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In this paper we study estimation of the parameters of generalized

linear models In canonical form when the explanatory vector is measured

with independent normal error. For the functional case, i.e., when the

explanatory vectors are fixed constants, unbiased score functions are

obtained by conditioning on certain sufficient statistics. This work

generalizes results obtained by the authors (Stefanski & Carroll, 1986) for

logistic regression. In the case that the explanatory vectors are indepen-

dent and identically distributed with unknown distribution, efficient score

functions are obtained using the theory developed in Begun et al. (1983).

Related results can be found in Bickel & Ritov (1986).

Some key vords: Conditional score function; Efficient srore function:

Functional model; Generalized linear model; 4easurement error; Structural

model.
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I. IrTROIUCTIO

Given a covariate p-vector u assume that Y has the density

h (Y;Ou) - exp "("' u)-b(+ ) c(y,*) (1.1)

with respect to a a-finite measure m(-); in (1.1) T 
a (a, T,) and

a(.),b(.) and c(-,•) are known functions. The density (1.1) is that of a

generalized linear model in canonical form (NcCullagh & Nelder, 1983, Ch.

2). Suppose now that u cannot be observed but that M independent measure-

ments X-(XI, .... X.) of u are available. When measurement error is

normally distributed the matrix X has density

H --p12

hx(x;e,u) (21 exp+(x ) u)T5-1(x U) (1.2)

Together (1.1) and (1.2) define a generalized linear measurement-error

model with normal measurement error. If for a sample (Yi,Xi) (il,... ,n)

the covariables (ui ) are unknown constants, a functional model is obtained;

if (ui ) are independent and identically distributed random vectors from

some unknown distribution, a structural model is obtained (Kendall &

Stuart, 1979, Chapter 29). In this paper the problem of deriving unbiased

scores for 9 in both functional and structural models is studied.

There is a vast literature on this problem in the special case that

(1.) is a normal density. This dates back to Adcock (1878) and has been

reviewed by Anderson (1976); see also Moran (1971). Recently there has

been considerable interest in nonlinear measurement-error models; see

Prentice (1982), Wolter & Fuller (1982a, 1982b), Carroll et al. (1984),

Stefanski (1985) and Stefanski & Carroll (1986).

,, - ., . . . , - ," - . .... . . -.' - . ' -i - - i . .
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The density (1.1) includes normal, Poisson, logistic and gama

regression models. The key feature these models have in comnon is the

existence of a natural sufficient statistic for u when all other parameters

are fixed. The same is true of the normal density in (1.2). In fact (1.2)

could be replaced with any density possessing a natural sufficient statis-

tic for u when other parameters are fixed and much of the following theory

holds with little or no modification. However, in the framework of

measurement-error models no other assumption on the error distribution is

more palatable than that of normality and thus the added generality is

sacrificed for a reduction in notational complexity.

In Section 2 functional models are studied and unbiased score

functions for estimating 0 in the presence of the unknown u's are

presented. This work generalizes and extends results of Stefanski &

- Carroll (1986) for logistic regression. Structural models are studied in

Section 3 and efficient score functions for estimating 0 in the presence

of the unknown distribution for u are identified. These results are

obtained using the theory of efficient estimation developed by Begun et A

*1. (1983). Other work in this area includes that of Bickel & Ritov

(1986).

In the case that the covariates u1 ... u are observed without

'-rror the maximum likelihood estimator of 6 maximizes

n

log hy(Y ;O,ui)
i=I

with respect to 0. Let X be the mean of the M measurements of ui; that

value of 0 which maximizes

n

log hy(Yi;eXi)
i- 1

will be referred to as the naive estimator. This estimator is usually

inconsistent (Stefanskl, 1985) although when §/N is small its bias will

be small.

.1"
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2. FUNCTIONAL NOOZLS

2.1 The functional likeihood

Consider the functional version of model (1.1) & (1.2). In this

section the case M 1 is studied under the additional assumption that V

Q/a() - Q (known). (2.1)

Throughout this section the random variables (Yi,Xi), (1-1,...,n) are

independent but not identically distributed since their distributions

depend on the true regressors ut, which vary with I. However, for nota-

tional convenience the subscript i will be dropped when referring to (YX )

in those situations where it causes no confusion. Under (1.1), (1.2) and

(2.1) the joint density of (Y,X) takes the form

hyx(YX;O,u) - hy(y;e,u)h (x;e,u). (2.2)

For a set of n observations the log-likelihood is

n
L(O,u 1I ....,u n )  logih y,x(YI1,X I O,u i)1 (2.3)

i-I

In the case that Y is normally distributed it is known that under (2.1)

T
maximizing (2.3) with respect to (,0T ,*,U

1
,.. .,u) results in consistent

estimators of the regression coefficients a and 8 (Gleser, 1981). For any

model other than the normal, the task of maximizing (2.3) with respect to

its n+p+2 parameters is formidable and not likely to be undertaken. More

importantly it is not generally true that maximizing (2.3) produces

consistent estimators. It follows from results in the first author's

University of North Carolina Ph.D. thesis that in the case of logistic

regression the functional maximum likelihood estimator of (a,O) is not

consistent under assumption (2.1); see also Stefanski & Carroll (1986).

The unwieldy functional likelihood, and its failure to produce consistent

estimators in some important cases point to the need for an alternative

theory of estimation which is now pursued.

-: ::
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2.2 Unbiased score functions

In this section unbiased score functions for the functional model are

obtained by conditioning on certain sufficient statistics. Note that (2.2)

can be written as

h Y'X(y,x;Owu) -q(6,e,u)r~y,x,e) (2.4)

where

q(6,B,u) aexp u uTQ a- 1 * - 2b(a. T u) (2.5)
a(0) 2a(#)

T -I
r(y,x,O) aexp +u-x C ... O) 2a(*)

a 6(y,x,e) X + +QO

C (Y,*) c(vO) -(+)log(42ira(W) Q j

*rhus viewing u as s parameter and a, $ and * as fixed, the statistic

A - A(Y,X,O) - X + Y1QB (2.6)

is sufficient for u. As a consequence, the distribution of YIA depends

only on the observed variables Y and X and e, but not on u. From this

conditional distribution it is possible to derive unbiased estimating

equations for 0 which are independent of u.

Let h ,(yld;e) denote the conditional distribuition of YIA -6. To

find h Y note that the Jacobian of the transformation which takes (Y,X)

Into (Y,X+YQJB) has a determinant of one. Thus

pr(Y-y, A-6)dm(y)dS a pr(Y-y, Xwd-y9B)dm(y)dA

and after some routine calculatioi 3 one finds

h( 16;0)- .e) (2.7)
YJA~yIJ( y, 6, )dm~y)

where
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j 2y(a+6TB) - y 0 Tti +(
Jly,5,O) - exp() cly,*). (2.8)

Define

i Y 2a(# + c(y)}dm(y).Si,8,O) - f expjyn - 2a(*)

This allows (2.7) to be written as

hy A(ylS;O) ex4y - 2 +() c(y,i) - logjS(n,,*)}j (2.9)

T
when i (a + 6 B)/a(*).

Note that (2.9) is an exponential-family density with Y as the natural

sufficient statistic for n. Thus moments of YJA-6 can be computed from

the partial derivatives of S(n,0,0) with respect to n, e.g.,

E0(YI'6) a (/ar)logjS(nB'*)f'l(a+O T6)/a(#);1.
T~umc~+B6)Ia*)'(2.10)

var (YlA-g) - (a
2/ja2)log{S(RB,)f ( T

e ni-(01+0 W)a(*

Since h is an exponential-family density it is true that

YIA

fhYIA(ylS;O)dm(y) -0, (2.11)

where

h1(yI5;9) - aa)h ~(YI6;0).

Thus defining

*sly'xO) h y Ay 6;0) (2.12)
h Jf(YI

6
;O) f-x+yIlB

it follows that S is unbiased for 0, i.e.,

E 0 1*s(YX,e) } - E,[E 0 4oSIY,X,O)IJA - 0.

The inner conditional expectation is zero by virtue of (2.11).

The score S will be called the sufficiency score and any estimator

"" (s$,*S)T which satisfies

s.. . .. . .-4
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x ,YtXt,9S) -0 (2.13)

will be called a sufficiency estigator.

Consider the density in (2.4) and let y,x (/0)h yx. Note that -.

Y.X(YiX;O.U) Eh , YX U
y,x; ,u) ,(YX;9u)
YX((Y.x;eu) - ElY

{y- E(YI=6)l/a(*)

- y - E(YIA=g)}u/a(*) .

r (yxO) - Eir (Y,X, 0)IA6-.

where

r=YX() a (Y ,O - 2a- T(Q-) a100). --%

2a,..(.0-

As the expression in brackets above depends on the unknown covariate u only

as a 'weight' this suggests the class of score functions

,c(Yx,e) 1y-E(yJA-8) ot(j) (2.14)

Ir (yix,9)-Ejr, (Y ,X, e)[A-61 U

indexed by the vector-valued function t(.). The score (2.14) will be

called a conditional score following Lindsay (1980, 1982, 1983). Some

natural choices for t(d) might be t(A)=d and t(d)-E (XIA6). Note that

since X Is unbiased for u and A is sufficient for u the latter choice

corresponds to replacing u by its uniformly minimum variance unbiased

estimator. Also since

Ee(XIAe 6 ) - 6 - E (YIA=-)R (2.15)

only the conditional moments of YIA are needed to find E (XIAm6). More

will be said on appropriate choices for t(.) in Spction 3.3.

. . ... - .-.

............................... . .
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Any estimator e9 which satisfies

C *(Yi 1,X1 e) C 0 (2.16)
il

will be called a conditional estimator.

The estimating equations in (2.12) and (2.14) are both unbiased.

Although it should be possible to show that under reasonable conditions

there always exist consistent sequences of estimators 0S and 0C

satisfying (2.13) and (2.16) respectively, it is not generally true that

(2.13) and (2.16) define S and 0 uniquely. More importantly, there

can exist sequences of solutions to (2.13) and (2.16) which are not con-

sistent, and thus care must be taken when defining 8 and . In

practice a couple of solutions to this dilemma are possible. The first

consists of defining the estimators 0S and 0C as the solutions to

(2.13) and (2.16) which are closest to the naive estimator introduced in

Section 1. This rule is justifiable when measurement error is small,

however it can break down when measurement error is large. This is

discussed in greater detail for the normal model in the next section. The

second solution entails doing one or two steps of a Newton-Raphson iter-

ation of (2.13) and (2.16) starting from the naive estimator. Again this is

generllv appropriate only when the measurement is small. However, in some

realistic sampling situations, Stefanski & Carroll (1986) show that such an

approach substantially improves upon the naive estimator in their study of

measurement error in logistic regression. Finally, preliminary work by the

authors suggests that it is possible to deconvolute the empirical distri-

bution function of the observed X, s to obtain an estimator of the empiri-

cal distribution function of the u.'s, which under regularity conditions

can be used to construct consistent estimators for the functional model.

These estimators can then be used to uniquely define the more manageable

. _ ".. °. .. ". - ".. . , • . " ." ' .. . " ., , . .. .. ," ,- ." ." . . . ... . . . . . . .. .... . .... . .... .,.. . ."...... .... .-.. .- -. .... .-

-. ,o. .% . .. .. . . . . .. . . . ......... %.....•. .. - .
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N-estimators, 0Sand 0C

When consistent sequences of solutions to (2.13) and (2.16) ate

obtained the asymptotic distributions of e and 0Care easily derived

since both are N-estimators; see Huber (1967).

2. 3 Normal, log-istic and Poisson regression

In this section the strengths and limitations of the estimation theory

are illustrated by studying it in three particular generalized linear

models.

Consider first the case in which Y has a normal distribution with mean

T
Ct + 6 u and variance a2. For this model 4* a2 , a(0 0 and m( -) is

Lebesque measure. Using (2.7) one finds that the distribution of YIA *6

T
is normal with variance a'/(1 + 0 90) and mean pwhere

T
ax + 0 6

) T .8(2.17)

Corresponding to (2.12) one finds

+ -2(Y-P)

1+8 ~ ( Io a~ Y

2a2  2al dmx+yS78

where j~is defined in (2.17). Define

T-KI
A-(I+QOB 1 A(Y ~X ,e)-8

where A( ,,,) Is given by (2.6) and consider the equations

n (y T) ( 1 )-0 (2.18)

il-I '" A1

T n n
n (Y .- )-,
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It is a simple matter to show that every solution to (2.18) is also a

solution to s (Yi,Xie) - 0, i.e., any solution to (2.18) is a sufficiency ':

estimator. The similarity of (2.18) to the usual normal equations is

readily apparent. However, keep in mind that A depends on a and B and
i

thus (2.18) is nonlinear in the parameters.

Note that A. is also a sufficient statistic for u. when u, 0, and a1 1

are fixed. Because of (2.18) and the fact that given Ai, Yi is normal

T* *
with mean a + B At , A will be called a conjugate sufficient statis-

*

tic. Also since AI is the functional maximum likelihood estimator for ui

in this model (Gleser, 1981), equation (2.18) shows that the functional

maximum likelihood estimator is a sufficiency estimator.

From (2.18) it follows that i - Y - B X and using this it is
S S

possible to deduce that B satisfies
S

^ n ^ n T +n

0 T.( 1~Yix rs~ 1  * + i2 iX T I Y~i\ 0 (2.19)

where Y - X -X.I*I

Consider (2.19) for the case p - 1, i.e., 0S is a scalar. This quad-

ratic equation has two real roots (Kendall & Stuart, 1979, Chapter 29);

unfortunately the sufficiency principle does not indicate which root is

appropriate. Had the equations (2.18) been derived as the gradient of the

functional log-likelihood the appropriate root would have been dictated by

the maximizing principle.

In the previous section it was suggested that in the case of multiple

solutions to (2.13) and (2.16) to pick that solution closest to the naive

estimator and that this selection rule would work as long as the measure-

ment error variance was small. In this particular case the two roots of

o . . • • . ." 4-

• : . 3 .....,...-,..,.. .:-,-.,,.. .,. :.... '. ,,..< 'r/ , ... , ,2. .. ,,,. , '.,'.:.",".".. .'.'..'-".
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(2.19) converge to 8° and -*2/(0or
2), where l 9 *q2 is the measurement

error variance. The naive estimator converges to 0o2 /(O+7 2 ) where
110 U

ol is the limiting value of the sample variance of the true u 'a. Thus
u

the suggested selection rule will asymptotically choose the right root

whenever *

is11- 1" :20+ 0
2

0U2+t 2+7 o 20._
2  

•

U U0

This inequality is satisfied if

22 40
2 0

2

2,t 2 < 02+ (62/02) + 0(2: + )+ - u0
U0 00

The infimum of the right hand side above with respect to the ratio a2/02
0

is 2o2. Thus whenever 12 < o2 the selection rule works no matter what
u u

the values of oz and B; however, if 12 ) a' and o2/02 is sufficient-
0 u 0

ly small then the selection rule chooses the wrong root. This is encour-

aging for it is unusual to have measurement error so large that x2 2 .
u

To gain some additional insight into the performance of the suf-

ficiency estimator suppose that u1 ,... ,u are independent normal variates

with mean pu and variance U2, i.e. assume a structural model. In this

case, (Kendall & Stuart, 1979, Chapter 29) the structural and functional

maximum likelihood estimators are the same, and in light of the previous

discussion this common estimator is also a sufficiency estimator. Thus in

this particular case the sufficiency score is an efficient score.

TFinally for the normal model Ee(Y JA )  a + a A. and from (2.15)

E8 (XIJAi) = Ai .

This qt and to define the same estimators, i.e., S  eC , when f.
S CC

tM)E el(XlA-A).

Now consider logistic regression in which

.. . o . ,.
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pr (Yoltu) - F(a + 0 u), F(t) - (I + e ) .

For this model a(#) a I and m(-) is counting measure on 10,}.

Using (2.7) one obtains

pr (Y-lIA-6) a Fla+(6-+2B)Tof (2.20)

and corresponding to (2.12) is the logistic sufficiency score

6-c( ) k-x+yfB; (2.21)

and setting 1S(y1 ,XiO) - 0 results in the equivalent equations

{i - F(a + 0 T i 0. (2.22)

where A,- Ai-+1; note that A, is a conjugate sufficient statistic.

Stefanski & Carroll (1986) introduced this estimator and show in a Monte

Carlo study that in spite of the possibility of multiple solutions to

(2.22), a modified one-step version of (asp ,) starting from the naive

estimator, performed well in some realistic sampling situations. Unlike

the normal model the logistic sufficiency estimator does not correspond to

the funct~onal maximum likelihood estimator, which in this case is not

consistent; see the first author's University of North Carolina Ph.D.

thesis and Stefanski & Carroll. (1986). In Section 3.3 it is shown that

the logistic sufficiency score is optimal for a particular structural

model.

For logistic regression it is not true that OS VA when

t(6)-E(XIA-6). Indeed with E (YIA-6) given by (2.20).

E(X)A-6) - 5 - Fic+(6-+O)T ~- T0

and corresponding to (2.16) are the equations

-F(a + A)I i'A - F(a + BTA * ) 0f 0

illy ~1 T2

% % % %

- *I L h, % 7.. . .

-- ==. . . -. -. . _r, L . . . ." . .
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The final model considered is that of Poisson regression in which

pr0(Yoklu) a (k!)- explk(*+ Tu) - exp(+B Tu)J.

For this model a(*) a I and m(.) is counting measure on f0,1,...).

From (2.7) it follows that

pro(YkIA6) (k!)-lexplk(*GB T) - kOTf 0/21 (2.23)

(J!)- explj(a+BT a) - JZBT 90/ 21

j .o

Since (2.23) has no closed form the sufficiency scores * and 0 are quite .

messy and are not given. Note that there is no conjugate sufficient

statistic. Also, as in logistic regression, the estimators 0S and C .

are not equal for this model when t(S)=E(XIA6-).

The conditional distribution (2.23) is more typical of generalized

linear models than are those from the logistic and normal models. Since in

(2.8) the factor y20T8IB/2a(*) appears in the exponent it is only in special

cases that the denominator of (2.7) can be obtained in closed form. Thus

implementation of the sufficiency estimators will often require numerical

integration or summation.

3. STRUCTURAL NODELS
JI

3.1 The structural likelihood

In this section the model studied is the structural version of (1.1) &

(1.2), i.e., u1,... ,u are independent and identically distributed

observations with unknown density gU(u). Since it should cause no con-

fusion the subscript U on gU(u) is omitted. The density g is an element of

G, a family of densities with respect to the measure v(.). As in Section

2, it is assumed that M-1 along with the identifiability condition

(2.1). Under these conditions the joint density of (Y,X) is

1%

. . . .. *- •

• V / . "' 'q . ; : :" :.-"'"".2,. -' '- "' ".%
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f Yx(Yx;Og) w fhy'x(yx;O,u)gu)dv(u) (3.1)

where h¥,X is defined in (2.2).

Let fy'x(YX;O,g) - (8/39)fy'x(Yx;S,g) and assume that

fY'X(YX;eg) hy'x(Yx;Ou)g(u)dv(u)

where,

hYx(y,x;Ou) 
(/09)hgYx(y,x;e,u)

i.e., assume that differentiation and integration can be interchanged in

(3.1). If g(.) were known then the efficient score for 0 would be

A.(y,x,fg) - fY'x;(Yx;'g)

and the information available in (Y,X) for estimating 0 would be

I - E(j4 ).

Throughout this section interest lies in estimating 0 when g and hence _

are unknown. Note that both the sufficiency and conditional scores of

Section 2 are unbiased for the structural model (3.1) also. Attention

therefore is directed to the problem of finding efficient score functions.

3.2 Efficient score functions and information bounds.

T, T
Efficient score functions for estimation of B - (a,B,) in the

presence of the nuisance function g(-) are now derived. As with the J

theory in Section 2 the existence of certain sufficient statistics plays a

key role here. The derivation draws heavily on the results of Begun, Hall,

Huang & Wellner (1983); see also Pfanzagl (1982, Chapter 14). The

structural model studied here is a generalization of a model considered by

Bickel & Ritov (1986). Whereas they study simple linear regression under a

number of conditions, including that of replicated measurements and our

assumption (2.1), we consider the more general model only under the latter

% . .. .. . . . .
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assumption. However, the approach used here to derive efficient scores %

extends quite naturally to the case of replicated measurements when (2.1) r'.

is not assumed.

In the following p denotes the product measure of m(.)x Lebesquo

measure on p-dimensional Euclidean space. As in Begun et al. (1983) let

L
2
(p) and L

2
(v) denote the L

2
-spaces of square-integrable functions with

respect to the measures p and v respectively. Norms and inner products on

these spaces are denoted by P.fl and <., and N" and ,

The theory of Begun et al. (1983) requires Aellinger-differenti-

ability of the square root of (3.1) with respect to (9,g); see their

Definition 2.1. It is assumed here, and can be proven under regularity

conditions, that fT (y,x;Og) satisfies condition (2.1) of Begun et
y-x

&l. and hence is Hellinger-differentiable. Its differential, for sequences

( n,g n  satisfying 19n-81 + Ngn -g NV converging to zero, is given by

oT(e -0) + A(g gf)
nn

where

0
=

(W)f ,(YX;8'g)J(y'xO'g), .' -,

and the linear operator A taking L
2
(v) into L2(p) is defined for r in L

2
(v)

via

I hynx( ,x;eu)r(u)dv(u)

2ff,(YX;O'g)

When necessary to indicate dependence on (y,x,e,g), o is written p(yx,0,g)

and Al as Ar(y,x,og).

The key result of Begun et al. (1983) used here is that when g is

unknown the efficient score for 8 is

2(p - At*) '.
X-,,~) f (3.2)

(Y,X;O,g)

... .. ...... ", ....-............... '... ..... .. ,..........

... :• .,.....:.., .:* .. . ... , .,. . o .. , .......... .... ... ..• .' ,; . 9,,:'% ':. , *. '.Lc ", _- . . - ....9~ . .. , .' .- • .,. .
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where the L2(V) functionrsaife

( A Ar> o (3.3)

for all functions F obtained as L2(v) limits of sequences (I' n of the form

n n

In terms of expectations (3.3) becomes

(*)Eeg[OYge 2AF (Y. aLL1111 2AF(Y.X,.~l) LI-0. (3.4)
(Y,Xje,g) f (Y,X;B,g)

Note that for any r e L2(v)

(Y xe~g -f hyx(YX;O~u)g(u)dv(u)f Y,x ;Og ,

and thus in view of (2.4)

2AF(Y.X.E) Ig(A.Ou)I~u)dv(u) (3.5)

f yX, 9,g) Jq(A,9,u)g(u)dv(u) e

where A -X + YI is defined in (2.6). The important fact here is that the

right hand side of (3.5) depends on (Y,X) only through the complete

sufficient statistic A irrespective of r; this is a consequence of the

sufficiency of A for u, when u is regarded as a parameter. It follows now

that (3.3) holds for all IF when

2Ar (Y.X.6,z E - JA1(Y,Xeg)IA

f (Y X;O,g)

Thus the efficient score given by (3.2) is

A.(yx9G~g) a TPy,x,O,g) - E8 OLR1(YXO,g)fAu61S 5ft lBQ,

and the "information" available in (Y,X) for estimating 0 In the

presence of & is

T
I* - E4i.(Y,X,O,g)x~ (YX,0,g)h (3.6)

see Equation (3.4) of Begun et al. (1983).Z



To compute J(yx,O,g) let q *(9,u) a qiA(y,x,O),O,uI where q(&,B,u) and

9(y,x,@) are given in (2.5). Then using (2.4)

f YX(Y,x;O~) *Jq (O,u)r(y,x,O)&(u)dv(u),

and thus

af(L + q a)dv

f q rgdv

a(gd ar
80* as

U+ *

f qgdv r

* Now since

T
b',(c+u )p

a(#)

* T*
- - b(aeuB~luq (9,u)

as a*

u 91 u 2b(ct+u 0) 2ua-yx$
+ 2az(o)

* and

2a( *)

(y,xOg a ewitna

wher r*(9 x) ac y(,9,) -a x f (6,0,g

a() - YX ff3(6,0,g) _ -+Q
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where the scalar-valued functions f and f3, and the p-vector-valued

functions R and f2 depend on (y,x) only through 6 - x+yQB. It follows that

,(y,x,O,g) = (y,x,O,g) - EJT(Y,X,$,g)jA 6.

{y - E(YIAt6)}/a(#) 1
ly - E(YtA 6)JR(6,0,g) (3.7'

r,(y'xO) - Eir 0(YX,)IA.6} *x+yQOB.

Define

w(v) - f q(7,0,u)g(u)dv(u); (3.8)

and

w(y) - (-)() - -uq('ug(u)d(u);

Now the function R(6,0,g) appearing in (3.7) is given by

R(6,0,g) - . (3.9)w(d)

Using the relation x a 6 yQ-

r ayxO ac -.4 2ay - (4-vRB) T a- (a-VRB)a'#*YXO 2a2(O)

and thus (3.7) involves only expectations of functions of YJA-4.

3.3. Efficiency of the sufficiency and conditional scores

in a structural setting

In the discussion of the normal linear functional model in Section

2.3, it was deduced that the sufficiency score is equivalent to the

efficient score for the structural version of this model when the true

predictors (u I ..,un ) are themselves normally distributed. A similar e

result for logistic regression is now derived. Compare (2.21) to the

logistic efficient score given by

,(y,x,O~g) * [y-Fj+(8-QO)T 1il (3.10)

) 0%

".'',.",'.," .,,. *.,,, . ,. .;' .,',. s *.*" " .. ,'_, ,',,,. ,- ".* ." .. *,. 
"
.. . - .-. ,'...',.."". "..""- " -'."."." .-
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equation (3.10) is just (3.7) for the case of logistic regression. For

(2.21) and (3.10) to be equivalent the function R(4,O,g) must be linear in

5. Since by (3.9)

this means that log{w()j) must be a quadratic form in 6, call it Q(6),

i.e., using (3.8) with q(&,e,u) chosen accordingly for logistic regression,

expiQ(d)} - lexpuTfl -I uTa- u i(u) du.

1+exp(*+o u)

Now using a moment-generating-characteristic-function argument it follows

that

ex- uT-lu
2 1+exp(a+O u)

must be proportional to a p-variate normal distribution. This means that

g(u) must be a mixture of two p-variate normal distributions with different

means and common covariance matrix. The picture is now clear; the suf-

ficiency score (2.21) is efficient in a structural setting only when (Y,U)

satisfy the assumptions of the normal discrimination model,

prlY-l)uw I , UIY-y~N(pyT). ..

y

Of course if all of this information were known a priori then the linear

T
discriminant, a+T u, would most likely be estimated using the full likelf-

hood as opposed to using logistic regression, see Efron (1975) and Michalik ,

& Tripathi (1980).

A theorem is now proved which indicates when the conditional score C

defined in (2.14) is the efficient score in some structural setting. This

provides some insight into appropriate choices for t(.) when choosing a

conditional score (2.14).

Pi,
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THEOREM. The conditional score C is the efficient score in a structural

model for some density g(• ) and some measure v(, ) if and only If there

exists a real-valued function T(•) such that t(6),(a/))T(6)

where exp[Tja(+)96 J is a moment generating function for some probabi~litrv

density with respect to v(-).

PROOF. Assume that is the efficient score in a structural model with

density g(.) and measure v(-). Then comparing (2.14) and (3.7) it follows

that

t(6) = w()

where w(6) is given by (3.8). Let T(6) - logjw(6)1-k for a constant k to

be determined later. Clearly (a/aA)T(6)-t(6) and furthermore, using (3.8), "

explT(S)l' - exp.-T exp k- 2a(*) u g(u)dv(u).

Thus with k chosen accordingly M(8)iexp[T{a(*)Q6j] is a moment

generating function of the density

T -1 T
expik Q_ u+ 2b(ci+o )gu
exp-~ - 2a(#) f~

with respect to v(').

The steps in this argument can be reversed to prove the theorem In the

other direction. I/I

The discussion of efficiency in a functional setting is difficult. In

light of this a reasonable approach is to choose a conditional score,

-. . .... . .. . ..
• * * ' ° ." ""o° o • . • . % . * . o . -.a- .
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'w (2.14), which Is known to be efficient for some structural model. The

theorem indicates that the class of appropriate functions t(.) is fairly

restricted.

3.4. Efficient estimation.

Since the efficient score in (3.7) depends on the unknown density

g(-), it is not readily apparent how one constructs a sequence of
,5

estimators with asymptotically minimum variance. Begun et al. (1983)

suggest in general solving

n

S(Yi,Xi,e,) - 0 (3.11)
i-l

where (-) is some suitable initial estimator of g(-). Since the

empirical distribution function, Fn9 of the observed X's converges to

the convolution of G with a normal distribution function it should in

theory be able to deconvolute P to obtain consistent estimators of G
n

which would then be smoothed to obtain estimators of g(.). In practice

this is quite difficult and technical problems might arise when p)l. Also

given a j(.) it is still possible that (3.11) will have multiple

solutions, not all yielding consistent sequences.

This last problem can be avoided if a root-n consistent preliminary

estimator, 0, is available. Again let (.) be an estimator of g(.)

and define

-. .n
a- + * n(i~ x,,g).

i-I
.2

where i. is an estimator of I*, e.g.,

-1
,--n I W<i~xi99g) .'

%.

.o.

* . . . . . o ,
;. ' ".," ... ,.. -.Wt , .a .. . . . .. . .. ' .. .. " . - , ". . " ... ' . . . ." "' ."-""". . ."", .. ""."" . . "" ."

.*.... .....- '%...5..... '-..-,*'-., .. .... _..S..*.''. ... ..", ,,,-... g..''.---..'... ',.',.,,',"."..°". ."..',..
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and

i(y'x'0'g) *(3Ia9)AL(y'x'e'g).

Then 0 will generally be asymptotically efficient provided I* and j(.)

are good estimates of I* and g() respectively. This approach still

requires an estimator j(-) of g(.).

Note that A(y,x,e,g) depends on g() only through the function w() in

(3.8) and its derivative. In work in progress the authors are investi-

gating a one-step construction of an asymptotically efficient estimator

which estimates w(-) directly, avoiding the intermediate step of estimating

4.0 CONCLUDING REMARKS

In conclusion we reiterate that the assumption of normal errors,

(1.2), Is not crucial to the theory developed herein; the existence of a

complete sufficient statistic for u when regarded as a parameter is

crucial. The situation in which (2.1) is replaced with an assumption of

replicated measurements, i.e., m > I in (1.2), is conceptually no different

than when (1.2) is assumed with the exception that both 9 and # can now

be estimated; thus there will be an additional p(p+l)/ 2 - dimensional

component to all the scores.

Although no distributional assumptions on the measurement errors is

more reasonable than that of normality it is still an unverifiable as-

sumption unless replicate measurements are made. The sufficiency, con-

ditional and efficient scores lose their unbiasedness when the assumption

of normal errors is erroneous. Thus when measurement error is nonnormal,

estimates derived from these scores will generally be biased and the bias

will generally not be computable. Approximations to the bias can probably

I%,',- t*S&. .*-,-, . .- ,, *, *,.,..*..*....,....., ..-.... ,, ., -. .., .- .. ......- , .... . .. ... . ,. . .
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be obtained using the small-measurement asymptotics employed by Stefanski

(1985) although we have not attempted these calculations.

"%-

The work of R. J. Carroll was supported by the U.S. Air Force Office

of Scientific Research.
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