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ABSTRACT:

In this paper, we investigate the potential of a Conditional Random Field (CRF) approach for the classification of an airborne LiDAR

(Light Detection And Ranging) point cloud. This method enables the incorporation of contextual information and learning of specific

relations of object classes within a training step. Thus, it is a powerful approach for obtaining reliable results even in complex urban

scenes. Geometrical features as well as an intensity value are used to distinguish the five object classes building, low vegetation, tree,

natural ground, and asphalt ground. The performance of our method is evaluated on the dataset of Vaihingen, Germany, in the context

of the ’ISPRS Test Project on Urban Classification and 3D Building Reconstruction’. Therefore, the results of the 3D classification

were submitted as a 2D binary label image for a subset of two classes, namely building and tree.

1 INTRODUCTION

The automated detection of urban objects from remote sensing

data has become an important topic in research in photogram-

metry and remote sensing. The results are necessary to derive

object information for applications such as the generation of 3D

city models for visualization and simulations. Data acquired by

an airborne LiDAR sensor are especially suitable for this task be-

cause they directly describe the object surface in 3D. The core

task resolved in this context is the classification of such a point

cloud. However, in dense urban areas reliable point labeling is

a challenging task due to complex object structure and the high

variability of object classes (e.g. buildings, roads, trees, and low

vegetation) appearing in this kind of scene. In such a man-made

environment different objects usually have a specific kind of re-

lations, which can be utilized in a contextual classification to dis-

tinguish multiple object classes simultaneously. Thus, the quality

of classification can be improved by incorporating context infor-

mation compared to approaches only classifying each point inde-

pendently from its neighbors.

A Conditional Random Field (CRF) is a generalization of a Mar-

kov Random Field (MRF) and provides a flexible statistical clas-

sification framework for modeling local context. Originally in-

troduced by Lafferty et al. (2001) for labeling one-dimensional

sequence data, it has become increasingly popular in computer

vision since the approach was adapted to the classification of im-

ages by Kumar and Hebert (2006). Some investigations were

carried out in the field of remote sensing. For instance, Wegner

(2011) analyzes the potential of CRF for building detection in op-

tical airborne images. However, there is only a small amount of

work dealing with LiDAR point clouds.

Some initial applications of contextual classification can be found

related to robotics and mobile laser scanning utilizing terrestrial

LiDAR point clouds. Anguelov et al. (2005) performed a point-

wise classification on terrestrial laser scans using a simplified

subclass of Markov Models, called Associative Markov Networks

(AMNs) (Taskar et al., 2004), which encourage neighboring points

to belong to the same object class. However, AMNs have some
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drawbacks: Small objects cannot be detected correctly due to

over-smoothing. In the approach presented by Lim and Suter

(2009) a terrestrial point cloud acquired by mobile mapping is

processed in two steps. Firstly, they over-segment the data and

secondly they perform a segment-wise CRF classification. Where-

as this aspect helps to cope with noise and computational com-

plexity, the result heavily depends on the segmentation, and small

objects with sub-segment size cannot be detected. Shapovalov et

al. (2010) investigated the potential of CRFs for the classifica-

tion of airborne LiDAR point clouds. They improved the draw-

backs of an AMN by applying a non-associative Markov Net-

work, which is able to model typical class relations such as ’tree

is likely to be above ground’. These interactions represent addi-

tional context knowledge and may improve classification results.

Similar to the approach described before, the authors applied a

segment-based classification; hence, it is limited due to its de-

pendence on the segmentation.

In our previous work (Niemeyer et al., 2011) we introduced a

point-wise CRF classification of airborne full-waveform LiDAR

data. This approach requires higher computational costs, but en-

ables the correct detection of smaller objects. Each point is linked

to points in its geometrical vicinity, which influence each other in

the classification. All labels of the entire point cloud are deter-

mined simultaneously. The three object classes ground, building,

and vegetation were distinguished. However, we applied a simple

model for the interactions, penalizing the occurrence of different

class labels of neighboring points, if the data did not indicate a

change. Moreover, the decision surface in feature space was mod-

eled by a linear function, which may not separate the clusters in

a good way.

These aspects are improved in this work. We present a CRF,

which is able to learn and model interactions of all object classes

and utilize a non-linear decision surface to separate the object

clusters in feature space reliably. As CRFs are probabilistic frame-

works, each 3D point of a LiDAR point cloud is assigned to the

most probable object label given the data. Furthermore, we im-

prove the model for interactions to cope with specific configu-

rations in feature space for neighboring classes. No preliminary

segmentation is performed to enable detection of even small ob-

jects. In order to obtain objects from the classified point cloud,
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a binary label image is generated by rasterization for each class

of interest. The boundaries of objects are smoothed by apply-

ing a morphological filter afterwards. Our results are evaluated

in the context of the ’ISPRS Test Project on Urban Classification

and 3D Building Reconstruction’ hosted by ISPRS WG III/4, a

benchmark comparing various classification methods based on

aerial images and/or LiDAR data of the same test site.

The next section presents our methodology including a brief de-

scription of the CRF. After that, Section 3 comprises the evalua-

tion of our approach as well as discussions. The paper concludes

with Section 4.

2 METHODOLOGY

2.1 Conditional Random Fields

It is the goal of point cloud classification to assign an object class

label to each 3D point. Conditional Random Fields (CRFs) pro-

vide a powerful probabilistic framework for contextual classifi-

cation and belong to the family of undirected graphical models.

Thus, data are represented by a graph G(n, e) consisting of nodes

n and edges e. For usual classification tasks, spatial units such

as pixels in images or points of point clouds can be modeled as

nodes. The edges e link pairs of adjacent nodes ni and nj , and

thus enable modeling contextual relations. In our case, each node

ni ∈ n corresponds to a 3D point and we assign an object class

label yi based on observed data x in a simultaneous process. The

vector y contains the labels yi for all nodes and hence has the

same number of elements like n.

In contrast to generative Markov Random Fields (MRFs), CRFs

are discriminative and model the posterior distribution P (y|x)
directly. This leads to a reduced model complexity compared

to MRFs (Kumar and Hebert, 2006). Moreover, MRFs are re-

stricted by the assumption of conditionally independent features

of different nodes. Theoretically, only links to nodes in the imme-

diate vicinity are allowed in this case. These constraints are re-

laxed for CRFs, consequently more expressive contextual knowl-

edge represented by long range interactions can be considered in

this frameworks. Thus, CRFs are a generalization of MRFs and

model the posterior by

P (y|x) =
1

Z(x)
exp





∑

i∈n

Ai(x, yi) +
∑

i∈n

∑

j∈Ni

Iij(x, yi, yj)



 .

(1)

In Eq. 1, Ni is the neighborhood of node ni represented by the

edges linked to this particular node. Two potential terms, namely

the association potential Ai(x, yi) computed for each node and

the interaction potential Iij(x, yi, yj) for each edge are modeled

in the exponent; they are described in Section 2.4 in more de-

tail. The partition function Z(x) acts as normalization constant

turning potentials into probability values.

2.2 Graphical Model

In our framework, each graph node corresponds to a single Li-

DAR point, which is assigned to an object label in the classifica-

tion process. Consequently, the number of nodes in n is identical

to the number of points in the point cloud. The graph edges are

used to model the relations between nodes. In our case, they link

to the local neighbor points in object space. A nearest neighbor

search is performed for each point ni to detect adjacent nodes

nj ∈ Ni. Each point is linked to all its neighbors inside a verti-

cal cylinder of a predefined radius r. Using a cylindrical neigh-

borhood enables to model important height differences, which

are not captured in a spherical vicinity (Shapovalov et al., 2010;

Niemeyer et al., 2011). The cylinder radius r determines the size

of Ni and thus should be selected related to the point density; a

tradeoff between number of edges and computational effort must

be chosen (Section 3.1).

2.3 Features

In this research, only LiDAR features are utilized for the classi-

fication of the point cloud. A large amount of LiDAR features

is presented in Chehata et al. (2009). They analyzed the relative

importance of several features for classifying urban areas by a

random forest classifier. Based on this research, we defined 13

features for each point and partially adapted them to our specific

problem.

Apart from the intensity value, all features describe the local ge-

ometry of point distribution. An important feature is distance

to ground (Chehata et al., 2009; Mallet, 2010), which models

each point’s elevation above a generated or approximated terrain

model. In the original work, this value is approximated by us-

ing the difference of the trigger point and the lowest point ele-

vation value within a large cylinder. The advantage of this ap-

proximation is that no terrain model is necessary, but this as-

sumption is only valid for a flat terrain and not for hilly ground.

We adapted the feature, but computed a terrain model (DTM)

by applying the filtering algorithm proposed in Niemeyer et al.

(2010). The additional features consider a local neighborhood.

On the one hand, a spherical neighborhood search captures all

points within a 3D-vicinity; on the other hand, points within a

vertical cylinder centered at the trigger point model the point dis-

tribution in a 2D environment. By utilizing the point density ratio

(npts,sphere/npts,cylinder), a useful feature indicating vegetation

can be computed. Points within a sphere are used to estimate a

local robust 3D plane. The sum of the residuals is a measurement

of the local scattering of the points and serves as feature in our

experiment. The variance of the point elevations within the cur-

rent spherical neighborhood indicates whether significant height

differences exist, which is typical for vegetated areas and build-

ings. The remaining features are based on the covariance matrix

set up for each point and its three eigenvalues λ1, λ2, and λ3. The

local point distribution is described by eigenvalue-based features

such as linearity, planarity, anisotropy, sphericity, and sum of the

eigenvalues. Equations are provided in Table 1.

Eigenvalues λ1 ≥ λ2 ≥ λ3

Planarity (λ1 − λ2)/λ1

Anisotropy (λ2 − λ3)/λ1

Sphericity (λ1 − λ3)/λ1

Sum of eigenvalues
∑3

i=1
λi

Table 1: Eigenvalue-based features

After computation, the feature values are not homogeneously sca-

led due to the different physical interpretation and units of these

features. In order to align the ranges, a normalization of each fea-

ture for all points of a given point cloud is performed by subtract-

ing the mean value and dividing by its standard deviation. Many

features depend on the eigenvalues, which leads to a high correla-

tion. Thus, a principal component analysis (PCA) is performed.

Nine of the obtained uncorrelated 13 features (maintaining 95 %

of information) are then used for CRF-based classification.

In a CRF, each node as well as each edge is associated to a feature

vector. Since each 3D LiDAR point represents a single node ni,

we use the 9 features described above to define that node’s feature

vector hi(x). Edges model the relationship between each point ni

and nj ∈ Ni. We use a standard approach of an element-wise,
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absolute difference between the feature vectors of both adjacent

nodes to compute the interaction feature vector

µij(x) = |hi(x)− hj(x)|. (2)

2.4 Potentials

The exponent of Eq. 1 consists of two terms modeling different

potentials. Ai(x, yi) links the data to the class labels and hence it

is called association potential. Note that Ai may potentially de-

pend on the entire dataset x instead of only the features observed

at node ni in contrast to MRFs. Thus, global context can be inte-

grated into the classification process. Iij(x, yi, yj) represents the

interaction potential. It models the dependencies of a node ni on

its adjacent nodes nj by comparing both node labels and consid-

ering all the observed data x. This potential acts as data-depended

smoothing term and enables to model the incorporation of contex-

tual relations explicitly. For both, Ai and Iij , arbitrary classifiers

can be used. We utilize a generalized linear model (GLM) for all

potentials. A feature space mapping based on a quadratic feature

expansion for node feature vectors hi(x) as well as the interaction

feature vectors µij(x) is performed as described by Kumar and

Hebert (2006) in order to introduce a more accurate non-linear

decision surface for classes within the feature space. This is in-

dicated by the feature space mapping function Φ and improves

the classification compared to our previous work (Niemeyer et

al., 2011), in which linear surfaces were used for discriminating

object classes. Each vector Φ(hi(x)) and Φ(µij(x)) consists of

55 elements after expansion in this way.

The association potential Ai determines the most probable label

for a single node and is given by

Ai(x, yi = l) = w
T
l · Φ(hi(x)), (3)

where hi(x) is a feature vector of node ni computed from data x

and wl is a vector of feature weights for a certain class l. In the

training step there is one such weight vector learned per class.

The interaction potential Iij models the influence of each point’s

neighborhood to the classification process. Therefore, a feature

vector µij(x) is computed for each edge in the graph and multi-

plied to an edge weight vector vl,k, which depends on the label

configuration of both adjacent nodes ni and nj :

Iij(x, yi = l, yj = k) = v
T
l,k · Φ(µij(x)). (4)

There is one weight vector vl,k for each combination of classes

l and k, which are also determined in the training stage. In our

previous work (Niemeyer et al., 2011), different class labels l and

k were penalized, because Iij(x, yi, yj) was modeled to be pro-

portional to the probability P (yi = yj |µij(x)). For the current

research, this potential is enhanced and is proportional to the joint

probability P ((yi, yj)|Φ(µij(x))). Thus, there is a probability

for each label configuration. Trained in a learning step, certain

class relations are modeled to be more probable than others are.

For instance, a point assigned to class building is not likely be

surrounded by points belonging to water. This advanced infor-

mation is used to improve the quality of classification. Moreover,

the degree of smoothing depends on the feature vector µij(x).
For this reason, small objects are better preserved if there is suffi-

cient evidence in the data, which is a major advantage in complex

urban areas (Niemeyer et al., 2011).

2.5 Inference and Training

Exact inference and training is intractable in our application due

to the fact that our graph G(n, e) is large and contains cycles.

Thus, approximate methods have to be applied in both cases.

Loopy Belief Propagation (LBP) (Frey and MacKay, 1998) is a

standard iterative message passing algorithm for graphs with cy-

cles. We use it for inference, which corresponds to the task of

determining the optimal label configuration based on maximizing

P (y|x) for given parameters. The result is a probability value per

class for each node. The highest probability is selected according

to the maximum a posteriori (MAP) criterion; the corresponding

object class label obtaining the maximum probability is assigned

to the point afterwards. For the classification, the two vectors

wl and vl,k are required, which contain the feature weights for

association potential and interaction potential respectively. They

are determined in a training step by utilizing a fully labeled part

of a point cloud. All weights of wl and vl,k are concatenated in

a single parameter vector θ = [w1, . . .wc; v1,1 . . . vc,c]
T with

c classes, in order to ease notation. For obtaining the best dis-

crimination of classes, a non-linear numerical optimization is per-

formed by minimizing a certain cost function. Following Vish-

wanathan et al. (2006), we use the limited-memory Broyden-

Fletcher-Goldfarb-Shanno (L-BFGS) method for optimization of

the objective function f = − logP (θ|x, y). For each iteration

f , its gradient as well as an estimation of the partition function

Z(x) is required. Thus, we use L-BFGS combined with LBP as

implemented in M. Schmidt’s Matlab Toolbox (Schmidt, 2011).

2.6 Object generation

Since the result of the CRF classification is a 3D point cloud,

we performed a conversion to raster space in order to obtain 2D

objects for each class of interest. If any point was assigned to the

trigger class, the certain pixel is labeled by value one and zero

otherwise. A morphological opening is carried out to smooth the

object boundaries in a post-processing step.

3 EVALUATION

3.1 Benchmark-Dataset

The performance of our method is evaluated on the LiDAR data-

set of Vaihingen, Germany (Cramer, 2010), in the context of the

’ISPRS Test Project on Urban Classification and 3D Building

Reconstruction’. The dataset was acquired in August 2008 by

a Leica ALS50 system with a mean flying height of 500 m above

ground and a 45◦ field of view. The average strip overlap is 30 %.

Figure 1: Test sites of scene Vaihingen. ’Inner City’ (Area 1, left),

’High-Riser’ (Area 2, middle) and ’Residental’ (Area 3, right)

(Rottensteiner et al., 2011)

For the benchmark, three test sites with different scenes were con-

sidered (Fig. 1). Area 1 is situated in the center of the city of

Vaihingen. Dense, complex buildings and some trees character-

ize this test site. Area 2 consists of a few high-rising residential

buildings surrounded by trees. In contrast, Area 3 is a purely

residential area with small, detached houses. The average point

density in the test areas is approximately 8 points/m2. Multiple

echoes and intensities were recorded. Since we present a super-

vised classification approach, a training step is necessary in order
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to learn the parameter weights (Section 2.5). For our experiments,

a fully and manually labeled part of the point cloud with 93,504

points in the east of Area 1 was used.

According to the point density of this scene and based on the

knowledge obtained in Niemeyer et al. (2011), we set the param-

eter radius r for graph construction to 0.75 m for the following

experiments, which results in 5 edges on average for each point.

3.2 Result CRF Classification

The original result of CRF classification is the assignment of an

object class label to each LiDAR point. Hence, we obtain a la-

beled 3D point cloud. Five classes were trained for this research:

natural ground, asphalt ground, building, low vegetation, and

trees. The results are depicted in Fig. 2.

(a) Area 1 (b) Area 2

(c) Area 3

Figure 2: 3D CRF-Classification results.

In general, our approach achieved good classification results. Vi-

sual inspection reveals that the most obvious error source are

points on trees incorrectly classified as building. This is because

most of the 3D points are located on the canopy and show similar

features to building roofs: the dataset was acquired in August un-

der leaf-on conditions, that is why almost the whole laser energy

was reflected from the canopy, whereas second and more pulses

within trees were recorded only very rarely (about 2 %). Most of

our features consider the point distribution within a local neigh-

borhood. However, for tall trees with large diameters the points

on the canopy seem to be flat and horizontally located some me-

ters above the ground, which usually hints for points belonging

to building roofs. That is the reason for misclassification of some

tree points to buildings.

Due to missing complete 3D reference data, a quantitative evalu-

ation of the entire point classification result cannot be performed.

Thus, we carry out an object-based evaluation in 2D as described

in the Section 3.4.

3.3 Improvements of interactions & feature space mapping

In this research, two improvements for the CRF-framework are

implemented: Firstly, the feature space mapping enables a non-

linear decision surface in classification. Secondly, weights for all

object class relations are learned. In order to evaluate the impact

of these changes compared to the approach proposed in Niemeyer

et al. (2011), we manually labeled the point cloud of Area 3 and

carried out a point-wise validation based on this reference data.

Therefore, the results are compared to a classification penaliz-

ing different classes in the interaction model and without feature

space mapping.

The enhanced CRF increases the overall accuracy by 5.38 per-

centages and hence yields considerably more sophisticated re-

sults. Table 2 shows the differences of completeness and correct-

ness values in percentages obtained by the enhanced CRF classi-

fication and the simpler model. Positive values indicate a higher

accuracy of results obtained with the complex edge potential and

feature space mapping. It can easily be seen, that all values are

improved by introducing the complex method. Especially details

such as small buildings or hedges are preserved (Fig. 3). To sum

up, feature space mapping and modeling of all specific class rela-

tions considerably improve the quality. Thus, it is worth the effort

of learning more parameters in training.

Classes Completeness Correctness

asphalt ground 6.04 6.55

natural ground 7.57 3.68

building 0.60 6.89

low vegetation 10.59 7.90

tree 4.81 1.39

Table 2: Comparison of enhanced CRF results and simpler model

(differences of completeness and correctness values).

(a) simple model (b) enhanced model

Figure 3: Comparison of the results obtained by a simple and

an enhanced CRF model. For instance, garages (white arrows)

and hedges (yellow arrows) are better detected with the complex

model.

3.4 Evaluation of 2D objects

For the benchmark, a 2D binary label image was required in order

to compare the results. Since our result is a classified 3D point

cloud, we performed a conversion to raster space with 26 cm pixel

size. Using a relatively small pixel size compared to the point

density of about 8 points/m2 ensures the geometrical correctness

of the objects being preserved in binarization step. Label im-

ages are generated only for classes building and tree because the

other classes are not in the focus of the benchmark. Thus, we ob-

tained two images for each of the three test sites, which were post-

processed by a morphological opening with a 5x5-circle kernel in
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order to smooth the fringed boundaries of the objects. These label

images are then evaluated in the context of the ISPRS Test Project

with the method described in Rutzinger et al. (2009) based on a

reference for each class. The results are discussed in the follow-

ing part.

3.4.1 Building: The first object class being analyzed is build-

ing. Completeness and correctness values per-area are between

87.0 % and 93.8 %. The quality, which is defined as

Quality = 1/(1/Completeness + 1/Correctness− 1), (5)

reaches values from 79.4 % to 88.3 % (Table 3). It can be seen,

that the quality of Area 1 is about 7 percentages below those ob-

tained for the other two test sites. The corresponding classifi-

cation results are depicted in Fig. 4. Yellow highlighted areas

represent the true positives (TP), blue are false negative (FN) and

red are false positive detections (FP). It becomes evident, that the

majority of the building shapes were detected correctly. Thus, the

approach works well for buildings.

Area 1 Area 2 Area 3

Completeness 87.0% 93.8% 93.8%

Correctness 90.1% 91.4% 93.7%

Quality 79.4% 86.2% 88.3%

Table 3: Per-area accuracies of class building

(a) Area 1 (b) Area 2 (c) Area 3

Figure 4: Pixel-wise result of class buildings (yellow = TP, red =

FP, blue = FN)

Most of the FPs are caused by tree areas wrongly misclassified

as building. This is due to the similar features, as mentioned

before: the LiDAR points covering trees are mainly distributed

on the canopy and not within the trees, which leads to a nearly

horizontal and planar point distribution.

A very important feature for discriminating several classes such

as ground or building roof is ’height above ground’ (Mallet, 2010).

By utilizing a DTM for generating this feature in our application,

buildings and ground can be distinguished much better because

of hilly ground. However, there are still some larger FN areas,

e.g. in the center part of Area 1. This is due to the filtering pro-

cess of the terrain model generation for this feature, because some

buildings and garages situated next to other ground height levels

could not be eliminated correctly. Thus, the height differences to

ground are very small for these points and lead to a misclassifica-

tion with object class ground.

The evaluation on a per-object level for buildings in the three test

sites is depicted in Fig. 5. It is a cumulative histogram show-

ing the quality numbers for all buildings larger than the area cor-

responding to the respective bin. Here, completeness, correct-

ness and quality are computed separately for all area intervals

of the abscissa. As shown in the figure, the accuracies of our

method increase with larger object size. All buildings of Area

2 and 3 with an area larger than 87.5 m2 are detected correctly,

whereas the quality in Area 1 reaches 100 % at objects larger

Figure 5: Evaluation of buildings on a per-object level as a func-

tion of the object area (cumulative)

than 137.5 m2. The above-mentioned misclassification of small

regions with class tree causes low correctness (and thus quality)

values especially for Area 2.

3.4.2 Trees: The results of class tree vary considerably. Cor-

rectness values are between 69.2 % and 77.0 %, whereas com-

pleteness underperforms this with 41.4 % to 74.0 %. This finds

expression in only reasonable quality values (Table 4). Especially

in Area 1 low completeness values are obtained. As shown in Fig.

6, there are many undetected trees represented as FNs. These are

mainly small trees, which were misclassified as low vegetation

due to the indistinct class definition of tree and low vegetation in

the benchmark, which do not coincide in this case. In general,

larger trees could be detected more reliably (Fig. 7). However,

especially in Area 1 the cumulative histogram decreases for trees

with a larger area due to misclassifications as building.

Area 1 Area 2 Area 3

Completeness 41.4% 74.0% 55.9%

Correctness 69.2% 73.1% 77.0%

Quality 35.0% 58.2% 47.9%

Table 4: Per-area accuracies of class trees

(a) Area 1 (b) Area 2 (c) Area 3

Figure 6: Pixel-wise result of class tree

Figure 7: Evaluation of trees on a per-object level as a function

of the object area (cumulative)
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4 CONCLUSION AND OUTLOOK

In this work, we presented a context-based Conditional Random

Field (CRF) classifier applied to complex urban area LiDAR sce-

nes. Representative relations between object classes are learned

in a training step and utilized in the classification process. Eval-

uation is performed in the context of the ’ISPRS Test Project on

Urban Classification and 3D Building Reconstruction’ hosted by

ISPRS WG III/4 based on three test sites with different settings.

The result of our classification is a labeled 3D point cloud; each

point assigned to one of the object classes natural ground, as-

phalt ground, building, low vegetation or tree. A test has shown

that feature space mapping and a complex modeling of specific

class relations considerably improve the quality. After obtain-

ing a binary grid image with morphological filtering for classes

building and tree, which were taken into account in the test, the

evaluation was carried out. In this case, the best results were ob-

tained for buildings, which could be detected very reliably. The

classification results of tree vary considerably in quality depend-

ing on the three test sites. Especially in the inner city scene many

misclassifications occur, whereas the scenes consisting of high-

rising buildings and residential areas could be classified reliably.

Some of the small trees are classified as low vegetation and hence

are not considered in the benchmark evaluation leading to attenu-

ated completeness values. In summary, it can be stated that CRFs

provide a high potential for urban scene classification.

In future work we want to integrate new features to obtain a robust

classification even in scenes with low point densities in vegetated

areas in order to allow a robust classification result and decrease

the number of confusion errors with buildings. Moreover, multi-

scale features taking larger parts of the environment into account

might improve results. Finally, the classified points are grouped

to objects in a simple way by 2D rasterization. They should be

combined to 3D objects in the next steps by applying a hierarchi-

cal CRF.
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