Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data

Paper by John Lafferty, Andrew McCallum, and Fernando Pereira ICML 2001

Presentation by Joe Drish May 9, 2002

Main Goals

- Present a new framework for labeling sequence data: Conditional Random Fields (CRFs)
- Describe the label bias problem
- Motivate the use of CRFs to solve the label bias problem
- Define the structure and properties of CRFs
- [Describe two training procedures for learning CRF parameters]
- [Sketch a proof of the convergence of the two training procedures]
- Compare experimentally to hidden Markov models (HMMs) and maximum entropy Markov models (MEMMs)

Labeling Sequence Data

- Given observed data sequences $X = \{x_1, x_2, ..., x_n\}$
- A corresponding label sequence y_k for each data sequence $x_{k,}$, and $Y = \{y_1, y_2, ..., y_n\}$

Prediction Task

Given a sequence \mathbf{x} and model θ predict \mathbf{y}

Learning Task

Given training sets X and Y, learn the best model θ

Notation

set of sequences: X, uppercase sequence of observations: x, lowercase boldface, also called a data sequence sequence of labels: y, lowercase boldface, also called a sequence of states single observation: x, lowercase, also called a data value

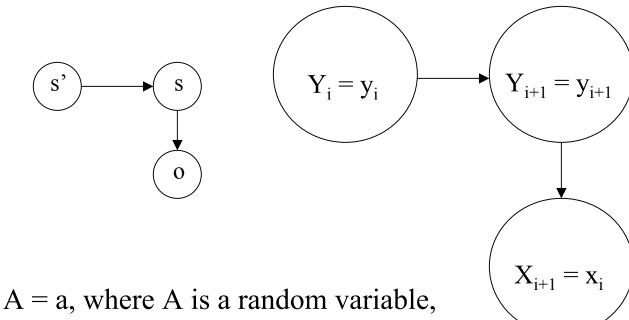
Example label and observation sequence

```
X-NNTP-Poster: NewsHound v1.33 observation x
label y <head>
      <head>
      <head>|Archive-name: acorn/faq/part2
      <head>|Frequency: monthly
      <head>
 <question>
             2.6) What configuration of serial cable should
 <question>
             I use?
    <answer> | Here follows a diagram of the necessary
             connections programs to work properly. They
    <answer>
    <answer> are as far as know agreed upon by commercial
    <answer> | comms software developers fo
    <answer>
    <answer> Pins 1, 4, and 8 must be connected together
    <answer> | is to avoid the well known serial port chip bugs.
```

Generative Modeling (HMMs)

Given training set X with label sequences Y:

- Train a model θ that maximizes $P(X, Y | \theta)$
- For a new data sequence \mathbf{x} , the predicted label \mathbf{y} maximizes $P(\mathbf{y} \mid \mathbf{x}) = P(\mathbf{y} \mid \mathbf{x}, \theta)P(\mathbf{x} \mid \theta)$

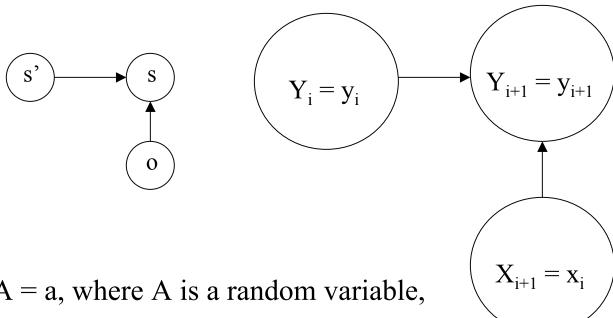


A = a, where A is a random variable and a is an outcome

Discriminative Modeling (MEMMs)

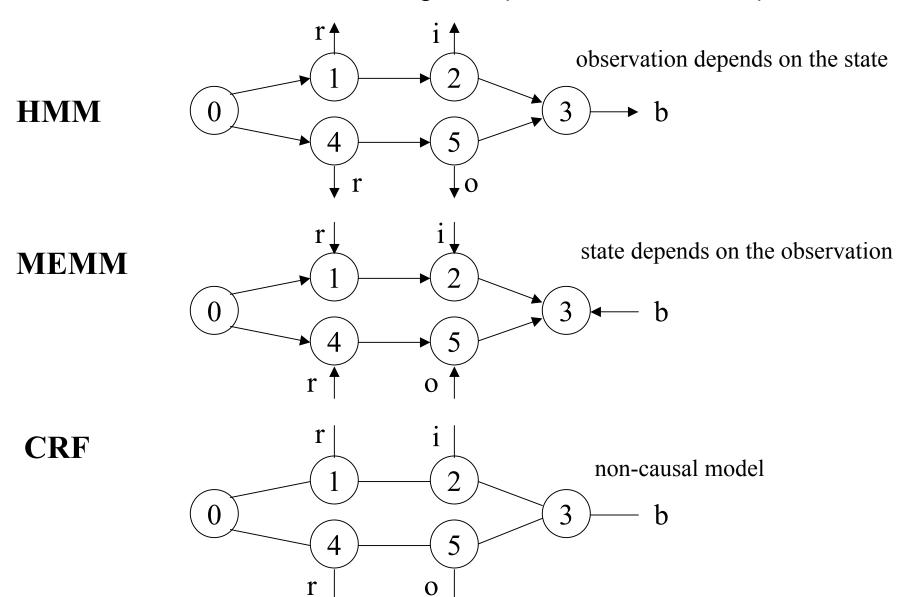
Given training set X with label sequences Y:

- Train a model θ that maximizes $P(Y \mid X, \theta)$
- For a new data sequence x, the predicted label y maximizes $P(y \mid x, \theta)$



A = a, where A is a random variable, and a is an outcome

rib/rob models Training data: {<rib, 123>, <rob, 453>}



Label Bias Problem

Consider this MEMM: $r\downarrow$ $i\downarrow$ 2 $3 \leftarrow b$

The label sequence 1,2 should score higher when ri is observed compared to ro. Or, we expect $P(1 \text{ and } 2 \mid ri)$ to be greater than $P(1 \text{ and } 2 \mid ro)$.

Mathematically,

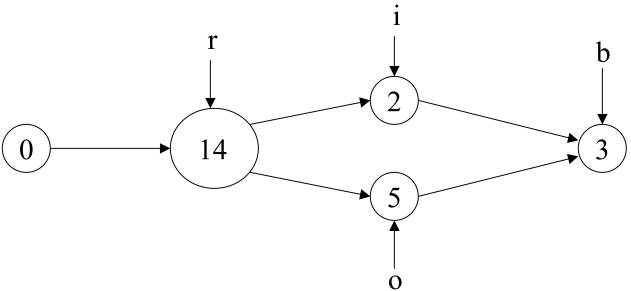
$$P(1 \text{ and } 2 \mid ro) = P(2 \mid 1 \text{ and } ro)P(1 \mid ro) = P(2 \mid 1 \text{ and } o)P(1 \mid r)$$

 $P(1 \text{ and } 2 \mid ri) = P(2 \mid 1 \text{ and } ri)P(1 \mid ri) = P(2 \mid 1 \text{ and } i)P(1 \mid r)$

Since $P(2 \mid 1 \text{ and } x) = 1$ for all x, $P(1 \text{ and } 2 \mid ro) = P(1 \text{ and } 2 \mid ri)$ In the training data, label value 2 is the only label value observed after label value 1 Therefore $P(2 \mid 1) = 1$, so $P(2 \mid 1 \text{ and } x) = 1$ for all x

Changing the Set of States

Example:



$$P(14 \text{ and } 2 \mid ri) = P(2 \mid 14 \text{ and } ri)P(14 \mid ri) = P(2 \mid 14 \text{ and } i)P(14 \mid r) = (1)(1) = 1$$

 $P(14 \text{ and } 2 \mid ro) = P(2 \mid 14 \text{ and } ro)P(14 \mid ro) = P(2 \mid 14 \text{ and } o)P(14 \mid r) = (0)(1) = 0$

This is a solution to the label bias problem.

But, changing the set of states would be impractical.

Conditional Random Fields (CRFs)

Disadvantages of MEMMs

 $P(y \mid x) = \text{product of factors, one for each label}$

Each factor can depend only on previous label, and not future labels

So, let

$$P(\mathbf{y} \mid \mathbf{x}) = \exp(\sum_{k} f_{k}(\mathbf{y}, \mathbf{x}))$$

where each f_k is a property of part of y and x

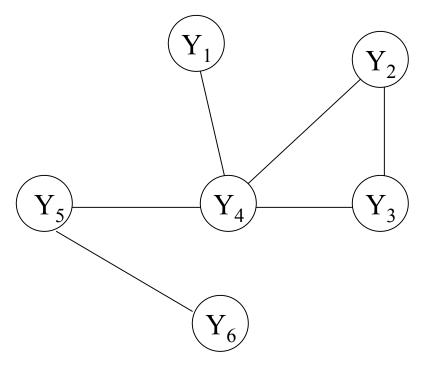
Example: $f_k(\mathbf{x}, \mathbf{y}) = 1$ is X_i is uppercase and label Y_i is a proper noun.

Random Field Example

Let G = (Y, E) be a graph where each vertex Y_v is a random variable Suppose $P(Y_v | \text{all other } Y) = P(Y_v | \text{neighbors}(Y_v))$ then Y is a

random field

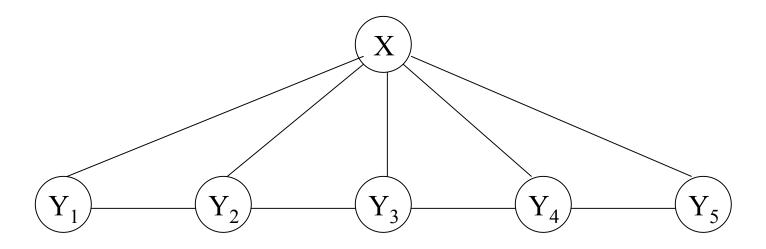
Example:



• $P(Y_5 | all other Y) = P(Y_5 | Y_4, Y_6)$

Conditional Random Field Example

Suppose $P(Y_v | X, all other Y) = P(Y_v | X, neighbors(Y_v))$ then X with Y is a **conditional** random field



- $P(Y_3 | X, all other Y) = P(Y_3 | X, Y_2, Y_4)$
- Think of X as observations and Y as labels

Conditional Distribution

If Y is a tree, the distribution over the label sequence Y = y, given X = x, is:

$$p_{\Theta}(\mathbf{y} \mid \mathbf{x}) \propto \exp \left(\sum_{e \in E, k} \lambda_k f_k(e, \mathbf{y} \mid_e, \mathbf{x}) + \sum_{v \in V, k} \mu_k g_k(v, \mathbf{y} \mid_v, \mathbf{x}) \right)$$
(1)

- **x** is a data sequence outcome
- y is a label sequence outcome
- v is a vertex from vertex set V = set of label random variables
- *e* is an edge from edge set E over V
- f_k and g_k are given and fixed features; each g_k is a property of x and a vertex v for the label random variable associated with v.
- *k* is the number of features
- $\Theta = (\lambda_1, \lambda_2, ...; \mu_1, \mu_2, ...); \lambda_k$ and μ_k are parameters to be estimated
- $y|_e$ is the components of y defined by edge e
- $y|_{y}$ is one component of y defined by vertex v

Matrix Random Variable

- Add special start and stop states $y_0 = \text{start}$ and $y_{n+1} = \text{start}$
- e_i is the edge with labels $(\mathbf{Y}_{i-1}, \mathbf{Y}_i)$
- v_i is the vertex with label \mathbf{Y}_i
- curly Y = set of possible label values
- The matrix random variable has the range $|\text{curly Y}| \times |\text{curly Y}|$
- If $Y_i = y_i$ then $y_i \in \text{curly } Y$

Suppose that $p_{\Theta}(Y \mid X)$ is a CRF given by (1). Assume Y is a chain.

For each position *i* in the observation sequence \mathbf{x} , we define a matrix random variable $M_i(\mathbf{x}) = [M_i(\mathbf{y}', \mathbf{y} \mid \mathbf{x})]$ as:

$$M_{i}(y', y \mid \mathbf{x}) = \exp(\Lambda_{i}(y', y \mid \mathbf{x}))$$

$$\Lambda_{i}(y', y \mid \mathbf{x}) = \sum_{k} \lambda_{k} f_{k}(e_{i}, \mathbf{Y} \mid_{e_{i}}, Y \mid_{e_{i}} = (y', y), \mathbf{x}) + \sum_{k} \mu_{k} g_{k}(v_{i}, \mathbf{Y} \mid_{v_{i}} = y, \mathbf{x})$$

$$14$$

 Y_{i-1} Y_i Y_{i+1}

Conditional Probability for CRFs

The conditional probability of a label sequence y is

$$p_{\Theta}(\mathbf{y} \mid \mathbf{x}) = \frac{\prod_{i=1}^{n+1} M_i(\mathbf{y}_{i-1}, \mathbf{y}_i \mid \mathbf{x})}{\left(\prod_{i=1}^{n+1} M_i(\mathbf{x})\right)_{\text{start, stop}}}$$

- *n* is length of sequence $y = y_1 ... y_n$
- $y_0 = \text{start and } y_{n+1} = \text{stop}$

Parameter Estimation

Input: training data D = { $(x^{(i)}, y^{(i)})$ }, where i = 1...N with empirical distribution $\widetilde{p}(x, y)$

Output: parameters $\Theta = (\lambda_1, \lambda_2, ...; \mu_1, \mu_2, ...)$

Maximize: the log-likelihood objective function:

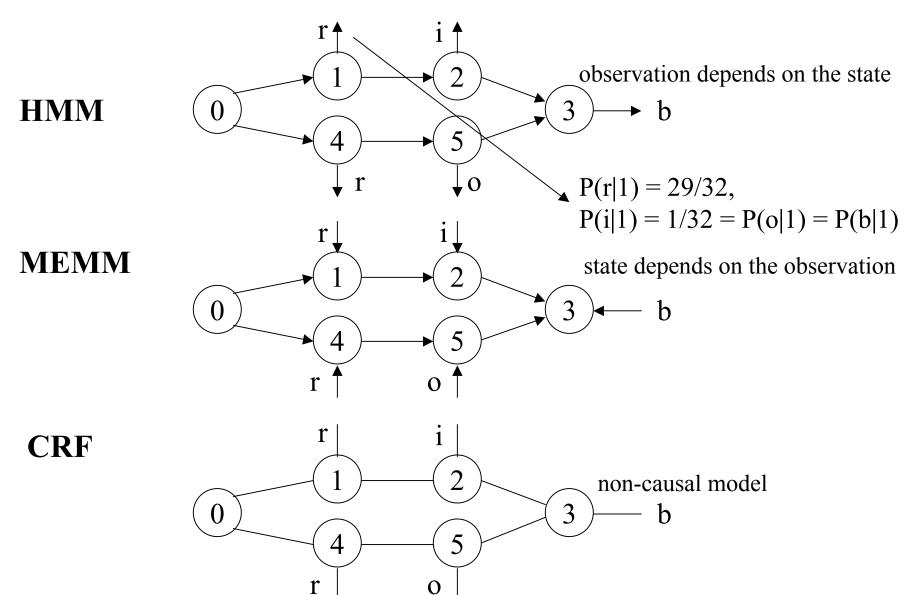
$$O(\Theta) = \sum_{i=1}^{N} \log p_{\Theta}(\mathbf{y}^{(i)} | \mathbf{x}^{(i)})$$

$$\propto \sum_{\mathbf{x},\mathbf{y}} \widetilde{p}(\mathbf{x},\mathbf{y}) \log p_{\Theta}(\mathbf{y} \mid \mathbf{x})$$

• This is an expectation.

rib/rob models

Training data {<rib, 123>, <rob, 453>}



Modeling the label bias problem

- Each state emits its designated symbol with probability 29/32 and the other symbols with probability 1/32 (on picture)
- They train MEMM and CRF with the same topologies
- A run consists of 2,000 training examples and 500 test examples, trained to convergence
- CRF error is 4.6%, and MEMM error is 42%
- MEMM fails to discriminate between the two branches

Mixed-order HMM

State transition probabilities are given by

$$p_{\alpha}(\mathbf{y}_{i} \mid \mathbf{y}_{i-1}, \mathbf{y}_{i-2}) = \alpha p_{2}(\mathbf{y}_{i} \mid \mathbf{y}_{i-1}, \mathbf{y}_{i-2}) + (1 - \alpha) p_{1}(\mathbf{y}_{i} \mid \mathbf{y}_{i-1})$$

Emission probabilities are given by

$$p_{\alpha}(\mathbf{x}_{i} \mid \mathbf{y}_{i}, \mathbf{x}_{i-1}) = \alpha p_{2}(\mathbf{x}_{i} \mid \mathbf{y}_{i}, \mathbf{x}_{i-1}) + (1 - \alpha) p_{1}(\mathbf{x}_{i} \mid \mathbf{y}_{i})$$

 $\alpha = 0$ is a standard first-order HMM.

A first –order HMM has transition probabilities given by

$$p_{\alpha}(y_i | y_{i-1}, y_{i-2}) = (1 - \alpha)p_1(y_i | y_{i-1})$$

And emission probabilities given by

$$p_{\alpha}(\mathbf{x}_i \mid \mathbf{y}_i, \mathbf{x}_{i-1}) = (1 - \alpha)p_1(\mathbf{x}_i \mid \mathbf{y}_i)$$

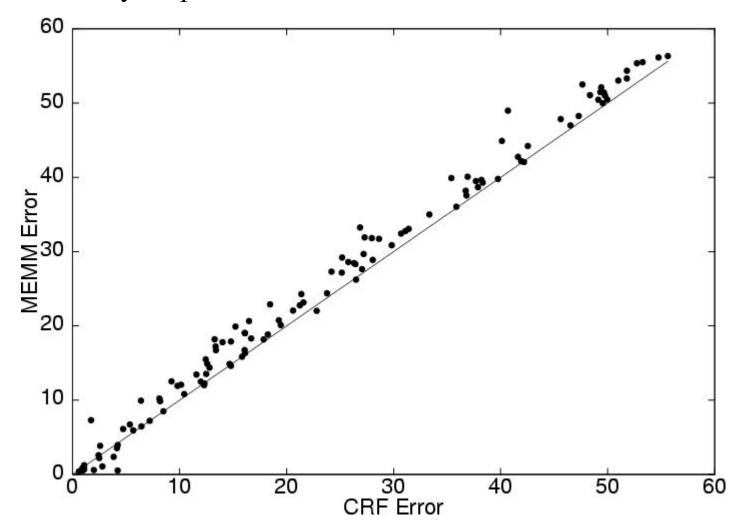
Modeling mixed-order sources

Experimental Setup

- For each randomly generated model, a sample of 1,000 sequences of length 25 is generated for training and testing
- On each randomly generated training set, a CRF is trained using Algorithm S, which is described in the paper
- On the same data an MEMM is trained using iterative scaling
- The Viterbi algorithm is used to label a test set
- the advantages of the additional representational power of CRFs and MEMMs relative to HMMs.

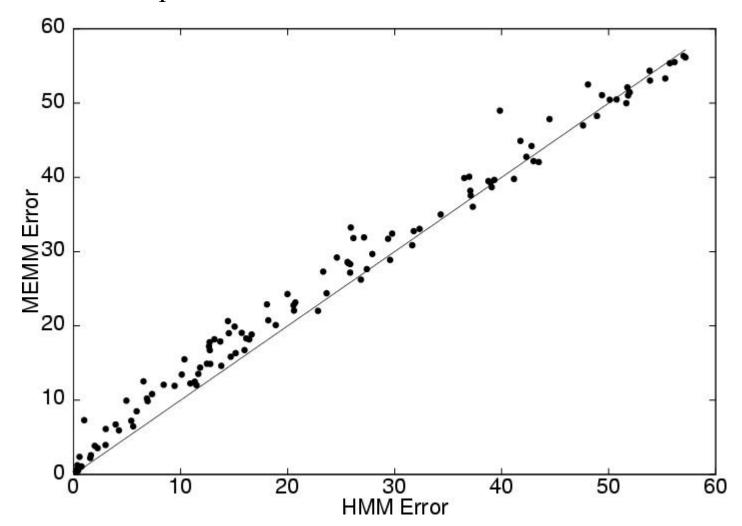
MEMM versus CRF

• CRF usually outperforms the MEMM



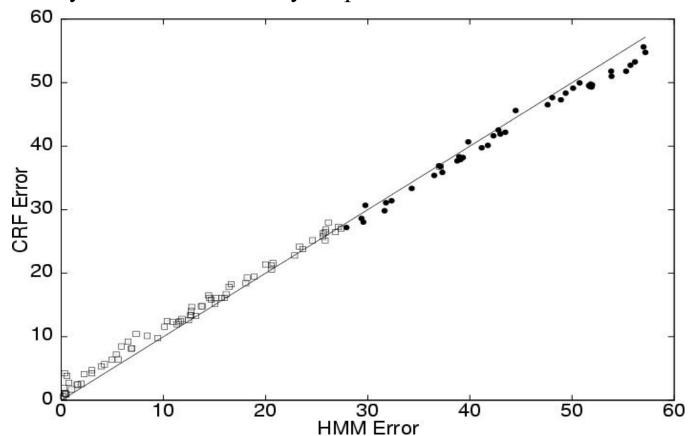
MEMM versus HMM

• The HMM outperforms the MEMM



CRF versus **HMM**

Each open square represents a data set with $\alpha < 1/2$, and a solid circle indicates a data set with $\alpha \ge 1/2$; When the data is mostly second order ($\alpha \ge 1/2$), the discriminatively trained CRF usually outperforms the HMM



UPenn Tagging Task

• 45 tags (syntactic), 1M words training

```
DT
       NN
              NN
                       NN
                              VBZ
                                     RB
                                               \mathbf{JJ}
     asbestos fiber; crocidolite; is unusually resilient
The
                   NNS IN RB
         VBZ DT
                                        JJ
                                              NNS
IN
     PRP
         enters the lungs; with; even brief exposures
    it
once
TO
     PRP
          VBG
                  NNS
                          WDT VBP RP NNS
                                                 JJ
         causing symptoms that show up decades later;
to
     it
```

NNS VBD researchers said

POS tagging experiment 1

- Compared HMMs, MEMMs, and CRFs on Penn treebank POS tagging
- Trained first-order HMM, MEMM, and CRF models as in the synthetic data experiments
- Introduced parameters $\mu_{y,x}$ for each tag-word pari and $\lambda_{y,y}$ for each tagtag pari in the training set
- oov = out-of-vocabulary, and are not observed in the training set

model	error	oov error
HMM	5.69%	45.99%
MEMM	6.37%	54.61%
CRF	5.55%	48.05%

POS tagging experiment 2

- Compared HMMs, MEMMs, and CRFs on Penn treebank POS tagging
- Each word in a given input sentence must be labeled with one of 45 syntactic tags
- Add a small set of orthographic features: whether a spelling begins with a number or upper case letter, whether it contains a hyphen, and if it contains one of the following suffixes: -ing, -ogy, -ed, -s, -ly, -ion, -tion, -ity, -ies

				using spelling features		
model	error	oov error	error	delta	oov error	delta
HMM	5.69%	45.99%				
MEMM	6.37%	54.61%	4.81%	-25%	26.99%	-50%
CRF	5.55%	48.05%	4.27%	-24%	23.76%	-50%

Presentation Message

- Discriminative models are prone to the label bias problem
- CRFs provide the benefits of discriminative models
- CRFs solve the label bias problem well, and demonstrate good performance