuitry. This gives the following CPOG
specification for 3-wire matrix phase encoder (events ek
correspond to output transitions, and arc conditions xjk
represent the result of phase detection):

Having synthesized the CPOG we can derive Boolean
equations for physical controller implementation. The
controller should have n2 	 n inputs X ¼ fxjk; 1 � j; k �
n; j 6¼ kg and n outputs T ¼ ft1; t2; . . . ; tng. Output transi-
tion tk is enabled to fire if all the preceding (w.r.t. the partial
order specified by control matrix X) transitions have
already fired:

tk ¼
^

1�j�n
j6¼k

ðxjk) tjÞ ¼
^

1�j�n
j 6¼k

ðxjk þ tjÞ:

It is possible to to exploit the fact that operationalmatrixX
specifies a total order.6 In our case, it means that xjk ¼ xkj:

tk ¼
^

1�j�n
j 6¼k

ðxkj þ tjÞ:

As the phase encoder should maintain a certain time
separation � between the generated transitions it is
necessary to modify the above equation to take this fact
into account:

tk ¼
^

1�j�n
j 6¼k

�

xkj þ t�j
�

where t�j represents signal tj delayed for � time units. For
the purpose of resetting the controller into the initial state
after generating the desired sequence of transitions we
should also add signal go that would serve as an initiating
and resetting signal:

tk ¼ go �
^

1�j�n
j 6¼k

�

xkj þ t�j
�

: ð9Þ

The implementation of phase encoding repeater consist-
ing of phase detector and phase encoder specified with (9)
is shown in Fig. 18. Signal go can be generated in a number
of ways depending on whether the repeater should be early-
propagative or not as well as on several other criteria which
are out of the scope of this paper.

Note that application of a nonstructural synthesis
approach would lead to exploration of the whole state
space of the controller which is huge (its size is proportional
to n � n! even if we assume all the input signals to arrive
simultaneously!). However, the CPOG-driven approach
demonstrated here performs only a number of operations
on objects of polynomial size (n
 n matrices) and results in
circuits of polynomial area. This allowed us to synthesize
phase encoding repeaters for up to 10 wires in a matter of
seconds with negligible memory consumption, while the
STG-driven approach could not cope even with the case of
five wires running out of available memory.

7.2 One Hot Phase Encoder

One hot encoding can be used to specify the order of output
signal transitions for small values of n (for large values of n
the method is inappropriate because it needs n! input wires).

Consider 3-wire one hot phase encoder. The six
behavioral scenarios (a � b � c, a � c � b, etc.) are encoded
using six opcode variables X ¼ fx1; x2; x3; x4; x5; x6g result-
ing in the CPOG shown in Fig. 20(to the left); it is possible to
simplify it into a slightly smaller CPOG using the transitive
conditions reduction (to the right). The final gate-level
implementation of the controller specified with the obtained
optimal CPOG is shown in Fig. 19.

The obtained controller is not speed-independent [10] and
operates correctly only under the timing assumptions

MOKHOV AND YAKOVLEV: CONDITIONAL PARTIAL ORDER GRAPHS: MODEL, SYNTHESIS, AND APPLICATION 1491

6. Partial order is called total iff every pair of elements is ordered.

Fig. 18. Three-wire phase encoding repeater.

Fig. 19. Three-wire one hot phase encoder.

Fig. 20. Transitive arc reduction in one hot phase encoder CPOG.

imposed on opcode signals X and request signal go (similar
to the bundled data protocol). In order to establish a proper
speed-independent communication protocol between the
controller and the environment signal go should be
removed (the start and reset functions are delegated to
one hot signals x1 . . .x6) as shown in Fig. 21. Instead a new
signal done should be introduced to prompt the environ-
ment that the controller has sent the phase encoded data
and is ready for the next data packet. The delay elements
should also be moved outside the controller and become
part of the environment (the controller is separated from the
environment with a dotted line). The complex gates
generating the output signals are decomposed into two
and three-input logic gates with a subsequent negative logic
optimization. The delayed output transitions are synchro-
nized with a C-element to produce signal done. The circuit
was formally verified for the compliance with the environ-
ment interface and the absence of hazards using WORK-

CRAFT [12] framework.

8 CONCLUSIONS

The paper presented the Conditional Partial Order Graph
model and CPOG-based methodology for specification and
synthesis of asynchronous controllers. It contains an
extensive set of examples demonstrating the advantage of
the proposed approach over the conventional methods. The
model is beneficial for the specification of a certain class of
systems which have many behavioral scenarios defined on
the same set of events.

The methods presented in this paper can be applied
whenever a controller has to react to different control codes
by initiating different event sequences. The most natural
examples include: CPU microcontrollers, which receive an

instruction code and activate a set of data path operational
units (adders, multipliers, etc.) in a proper partial order;
NoC routers, which receive a routing code (source/
destination address) and perform a set of routing proce-
dures in the requested sequence.

ACKNOWLEDGMENTS

This work was supported by EPSRC grants EP/F016786/1
and EP/C512812/1.

REFERENCES

[1] International Technology Roadmap for Semiconductors (ITRS ’07).
http://www.itrs.net/Links/2007ITRS/Home2007.htm, 2007.

[2] A. Bardsley and D. Edwards, “The Balsa Asynchronous Circuit
Synthesis System,” Proc. Forum on Design Languages, 2000.

[3] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A.
Yakovlev, “Petrify: A Tool for Manipulating Concurrent Specifi-
cations and Synthesis of Asynchronous Controllers,” IEICE Trans.
Information and Systems, vol. E80-D, no. 3, pp. 315-325, 1997.

[4] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A.
Yakovlev, “Logic Synthesis of Asynchronous Controllers and
Interfaces,” Advanced Microelectronics, Springer-Verlag, 2002.

[5] A. Lew, Computer Science: A Math. Introduction. Prentice-Hall,
1985.

[6] G. De Micheli, Synthesis and Optimization of Digital Circuits.
McGraw-Hill Higher Education, 1994.

[7] A. Mokhov, C. D’Alessandro, and A. Yakovlev, “Multiple rail
phase encoding circuits,” Technical Report, NCL-EECE-MSD-TR-
2008-133, May 2008.

[8] A. Mokhov, “Conditional Partial Order Graphs,” PhD thesis,
Newcastle Univ., Sept. 2009.

[9] A. Mokhov and A. Yakovlev, “Conditional Partial Order Graphs
and Dynamically Reconfigurable Control Synthesis,” Proc. Design,
Automation and Test in Europe (DATE) Conf., 2008.

[10] D. Muller and W. Bartky, “A Theory of Asynchronous Circuits,”
Proc. Int’l Symp. Theory of Switching, pp. 204-243, 1959.

[11] S. Nowick, “Automatic Synthesis of Burst-Mode Asynchronous
Controllers,” PhD thesis, Stanford Univ., 1993.

[12] I. Poliakov, A. Mokhov, A. Rafiev, D. Sokolov, and A. Yakovlev,
“Automated Verification of Asynchronous Circuits Using Circuit
Petri Nets,” Proc. Int’l Symp. Advanced Research in Asynchronous
Circuits and Systems (ASYNC), 2008.

[13] R.L. Rudell and A.L. Sangiovanni-Vincentelli, “Multiple-Valued
Minimization for PLA Optimization,” IEEE Trans. CAD of
Integrated Circuits and Systems, vol. 6, no. 5, pp. 727-750, Sept. 1987.

[14] D. Sokolov and A. Yakovlev, “Clock-Less Circuits and System
Synthesis,” Proc. IEE Proc. Computers and Digital Techniques, 2005.

[15] A. Taubin, J. Cortadella, L. Lavagno, L. Lavagno, A. Kondratyev,
and A.M.G. Peeters, “Design Automation of Real-Life Asynchro-
nous Devices and Systems,” Foundations and Trends in Electronic
Design Automation, vol. 2, no. 1, pp. 1-133, 2007.

[16] K. van Berkel, M. Josephs, and S. Nowick, “Scanning the
Technology: Applications of Asynchronous Circuits,” Proc. IEEE,
1999.

[17] K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij, “The
VLSI-Programming Language Tangram and Its Translation into
Handshake Circuits,” Proc. European Conf. Design Automation
(EDAC), 1991.

[18] T. Verhoeff, “Delay Insensitive Codes—An Overview,” Distributed
Computing, vol. 3, no. 1, pp. 1-8, 1988.

[19] I. Wegener, The Complexity of Boolean Functions. Johann Wolfgang
Goethe-Universitat, 1987.

[20] A. Yakovlev, M. Kishinevsky, A. Kondratyev, L. Lavagno, and M.
Pietkiewicz-Koutny, “On the Models for Asynchronous Circuit
Behaviour with OR Causality,” Formal Methods in System Design,
vol. 9, pp. 189-234, 1996.

[21] K.Y. Yun, D.L. Dill, and S.M. Nowick, “Synthesis of 3D
Asynchronous State Machines,” Proc. Int’l Conf. Computer Design
(ICCD), pp. 346-350, 1992.

1492 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 11, NOVEMBER 2010

Fig. 21. Three-wire one hot phase encoder (a speed-independent

solution).

Andrey Mokhov studied computing science at
Kyrgyz-Russian Slavic University from 2000 to
2005. After graduation, he joined the Asynchro-
nous Research Group at Newcastle University
as a PhD student and in 2009 he successfully
defended the PhD dissertation. He is a research
associate in the School of Computing Science,
Newcastle University. His research interests
include different levels of electronic design
automation: from formal models for system

specification and verification to logic synthesis and application-specific
optimization. He is a member of the IEEE.

Alexandre (Alex) Yakovlev received the MSc
and PhD degrees from St. Petersburg Electrical
Engineering Institute in 1979 and 1982, respec-
tively, where he worked in the area of asynchro-
nous and concurrent systems since 1980 and
the DSc degree from Newcastle University in
2006. In the period between 1982 and 1990, he
held positions of assistant and associate pro-
fessor at the Computing Science Department.
Since 1991, he has been at the Newcastle

University, where he worked as a lecturer, reader, and professor at the
Computing Science Department until 2002, and is now heading the
Microelectronic Systems Design Research Group (http://async.org.uk)
at the School of Electrical, Electronic and Computer Engineering. His
current interests and publications are in the field of modeling and design
of asynchronous, concurrent, real-time, and dependable systems on a
chip. He has published four monographs and more than 200 papers in
academic journals and conferences, has managed over 25 research
contracts. He has chaired program committees of several international
conferences, including the IEEE International Symposium on Asynchro-
nous Circuits and Systems (ASYNC), Petri nets (ICATPN), Applications
of Concurrency to Systems Design (ACSD), and is currently a chairman
of the Steering committee of the Conference on Application of
Concurrency to System Design. He is a senior member of the IEEE
and a member of the IET. In April 2008, he was general chair of the 14th
ASYNC Symposium and 2nd International Symposium on Networks on
Chip, and tutorial chair at Design Automation and Test in Europe (DATE)
in 2009.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MOKHOV AND YAKOVLEV: CONDITIONAL PARTIAL ORDER GRAPHS: MODEL, SYNTHESIS, AND APPLICATION 1493

