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Let Y be a stochastic process representing the state of a system and N a doubly stochastic Poisson process whose intensity 
varies with the state of a random environment represented by a stochastic process X. In this context a generalization of 
"PASTA" (Poisson Arrivals See Time Averages) is shc, wn to be valid. Various applications of the result are given. 

Poisson process * PASTA * random environment * M / G / 1  queue * buffer model 

1. Introduction 

Suppose N ~ { N(t), t >i 0} is a Poisson process 
of events and Y - { y(t), t >I 0} a stochastic pro- 
cess representing the state of a system. The result 
known as PASTA (Poisson Arrivals See Time Aver- 
ages, see Wolff [8]) then tells us that the long-run 
fraction of events upon the occurrence of which 
the system is in a particular state equals the long- 
run fraction of time the system is in that state, 
provided for every point of time the future jumps 
of N are independent of the past of Y. The latter 
condition is called the Lack of Anticipation as- 
sumption in [8]. 

In this paper we consider a more general situa- 
tion where N is a doubly stochastic Poisson pro- 
cess characterized by the fact that the rate of the 
process varies with the state of a random environ- 
ment represented by a stochastic process X~- 
{ X(t),  t ~  0}. We shall show that under an 
adapted Lack of Anticipation assumption, PASTA 
holds conditionally on the state of X. That is, let s 
be a state in the state space of X; then, confining 
attention to those events upon the occurrence of 
which the environment is in state s and those 
intervals of time during which the environment is 

in state s, PASTA holds. In fact, the formal state- 
ment of our result in Section 2 is more general in 
that for PASTA tO hold conditionally on the en- 
vironment being in a particular state s, it is not 
necessary for N to be a Poisson process whenever 
the environment is in a state s* ,~ s. In the appli- 
cations we have in mind, however, N is a doubly 
stochastic Poisson process as described above. We 
shall refer to our result as Conditional PASTA. 

The principle of the proof in Section 2 is very 
simple. We assume the existence of a Poisson 
process Ns which generates the jumps of N when 
X is in state s, and subsequently apply PASTA 
twice with respect to N s. 

A typical situation where conditional PASTA 
can be applied is an M / G / 1  queue where the 
arrival rate (and perhaps the service rate or the 
service ~ime of an arriving customer) is de- 
termined by the current state of a background 
Markov chain. Another example is a reservoir 
which receives and releases fluid flows at rates 
which are modulated by an underlying Markov 
chain. These examples will be discussed in more 
detail in Section 3. 

In what follows I (E)  denotes the indicator 
function of the event E. 
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2. ~ result and its proof 

Let N - { N ( t ) ,  t>_.0}, X - { X ( t ) ,  t>~0} and 
Y -- { Y(t), t >i 0} be stochastic processes defined 
on some common probability space (f~, ~ ' ,  9~). 
The process N is a counting process, that is, a 
process with non-decreasing, fight-continuous, 
nonnegative integer-valued sample paths. For ev- 
ery t >1 0, X(t)  and Y(t) take on values in arbi- 
trary metric spaces Sx aad S~,, respectively, while 
the sample paths of X and Y are right-continuous 
and have left-hand limits a.s. (almost surely). 

In what follows s will be an arbitrary but fixed 
state in Sx satisfying the following conditions: 

(i) { X(t)  - s } ~ ~" for every t >~ 0; 
(ii) the limit 

1 f o ~ l ( X ( u ) = s )  du (1)  lira 
t-- .~ CO 

exists and is positive a.s.; 
(iii) There exists on the probability space (f~, 

J~', ~ )  a Poisson process N, - { N,(t), t >I 0} at 
rate ~,, > 0 that generates the jumps of the count- 
ing process N when X is in state s; that is, for all 
u > 0, 

l ( X ( u - )  =s)  dN(u)--- I ( X ( u - ) f f i s )  dN,(u). 
(2) 

The interaction between N, X, Y and N, is not 
specified further except for an adapted Lack of 
Anticipation assumption. Namely, for every t >i 0 
the processes { N,( t  + u) - N , ( t ) ,  u >~ 0} and 
((X(u), Y(u)), 0 < u ~ t } are assumed to be inde- 
pendent. 

Next let A be an arbitrary but fixed subset of 
Sr  such that { Y ( t ) ~ A }  ~$r  for every t>~0. Fi- 
nally define 

fot l(X(u) •s) I(Y(u) ~A) du 
V~(t) = , (3) 

fotl( X(u) f s) du 

the fraction of time that Y is in A, thereby 
confining attention to those intervals of time in 
[0,t] during which X is in state s, and 
w (t) 

f o t l ( X ( u - ) f s )  l ( Y ( u - ) ¢ A ) d N ( u )  
) 

fotl( X(u-  ) f s) dN(u) 

(4) 

the fraction of events upon the occurrence of 
which Y is in A, thereby confining attention to 
those events in the interval [0, t] upon the occur- 
rence of which X is in state s. 

Remark. Taking the left-hand limits X ( u -  ) and 
Y ( u -  ) in (2) and (4) is essential, since we do not 
exclude the possibility that a jump of N entails an 
immediate change in X or Y. 

Theorem 1. There exists a random variable V~(oo) 
such that V~(t) --* a'*'V s(oo) if and only if there 
exists a random variable W,( oo ) such that W~( t ) a's" 

Ws(OO), and in this case V~(oo)_a.,. W~(oo). 

Proof. By. our Lack of Anticipation assumption, 
{ N , ( t + u ) - N , ( t ) ,  u>_.0} and {X(u), O<~u<~t} 
are independent for every t >~ 0, so [8, Theorem 1] 
and our assumption that the limit in (1) exists a.s. 
imply 

fo*l( X (u )  - s) du 
lim 

t..co t 

a.s. fo * l ( x ( u - ) f f i s ) d N s ( u )  
ffi lim . (5) 

,--,co N,(t) 

Next, using the adapted Lack of Anticipation 
assumption and [8, Theorem 1] again, we conclude 

il(X(u) •s) I(Y(u) ~A)du 
lim 

t --* oo  l 

, . -  

fotl(X(u - )  ffi s) I(Y(u - )  ~ A) dN~(u) 
a.__s, iim (6) 

I--.® Iv,(t) 

provided one limit (and hence both limits) exists 
a.s. As a consequence of (5) and (6) and our 
assumption that the limit in (I) exists and is 
positive a.s. we get 
lira v~(t) 

1 " " 0 0  

fotl(X(u - )  -- s) I(Y(u - )  ¢ A) dN,(u) 
a....s._ lim , (7) 

1--.=o fotl( X( u - )  = s ) dN,( u ) 

provided one limit (and hence both limits) exist 
a.s. Finally exploiting (2) yields the theorem. [] 

Remark. If S x - { s }, so that I (X( t )  - s) = 1 for 
every t >t 0, Theorem 1 reduces to [8, Theorem 1] 
(PASTA). 
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In applications the processes X and Y will 
usually satisfy stronger conditions than required 
by Theorem 1. Two such situations are described 
in the next two corollaries, where T], T2,... de- 
note the epochs at which events of N occur. 

Corollary i. I f  the processes {(X(t) ,  Y(t)), t >i 0 } 
and {(X(T n - ), Y (T , , -  )), n = 1, 2, ... } are sta- 
tionary and ergodic~ then, under the conditions of 
Theorem 1, for every t >I 0 and n -- 1, 2 . . . .  

e ( Y ( t ) ~ a l X ( t ) - s )  

- P ( Y ( T . - )  ~ a  I X ( T ~ - )  - s).  (8) 

Corollary 2. I f  the processes {(X(t), Y(t)), t >~ 0} 
and {(X(T~ - ), Y(T~ - )), n - 1, 2,. } are regen- 
erative with finite mean times between regeneration, 
then, under the conditions of Theorem 1, 

lira P ( Y ( t ) ~ A l X ( t ) f f i s )  
t - - *  o o  

ffi lira (9) 
t l - ' *  O0 

The additional conditions imposed in these 
corollaries ensure that the limits as t -*  oo of t -]  
times the numerator and denominator of (3) and 
(N( t ) ) -1  times the numerator and denomin~',tor of 
(4), and hence the limits as t ~ oo of V~(t) and 
W~(t), exist and assume simple forms resulting in 
(8) and (9). 

3. Applications 

3.1. Markov modulated M ~  G / 1 queues 

Regterschot and de Smit [5] (see also Reg- 
terschot [4]) study a queueing model in which a 
Markov chain X ~- { X(t), t >i 0} with finite state 
space S x--  {1, 2, . . . ,  N } modulates arrivals and 
services. More precisely, whenever X is in state i 
customers arrive at a single server queue according 
to a Poisson process with rate ?~> 0 and an 
arriving customer has service time distribution G~. 
With W(t) denoting the virtual waiting time 
(workload) at time t, ~ the arrival epoch of the 
n-th customer and W~ its waiting time, it is shown 
in [5] by explicit calculation that for a stable 
system 

lim P ( W ( t ) < x l X ( t ) f f i i )  
t---* o o  

ffi lim P ( W ~ < ~ x l X ( T ~ - ) - i )  (10) 
t l  .---~ oO 

for all x <~ 0 and i ~ S x. A similar equality is 
established, again by explicit calculation of both 
sides, for the queue length distribution in continu- 
ous time and at arrival epochs. Evidently, defining 
N(t)  as the number of arrivals in [0, t], both 
equalities follow directly from our generalization 
of PASTA, specifically from Corollary 2 by virtue 
of the r~generative character of the process at 
hand (see [5]). 

A special case of the above model where N -  2 
and G1 - G2 is studied by van Hoorn and Seelen 
[7]. There, the validity of (10) and the analogous 
equality for queue length distributions is estab- 
lished by an argument based on the regenerative 
structure of the model. 

A related model is the M / M / 1  queue where 
both arrival and service rate are modulated by a 
finite Markov chain X. Neuts [3] studies this 
model and establishes by explicit calculation the 
equality of conditional queue length distributions 
in continuous time and at epochs where the 
Markov chain makes transitions. Again this result 
is implied by Conditional PASTA, if we define N(t) 
as the number of state changes of X in the inter- 
val [0, t]. 

3.2. A buffer with Markov modulated input~ output 

The buffer models studied by Anick et al. [1], 
Gaver and Lehoczky [2], and van Doom et al. [6] 
all fit in wi th the  following general setting (see 
[4]). Let X - { X ( t ) ,  t>~0} be a Markov chain 
with finite state space S x -- {0, 1, . . . ,  N } and gen- 
erator Q - (q~j), which modulates the rate at which 
a fluid flow is received or released by a reservoir 
with infinite capacity. Concretely, whenever X is 
in state i the net flow rate of fluid into the 
reservoir is some constant r~ # 0, with the restric- 
tion that the content of the reservoir cannot de- 
crease when the reservoir is empty. With C(t)  
denoting the content of the reservoir at time t, the 
papers cited above study the distribution of C(t) 
as t goes to infinite. It may be of interest, how- 
ever, to know also the limit distribution of the 
content of the reservoir at epochs where the un- 
derlying Markov chain makes transitions of a 
particular type, for instance at epochs where the 
net input rate of fluid changes from positive to 
negative since these epochs mark the end of a 
buildup period. Conditional PASTA enables us to 
obtain such distributions from the continuous-time 
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distribution. Namely, let N(t) ,  t >~ O, denote the 
numbers of jumps of the Markov chain X in the 
interval [0, t]. (Note that whenever X is in state i 
the process N - { N(t),  t >~ 0} is a Poisson process 
at rate q i -  -qia.)  Then, with T,, n = 1, 2 , . . . ,  
denoting the epoch at which N jumps to level n, 
the processes {(X(t) ,  C(t)),  t >~ 0} and { X(T~ - ), 
C(T~ - ), n ~- 1, 2 , . . .  ) are regenerative (see [4]), 
so Corollary 2 yields 

• n P(C(t)~xJX(t)=i) 
t-,~ W 

• , lim P(C(T.-)~xIX(T.-)-i) 

for all x ~ 0 and i ~ Sx, provided the mean times 
between regenerations is finite. With this informa- 
tion the required distributions can easily be de- 
termined, see [6]. 
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