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ABSTRACT. Dynamic models extend state space models to non-normal observations. This

paper suggests a speci®c hybrid Metropolis±Hastings algorithm as a simple device for

Bayesian inference via Markov chain Monte Carlo in dynamic models. Hastings proposals

from the (conditional) prior distribution of the unknown, time-varying parameters are used

to update the corresponding full conditional distributions. It is shown through simulated

examples that the methodology has optimal performance in situations where the prior is

relatively strong compared to the likelihood. Typical examples include smoothing priors for

categorical data. A speci®c blocking strategy is proposed to ensure good mixing and

convergence properties of the simulated Markov chain. It is also shown that the method-

ology is easily extended to robust transition models using mixtures of normals. The

applicability is illustrated with an analysis of a binomial and a binary time series, known in

the literature.

Key words: Bayesian computing, blocking, conditional prior proposal, discrete data, dynamic

model, innovative outliers, Markov chain Monte Carlo

1. Introduction

Markov chain Monte Carlo (MCMC) simulation in dynamic models with non-normal obser-

vations is an on-going problem. Such dynamic models relate observations yt, t � 1, . . ., T ,

to unobserved state parameters á t with a so-called observation model, typically a generalized

linear model. Temporal dependence is modelled within a transition model, an autoregressive

Gaussian prior for the latent parameters á � (á91, . . ., á9T )9. Hyperparameters are included in

a third level of hierarchy and some conditional independence assumptions complete the

model speci®cation.

Such models are known as state space models for Gaussian observations yt. MCMC

simulation in state space models is discussed in several papers. Carlin et al. (1992) discuss

Gibbs sampling and update á t with a sample from the corresponding full conditional. However,

Carter & Kohn (1994) and FruÈhwirth-Schnatter (1994) observe bad mixing and convergence

behaviour in such a `̀ single move'' blocking strategy. They propose to update á all at once

instead, again using a Gibbs step, i.e. a sample from the (now high dimensional) full conditional.

Special properties of this Gaussian distribution ensure an ef®cient algorithm.

Corresponding work for the more general class of dynamic (generalized linear) models is

rather rudimentary; the full conditionals are now fundamentally non-Gaussian due to the non-

Gaussian observation model. Fahrmeir et al. (1992) generalize the single move Gibbs sampler

of Carlin et al. (1992) to non-Gaussian observations. As for Gaussian observations, the method

may have poor performance when parameters á t are highly correlated in the posterior.

Gamerman (1998) tries to counter this problem through a reparameterization of the model to

a priori independent system disturbances and reports considerably improved mixing and

convergence behaviour. The algorithm uses ideas from posterior mode estimation by iterative

Kalman smoothing (Fahrmeir, 1992; Fahrmeir & Wagenpfeil, 1997) to construct a Hastings

proposal that takes observations into account. The proposal is Gaussian and is built in the spirit

of weighted least squares algorithms for generalized linear models (McCullagh & Nelder,
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1989). However, the reparameterization destroys the simple structure of the full conditional,

leading to an algorithm of quadratic computational complexity in T .

Shephard & Pitt (1997) propose, in contrast to Gamerman, to divide á into several blocks

(`̀ block move'') as an intermediate strategy between updating á one at a time and all at once.

They use several Fisher scoring type steps for every updating step to calculate the moments of a

Gaussian Hastings proposal that tries to approximate the full conditional of the block through an

analytic Taylor expansion.

Both algorithms have proposals in common which try to approximate full conditionals,

imitating a Gibbs step with acceptance probability close to 1. In contrast, our approach does not

seek to approximate the corresponding full conditional; in fact it seems to have optimal

performance for acceptance rates signi®cantly below 1. Performance is poor for acceptance rates

close to 1, a feature known from other Hastings proposals such as the widely used Metropolis

random walk proposal, which is known to have optimal performance for acceptance rates below

50% (Gelman et al., 1995).

Our methodology uses speci®c Hastings proposals which re¯ect the autoregressive prior

speci®cation but are independent of the observation model. The resulting algorithm is con-

ceptually simple, since all proposals are Gaussian with known moments. Updating is done

within a certain blocking strategy to ensure good mixing and convergence of the simulated

Markov chain. Tuning of the algorithm is done by choosing a block size, rather than the spread

of the proposal as in the Metropolis random walk case. It will be shown through simulated

examples that the procedure works well in situations where the prior is relatively strong

compared to the likelihood.

The next section reviews dynamic models as a useful framework for the analysis of non-

normal time series or panel data. MCMC simulation by conditional prior proposals is discussed

in section 3. Some simulation results are given for a data set, known to be problematic for the

single move algorithm. Furthermore a comparison with a Gibbs block move algorithm is given

for the special case of Gaussian observations. The goal is here to assess how much statistical

ef®ciency is lost for our proposal, which is built independently from observations y. Finally,

extensions of the transition model to errors within the class of t-distributions are discussed in

section 4. Such models allow abrupt jumps in the transition model, so-called innovative outliers.

As a ®nal example, we analyse a binary time series with an additional hyperprior on the degrees

of freedom of the t-distribution.

2. Dynamic models

Let y � (y1, . . ., yT ) denote the sequence of observations and á � (á91, . . ., á9T )9 the se-

quence of state parameters. We assume that á tjáÿ t, Qt (t � z� 1, . . ., T ) has a Gaussian

distribution with mean ÿF1á tÿ1 ÿ F2á tÿ2 ÿ � � � ÿ Fzá tÿz and dispersion Qt. Here áÿ t

denotes the sequence (á9tÿz, . . ., á9tÿ1)9, the matrices F1, . . ., Fz are assumed to be known.

In some models, for example in the state space representation of spline priors (Kohn &

Ansley, 1987), a more general speci®cation is needed with matrices F1, . . ., Fz also

depending on time t. In other applications the matrices might be (partially) unknown and

could be estimated within an extended MCMC algorithm. We keep the simpler form here

for reasons of presentation.

Let Q denote the sequence of dispersions Qz�1, . . ., QT . We place ¯at priors on the initial

values á1, . . ., áz, which gives

p(ájQ) /
YT

t�z�1

p(á tjáÿ t, Qt)
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as the Gaussian (vector) autoregressive prior of lag z for á. It is often called the transition

model. Conditional independence of ytjá t, t � 1, . . ., T , gives the posterior distribution as

p(á, Qjy) /
YT

t�1

p(ytjá t) 3 p(ájQ) 3 p(Q)

with some hyperprior p(Q), independent of á and y.

Typical examples of such transition models (with time-constant variance Q) are ®rst (z � 1)

and second (z � 2) order random walks

á tjáÿ t, Q � N (á tÿ1, Q),

á tjáÿ t, Q � N (2á tÿ1 ÿ á tÿ2, Q),

or seasonal models á tjáÿ t, Q � N(ÿá tÿ1 ÿ á tÿ2 ÿ � � � ÿ á tÿz, Q) with period z� 1.

Gaussian autoregressive priors can be written as

p(ájQ) / exp ÿ 1

2
á9Ká

� �
with a so-called penalty matrix K. Note, that p(ájQ) is improper due to the ¯at priors for

the initial parameters á1, . . ., áz; therefore Kÿ1 does not exist. For the random walks given

above the corresponding penalty matrices are

K � 1

Q

1 ÿ1

ÿ1 2 ÿ1

ÿ1 2 ÿ1

..

. ..
. ..

.

ÿ1 2 ÿ1

ÿ1 2 ÿ1

ÿ1 1

0BBBBBBBB@

1CCCCCCCCA
and

K � 1

Q

1 ÿ2 1

ÿ2 5 ÿ4 1

1 ÿ4 6 ÿ4 1

1 ÿ4 6 ÿ4 1

..

. ..
. ..

. ..
. ..

.

1 ÿ4 6 ÿ4 1

1 ÿ4 6 ÿ4 1

1 ÿ4 5 ÿ2

1 ÿ2 1

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
,

respectively.

The penalty matrix K plays a key role in the derivation of the conditional distribution of a

subvector of á. Let F0 denote the identity matrix. De®ning

F �
Fz Fzÿ1 . . . F1 F0

Fz Fzÿ1 . . . F1 F0

..

. ..
.

Fz Fzÿ1 . . . F1 F0

0BBB@
1CCCA

and the block-diagonal matrix
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Q �
Qz�1

Qz�2

. .
.

QT

0BBB@
1CCCA,

it follows that K � F9Qÿ1 F. Since Q is symmetric, so is K. Furthermore, it can be shown

that the elements of

K �
k11 k12 . . . k1T

k21 k22 . . . k2T

..

. ..
.

kT1 kT2 kTT

0BBB@
1CCCA

are given by

k t, t�s �
Xmin(z,z�s,Tÿ t)

j�max(0,s,1�zÿ t)

F9jQ
ÿ1
t� j F jÿs, jsj < z, (1)

with zero elements for jsj. z.

We think of dynamic models as a module for ¯exible Bayesian analysis, which can be

conveniently combined with other priors such as priors for the level of the sequence á, random

effect priors for modelling heterogeneity among several units y1, . . ., yn with yi �
(yi1, . . ., yiT ), or priors for spatial dependence. Another useful extension is to allow for a non-

zero prior trend in the state sequence, as a referee has noted. For example, the ®rst-order random

walk can be extended to

á tjáÿ t, Q, ô � N(á tÿ1 � ô, Q),

in which ô is an unknown trend parameter. A recent review of dynamic models is given in

Fahrmeir & Knorr-Held (1998), which also points out connections to non- and semipara-

metric smoothing methods.

Applications of dynamic models are widespread. Fahrmeir & Tutz (1994a) discuss smoothing

of categorical time series, panel and survival data. Fahrmeir & Tutz (1994b) introduce dynamic

models for ordered paired comparison data. Duration data is covered in Fahrmeir & Knorr-Held

(1997). Breslow & Clayton (1993) and Clayton (1996) discuss biostatistical applications with

second order random walk priors in mixed models, which is related. Berzuini & Clayton (1994)

propose second order random walk priors in survival models with multiple time scales. Berzuini

& Larizza (1996) use dynamic models for joint modelling of time series and failure time data.

Besag et al. (1995) use second order random walk priors in age±period±cohort models. Finally

Knorr-Held & Besag (1998) use dynamic models for time±space mapping of disease risk data.

Most of these references use binomial or multinomial logistic or log-linear Poisson models as

the observation model. For panel and survival data, several units i � 1, . . ., nt are observed at

each time t, and conditional independence is usually assumed for ytijá t, i � 1, . . ., nt.

3. MCMC simulation with conditional prior proposals

Our MCMC implementation is based on updating using full conditionals with the Hastings

algorithm as described in full detail in Besag et al. (1995); we also use their terminology.

We denote full conditionals by p(á tj ), for example. We start this section with a technical

note about the conditional distribution of áa, . . ., áb, given á1, . . ., áaÿ1 and áb�1, . . ., áT .

Then the single and the block move with conditional prior proposals is introduced. We

close with several simulation results.
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3.1. Conditional properties of autoregressive priors

The conditional distribution of a subvector of á, given the rest of á plays a key role in

our algorithm. Let áab denote the subvector (á9a, á9a�1, . . ., á9b) and Kab denote the

submatrix out of K, given by the rows and columns a to b. Finally, let K1,aÿ1 and Kb�1,T

denote the matrix to the left and right of Kab, respectively:

K �
K91,aÿ1

K1,aÿ1 Kab Kb�1,T

K9b�1,T

0@ 1A:
Then the following result can be proved by simple matrix manipulations: the conditional

distribution of áab, given á1,aÿ1 and áb�1,T is normal N (ìab, Óab) with moments

ìab �
ÿKÿ1

ab Kb�1,Táb�1,T a � 1

ÿKÿ1
ab K1,aÿ1á1,aÿ1 b � T

ÿKÿ1
ab (K1,aÿ1á1,aÿ1 � Kb�1,Táb�1,T ) otherwise

8>><>>: (2)

and

Óab � Kÿ1
ab : (3)

It can be seen from (2) in connection with (1) that only áaÿz, . . ., áaÿ1 and áb�1, . . ., áb�z

enter in ìab, since all elements in K outside the z off-diagonals are zero. We always make use of

this property to reduce the computation involved in the multiplications K1,aÿ1á1,aÿ1 and

Kb�1,Táb�1,T .

3.2. Single move

The most natural blocking strategy for á is to update á t one at a time. The main advan-

tage is that the full conditional has a simple form, achieved by the hierarchical structure of

the model:

p(á tj ) / p(ytjá t) 3 p(á tjás6� t, Q):

One way to update á t is to use a proposal á�t , distributed as p(á tjás6� t, Q). Such a

`̀ conditional prior proposal'' is independent of the current state of á t but, in general, depends

on the current states of other parameters (here ás6� t and Q). Note, that `̀ Gibbs proposals'', i.e.

samples from the full conditional, have exactly the same `̀ conditional independence'' property.

It is illustrative to discuss differences between conditional and unconditional independence

proposals (Tierney, 1994). It is often very dif®cult, at least for higher dimensions and non-

normal models, to construct an unconditional independence proposal with acceptance rates not

too small. In contrast, a conditional proposal is far more constrained than the unconditional

version because it depends on the current state of neighbouring parameters. However, the

conditional proposal is still very ¯exible because its distribution changes at each iteration

whenever neighbouring parameters are updated and accepted. (Unconditional independence

proposals are generated from exactly the same distribution in every iteration step). If the states

á t are a priori independent, however, conditional prior proposals do not depend on neighbour-

ing parameters, so they are no longer conditional but now unconditional independence

proposals. The proposed method will not work in this case, as a referee has noted.

The Hastings acceptance probability simpli®es for the conditional prior proposal to
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min 1,
p(ytjá�t )

p(ytjá t)

( )
,

the likelihood ratio for observation yt. Conditional prior proposals have a natural interpreta-

tion: á�t is drawn independently of the observation model and just re¯ects the speci®c

autoregressive prior speci®cation. If it produces improvement in the likelihood at time t, it

will always be accepted, if not, then the acceptance probability is equal to the likelihood

ratio.

Of course, a simple random walk proposal can be used instead, but it has to be tuned. Other

single move updating schemes are more demanding in their proposals and require more effort to

calculate the acceptance probability. Shephard & Pitt (1997) use a prede®ned number of

iterations (two to ®ve) to calculate a reasonably good approximation to the mode of p(á tj ) for

every updating step. The approximative mode and the curvature are used in an analytic Taylor

expansion to build a speci®c Gaussian (conditional) independence proposal and to perform a

pseudo rejection sampling step (Tierney, 1994). The advantage is that the proposal takes the

observation yt into account for the cost of considerably more computational effort. The pseudo

rejection sampling step avoids additional iterations, which are necessary for a real Gibbs step in

a rejection sampling procedure.

However, the single move blocking scheme might be very slowly converging, especially if

neighbouring parameters are highly correlated. This is typically the case when the likelihood at

time t is very ¯at in á t and does not give much information relative to the autoregressive prior

speci®cation. Smoothing of binary time series is a typical example. A simple modi®cation of

the single move conditional prior algorithm addresses this problem without losing its simplicity

both in programming and computing time.

3.3. Block move

Instead of updating one parameter á t at a time, the block move is based on updating one

block árs � (á9r, . . ., á9s) at a time, following suggestions of Shephard & Pitt (1997). The

number of blocks may range from 2 up to T, which corresponds to the single move.

Consider the breakpoints that divide á into blocks as ®xed for the moment. The idea of

this blocking strategy is to use blocks that are large enough to ensure a good mixing and

convergence behaviour. So what kind of proposals are useful for the block move?

It is not clear how to choose the spread of a multivariate Metropolis random walk proposal

because correlations between parameters are unknown. But, in contrast, the generalization of

the conditional prior proposal is straightforward: the simple structure of the full conditional is

retained, since p(ársjá1,rÿ1, ás�1,T , Q) is still normal with known moments (see section 3.1).

Therefore a conditional prior proposal can be implemented similarly as in the previous section:

generate á�rs distributed as p(ársjá1,rÿ1, ás�1,T , Q) to update the full conditional

p(ársj ) /
Ys

t�r

p(ytjá t) 3 p(ársjá1,rÿ1, ás�1,T , Q):

The acceptance probability simpli®es again to a likelihood ratio

min 1,

Ys

t�r

p(ytjá�t )

Ys

t�r

p(ytjá t)

8>>>><>>>>:

9>>>>=>>>>;:
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The block move provides a considerable improvement in situations where the single move has

bad mixing behaviour. However, ®xed blocks still cause convergence and mixing problems for

parameters close to a breakpoint. Changing the block con®guration in every iteration cycle is a

simple remedy. This can be done either by a deterministic or a random scheme. In all following

examples we use random blocking with a ®xed standard block size. The ®rst block has uniform

random block size between 1 and the standard block length. All following blocks have the same

standard size except for the last block. So, most of the updating involves blocks of a ®xed block

length, which has computational advantages, since the dispersion matrix Kÿ1
ab and the corre-

sponding Cholesky decomposition of the standard block size full conditional can be computed

in advance, at least for Gaussian transition models with time-constant dispersion Q. Neverthe-

less, calculation of ìab and Óab via (2) and (3) may become computationally demanding for

large blocks áab. In this case it will be useful to exploit the speci®c structure of K fully to

implement a more numerically ef®cient version. Finally we note the block sizes proportional to

the number of observations nt per block may be considered in situations where nt is changing

over time as in survival models (Fahrmeir & Knorr-Held, 1997).

Shephard & Pitt (1997) propose a different proposal in the block move, which is similar to

their version of the single move proposal. They use several additional Fisher scoring iterations

within each updating step to get a reasonably good approximation to the mode of p(ársj ) and

add a pseudo rejection sampling step. These iterations can be rather time-consuming, especially

for multivariate observation models such as models for multicategorical responses (e.g.

Fahrmeir & Tutz, 1994a, ch. 3). In contrast, the conditional prior algorithm bene®ts of block

updating without spending too much effort in the construction of the proposal.

3.4. An example: Tokyo rainfall data

To illustrate the gain of the block move, we analyse the Tokyo rainfall data (e.g. Fahrmeir &

Tutz, 1994a), a single binomial time series of length T � 366. We assume a binomial logit model

ytjá t � B(2, ð t) t 6� 60

B(1, ð t) t � 60

�
, ð t � 1=(1� exp(ÿá t)),

with a second order random walk prior for fá tg. A highly dispersed, but proper inverse

gamma prior was chosen for the random walk variance Q and updating of Q was

implemented with a Gibbs step. The prior re¯ects suf®cient ignorance about Q but avoids

problems arising with improper posteriors. Figure 1 displays the data and some character-

istics of the posterior distribution of fð tg.
We separate our empirical analysis into two parts, speed of convergence and ef®ciency of

estimation. First we focus on the empirical convergence behaviour. For block size 1, 5, 20 and

40 we computed the average trajectories of 100 parallel chains after 10, 50, 100 and 500

iterations, which are shown in Fig. 2. For every chain, the state parameters were initialized to

zero and the variance Q to 0.1.

Figure 2 shows clear empirical evidence that the block move converges much faster for bigger

block sizes, at least for this data set and model. The single move algorithm does not converge at

all, at least for the ®rst 500 iterations. The algorithm with blocksize 40 seems to have reached

equilibrium after only 50 iterations. We also computed the average acceptance rate of the

Hastings steps, averaged over all á ts. The rates were 99.4% (block size 1), 94.4% (5), 65.5%

(20) and 35.3% (40), indicating decreasing acceptance rates with increasing block size.

We repeated the same analysis, assuming a random walk of ®rst order instead. Convergence

was a bit faster and, again, the block move algorithm exhibited superior convergence perform-

ance.
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A measure of ef®ciency of estimation are the autocorrelations of parameters of the simulated

Markov chain after reaching equilibrium. The larger these correlations are, the larger the

variances of the estimate of the posterior mean. We started the chain in equilibrium, ran it for

1000 iterations and stored every 10th sample until we had 10,000 samples. We calculated

autocorrelations for 12 parameters, namely for t � 1, 33, 67, 100, 133, 167, 200, 233, 267, 300,

333, 366 and for the hyperparameter Q. We did this analysis twice, for block size 1 and block

size 20, both assuming a second order random walk prior. The results can be summarized as

follows: For block size 1, all autocorrelations up to lag 40 were larger than 0.5. In contrast, for

block size 20, the autocorrelations of all parameters considered were close to zero for lag 5 and

higher. Autocorrelations for the hyperparameter Q were somewhat larger (around zero for lag

20 and higher) but still much smaller than for block size 1.

Figure 3 shows trajectories of the last 2000 iterations for three representative parameters á1,

á100, á333 and the variance Q. Whereas the mixing behaviour of the block size 1 algorithm is

catastrophic, the block size 20 algorithm shows well-behaved mixing. The plots for the other

parameters look very similar.

3.5. A comparison with a Gibbs block move for Gaussian observations

To gain more insight into the behaviour of the proposed methodology, we add an extended

study for the simple state space model with Gaussian observation model

á t � N (á tÿ1, Q) t � 2, . . ., T ,

yt � N (á t, R) t � 1, . . ., T ,

Fig. 1. Tokyo rainfall data. Data and ®tted probabilities (posterior median within 50, 80 and 95% pointwise

credible regions). The data is reproduced as relative frequencies with values 0, 0.5 and 1.
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and values R � 0:01 and T � 1000. The value of Q and the block size is chosen in various

combinations.

This model allows us to implement a block move algorithm which samples from the full

conditionals due to the Gaussian observation model. Thus we can compare the conditional prior

proposal methodology with a more standard Gibbs type block move algorithm. Note that the

Fig. 2. Speed of convergence of the block move algorithm for different block sizes.
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Gibbs sampler uses the observed values ya, . . ., yb in the construction of the proposal, whereas

the observed values enter in the conditional prior proposal algorithm only in the calculation of

the acceptance probabilities but not in the construction of the proposal. We have calculated

acceptance rates and estimated autocorrelations for lag 1, 10 and 25 for every parameter

á1, . . ., á1000. Table 1 reports those quantities averaged over all 1000 parameters á1, . . ., á1000

Fig. 3. Trajectories of á1, á100, á333 and Q for block size 1 and block size 20.
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as well as the maximum and the minimum value. The last column gives estimated autocorrela-

tions for the corresponding Gibbs block move sampler with the same block size.

The results can be summarized as follows. For situations, where the prior is rather weak

compared to the information in the likelihood (Q � 1), the conditional prior proposal in

combination with the single move has rather poor performance with very low acceptance rates.

In fact, for some parameters, proposals have been rejected for the whole run. For the correspond-

ing outlying observations, the likelihood is not supported by the conditional prior, hence the

posterior is substantially different from the conditional prior, even for possibly changing

neighbouring parameters. The Gibbs block move sampler, in contrast, has very good performance

Table 1. Results for the Gaussian state space model

Conditional prior proposal Gibbs sampler

ACF1 ACF1

ACF10 ACF10

ACF25 ACF25

Q Block sise Acceptance rate (in %)

Mean (max, min) Mean (max, min) Mean (max, min)

1 1 12.72 (21.02, 0.00) 0.83 (1.00, 0.0) 0.00 (0.11, ÿ0.11)

0.21 (0.96, ÿ0.13) 0.00 (0.10, ÿ0.09)

0.05 (0.91, ÿ0.22) 0.00 (0.10, ÿ0.10)

0.01 1 70.51 (85.81, 13.65) 0.49 (0.95, 0.25) 0.25 (0.34, 0.15)

0.03 (0.56, ÿ0.12) 0.00 (0.13, ÿ0.10)

0.00 (0.25, ÿ0.14) 0.00 (0.09, ÿ0.11)

0.01 3 36.53 (57.32, 3.91) 0.64 (0.97, 0.37) 0.11 (0.20, ÿ0.01)

0.06 (0.79, ÿ0.16) 0.00 (0.12, ÿ0.11)

0.01 (0.61, ÿ0.19) 0.00 (0.09, ÿ0.12)

0.01 10 3.38 (23.66, 0.00) 0.95 (1.00, 0.0) 0.03 (0.13, ÿ0.08)

0.66 (0.97, 0.0) 0.00 (0.11, ÿ0.10)

0.41 (0.92, ÿ0.14) 0.00 (0.09, ÿ0.12)

0.0001 1 96.77 (99.82, 88.54) 0.89 (0.96, 0.76) 0.88 (0.95, 0.74)

0.61 (0.83, 0.22) 0.58 (0.83, 0.28)

0.42 (0.77, 0.09) 0.38 (0.75, 0.00)

0.0001 3 91.85 (98.09, 82.44) 0.84 (0.92, 0.72) 0.82 (0.89, 0.72)

0.48 (0.70, 0.21) 0.43 (0.66, 0.18)

0.26 (0.55, ÿ0.09) 0.21 (0.52, ÿ0.08)

0.0001 10 76.41 (87.99, 59.33) 0.72 (0.84, 0.58) 0.62 (0.73, 0.46)

0.20 (0.46, ÿ0.02) 0.10 (0.25, ÿ0.08)

0.03 (0.22, ÿ0.17) 0.00 (0.17, ÿ0.13)

0.0001 30 41.35 (56.51, 22.48) 0.69 (0.86, 0.54) 0.30 (0.40, 0.19)

0.08 (0.37, ÿ0.10) 0.00 (0.11, ÿ0.11)

0.00 (0.19, ÿ0.21) 0.00 (0.09, ÿ0.12)

0.000001 1 99.67 (100.00, 98.18) 0.93 (0.98, 0.84) 0.93 (0.98, 0.83)

0.76 (0.94, 0.46) 0.75 (0.93, 0.37)

0.62 (0.90, 0.21) 0.61 (0.88, 0.08)

0.000001 10 97.53 (99.55, 94.36) 0.93 (0.97, 0.82) 0.91 (0.97, 0.73)

0.77 (0.88, 0.42) 0.69 (0.89, 0.26)

0.63 (0.84, 0.23) 0.53 (0.81, 0.04)

0.000001 100 77.97 (85.99, 70.06) 0.75 (0.87, 0.61) 0.70 (0.79, 0.56)

0.24 (0.50, 0.05) 0.22 (0.39, 0.07)

0.05 (0.31, ÿ0.14) 0.07 (0.16, ÿ0.02)
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with virtually independent samples. In fact, this is no surprise, since the posterior will not differ

much from the likelihood, so the states á t are close to independence even in the posterior.

For Q � 0:01, we observe the same phenomenon, but less distinct. For block size equal to 1,

the conditional prior proposal has better performance but is still outperformed by the Gibbs

sampler. Keeping every 25th sample of the conditional prior proposal algorithm seems to be

roughly equivalent to keeping every 10th by Gibbs sampling. Increasing the block size does not

improve the performance of the proposed methodology, it seems that acceptance rates are too

close to zero.

However, for situations where the prior is strong relative to the likelihood (Q � 0:0001 and

Q � 0:000001) both methods perform similarly. The gain of the block move can be seen both

from the Gibbs sampler as well from the conditional prior algorithm. For Q � 0:000001 a block

size around 100 seems to be necessary for good performance. Note that the small differences in

the estimated autocorrelations between both methods are slightly increasing for increasing block

size. This feature is probably caused by the fact that increasing block size goes along with

decreasing acceptance rates for the conditional prior proposal, which automatically increases

autocorrelations to some extent.

The results suggest that, whenever the prior is relatively strong compared to the likelihood,

resulting in strong dependence among neighbouring parameters, ignoring information from

observations in constructing the proposal does not do serious harm in terms of statistical ef®ciency

on a cycle per cycle basis. The main advantage of the proposed algorithm is that it is simpler and

faster per cycle. It will therefore be more ef®cient in terms of CPU time, which is a more

appropriate basis for comparisons, as noted by Besag (1994) and Tierney (1994) in the rejoinder.

For situations where there is low dependence between neighbouring parameters, an algorithm,

which incorporates information from observations will outperform the proposed methodology.

However, low correlation systems are less frequent (Shephard, 1994). In particular, for most

categorical data, dependence is usually strong among parameters. It may, however, be sometimes

worth exploring a hybrid scheme, where conditional prior proposals are combined with more

elaborate proposals that take observations into account.

For practical implementation of the conditional prior proposal it will be useful to monitor

acceptance rates for every parameter. Acceptance rates too close to one suggest a bigger block

size, whereas acceptance rates too small indicate a block size too large. Theoretical considera-

tions similar to the results of Gelman et al. (1995) would be very helpful to determine an

optimal acceptance rate for tuning the algorithm.

4. Hierarchical t-transition models

The temporal variation of underlying parameters may have jumps, so-called innovative

outliers. The Gaussian distributional assumption in the autoregressive prior, however, does

not allow such abrupt movement. Distributions with heavier tails such as t-distributions are

more adequate. In this section we will sketch how autoregressive priors can be extended

via an hierarchical t-formulation with unknown degrees of freedom (Besag et al., 1995).

4.1. Autoregressive t-distributed priors

Introducing hyperparameters ã � (ãz�1, . . ., ãT )9, the autoregressive prior formulation can

be extended to

á tjáÿ t, Q, ã t � N ÿ
Xz

l�1

Flá tÿ l, Q=ã t

 !
, t � z� 1, . . ., T :
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Assuming ã tjí to be independently gamma distributed ã t � G(í=2, í=2), á tjáÿ t, Q has a t-

distribution with í degrees of freedom.

The distribution p(ájã, Q) can be expressed again in a penalty formulation with a penalty

matrix K, now depending on ã, too. The elements in K have the same form as in (1) with

Qt � Q=ã t. For example, the matrix

K � 1

Q

ã2 ÿã2

ÿã2 ã2 � ã3 ÿã3

ÿã3 ã3 � ã4 ÿã4

..

. ..
. ..

.

ÿãTÿ2 ãTÿ2 � ãTÿ1 ÿãTÿ1

ÿãTÿ1 ãTÿ1 � ãT ÿãT

ÿãT ãT

0BBBBBBBBB@

1CCCCCCCCCA
corresponds to a ®rst order random walk t-transition model.

4.2. A second example: sleep data

Carlin & Polson (1992) present an analysis of a binary time series of length T � 120 min.

The outcome variable yt corresponds to the sleep status (REM (yt � 1) or non-REM) of a

speci®c child. We reanalyse this data to illustrate the hierarchical t-formulation. The

response variable is assumed to depend on a latent `̀ sleep status'' á t via a dynamic logistic

model. We assume á t to follow a ®rst order hierarchical t-random walk and place an

equally weighted hyperprior p(í) on the values f2k , k � ÿ1, ÿ0:9, ÿ0:8, . . ., 6:9, 7:0g. For

updating í, we use a discrete Metropolis random walk proposal which gives equal weight

to the two neighbours of the current value. Note that for the limit cases í � 0:5 and

í � 128, the proposal becomes deterministic, proposing the only neighbour. The acceptance

probability has to be modi®ed adequately for proposed jumps to or away from these limit

values. All other hyperparameters are updated with Gibbs steps.

The following analysis is based on a run of length 505,000, discarding the ®rst 5000 values

and storing every 100th thereafter. The standard block length was chosen as 10 which resulted

in an average acceptance rate of 68.6%. Starting values were zero for all á ts. Since the posterior

might be multimodal the chain might stay in one part of the posterior for a long time. To account

for that we started several chains with different values for í over the whole range of the prior:

0.5 to 128. However, all of these chains moved after not more than 1000 iterations into the

region around í � 1.

Figure 4 shows the data and estimates. Note that our model formulation gives a signi®cantly

better ®t to the data than the analysis by Carlin & Polson (1992, ®g. 1, p. 583). The resulting

posterior for the hyperparameter í has its mode at í � 2ÿ0:3 � 0:81. The 90 and 95% credible

regions for í are [0:66, 3:3] and [0:54, 13:0], respectively, showing strong evidence for highly

non-normal system disturbances. The estimates of the sequence fá tg, the latent sleep status,

exhibit some huge abrupt jumps, e.g. around t � 53 and t � 62. Note that the posterior of á t is

highly skewed for some values of t.

5. Discussion

Conditional prior proposals re¯ect the dependence of underlying parameters and therefore

provide a useful tool for highly dependent parameters in dynamic models. The resulting

algorithm is appealing since all proposals are easy to generate and all acceptance probabil-

ities are easy to calculate. The choice of a blocking strategy serves as a tuning device.
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We have also experimented with conditional prior proposals in dynamic models, where p(á)

is a product of several autoregressive prior speci®cations. For example, each component of á t

may correspond to a certain covariate effect (plus intercept) and independent random walk

priors are assigned to all components. Here two generalizations are possible: either updating

Fig. 4. Sleep data. Data and estimates.
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each component within its own blocking strategy or updating all components within one

blocking strategy. The former approach provides more ¯exibility in tuning the algorithm and has

been successfully implemented for duration time data. However, the latter is faster, especially

for large dimension of á t and is usually suf®ciently accurate.

There might also be a wide ®eld of applications in models for non-normal spatial data, e.g.

Besag et al. (1991). Here intrinsic (or undirected) autoregressions replace directed autoregres-

sions. Conditional prior proposals can be implemented in similar lines, since intrinsic autore-

gressions can be written in a penalty formulation as well, see Besag & Kooperberg (1995).
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