
RESEARCH ARTICLE

Conditional Self-Entropy and Conditional

Joint Transfer Entropy in Heart Period

Variability during Graded Postural Challenge

Alberto Porta1,2*, Luca Faes3,4, Giandomenico Nollo3,4, Vlasta Bari2, Andrea Marchi5,
Beatrice De Maria6, Anielle C. M. Takahashi7, Aparecida M. Catai7

1 Department of Biomedical Sciences for Health, University of Milan, Milan, Italy, 2 Department of

Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy,
3 BIOtech, Department of Industrial Engineering, University of Trento, Trento, Italy, 4 IRCS PAT-FBK,
Trento, Italy, 5 Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy,

6 Department of Rehabilitation Medicine, IRCCS Fondazione Salvatore Maugeri, Milan, Italy, 7 Department
of Physiotherapy, Federal University of São Carlos, São Carlos, São Paulo State, Brazil

* alberto.porta@unimi.it

Abstract

Self-entropy (SE) and transfer entropy (TE) are widely utilized in biomedical signal process-

ing to assess the information stored into a system and transferred from a source to a desti-

nation respectively. The study proposes a more specific definition of the SE, namely the

conditional SE (CSE), and a more flexible definition of the TE based on joint TE (JTE),

namely the conditional JTE (CJTE), for the analysis of information dynamics in multivariate

time series. In a protocol evoking a gradual sympathetic activation and vagal withdrawal

proportional to the magnitude of the orthostatic stimulus, such as the graded head-up tilt,

we extracted the beat-to-beat spontaneous variability of heart period (HP), systolic arterial

pressure (SAP) and respiratory activity (R) in 19 healthy subjects and we computed SE of

HP, CSE of HP given SAP and R, JTE from SAP and R to HP, CJTE from SAP and R to HP

given SAP and CJTE from SAP and R to HP given R. CSE of HP given SAP and R was sig-

nificantly smaller than SE of HP and increased progressively with the amplitude of the stim-

ulus, thus suggesting that dynamics internal to HP and unrelated to SAP and R, possibly

linked to sympathetic activation evoked by head-up tilt, might play a role during the ortho-

static challenge. While JTE from SAP and R to HP was independent of tilt table angle, CJTE

from SAP and R to HP given R and from SAP and R to HP given SAP showed opposite

trends with tilt table inclination, thus suggesting that the importance of the cardiac baroreflex

increases and the relevance of the cardiopulmonary pathway decreases during head-up tilt.

The study demonstrates the high specificity of CSE and the high flexibility of CJTE over real

data and proves that they are particularly helpful in disentangling physiological mechanisms

and in assessing their different contributions to the overall cardiovascular regulation.
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Introduction

The field of information dynamics is rapidly developing because meaningful quantities useful

in multivariate recordings have been devised [1–11] and open access tools for their rapid dis-

semination have been proposed [12,13]. Among these quantities the most relevant ones are self-

entropy (SE) [3,6,7] and transfer entropy (TE) [1] being both factors of the decomposition of the

so-called prediction entropy (PE) of an assigned target series in a multivariate dataset [7]. The

exploitation of SE and TE is hampered by their rigid definition that is not fully justified given the

high flexibility of information-theoretic indexes. Indeed, in the case of SE in a multivariate con-

text the most common definition, i.e. the mutual information between the current value of the

dynamics describing the target and its own past values [3], imposes a dependence of SE on the

direct dynamical influences of the exogenous sources over the target in addition to the dynamical

properties of the destination [3,6,7]. Conversely, the definition of a conditional SE (CSE), elimi-

nating the direct influences of all sources over SE, might provide a more specific index of infor-

mation internal to the target. In the case of TE, its most common definition in a multivariate

context requires the computation of the conditional mutual information between the current

value of the target and the past values of a single source given the past of the target and of all

other sources [1,11]. With this definition, denoted complete TE or partial TE, the information

transfer is quantified from a single source to the destination [1], thus leaving undecided whether

it is worth computing the joint TE (JTE) that accounts for the effects of all sources on the destina-

tion or a more general measure of the information transfer, such as the conditional JTE (CJTE),

that allows one to be flexible in deciding the subset of sources affecting the destination.

The utility of the CSE and CJTE compared to SE and JTE respectively is made clear in the con-

text of the assessment of the cardiovascular control based on spontaneous variations of physio-

logical variables such as heart period (HP), systolic arterial pressure (SAP) and respiration (R).

The SE of HP, CSE of HP given SAP and R, JTE from SAP and R to HP, CJTE from SAP and R

to HP given SAP and CJTE from SAP and R to HP given R were computed and compared to

clarify possibilities and limits of these information-theoretic measures over real data. These quan-

tities are calculated over experimental series obtained in a protocol capable to progressively mod-

ifying the dependence of HP dynamics on SAP and R variations as a function of the magnitude

of the stimulus [14]. The protocol, i.e. the graded head-up tilt, leading to a sympathetic activation

and vagal withdrawal proportional to the inclination of the tilt table [15–17], allows us to moni-

tor the changes of the information-theoretic quantities as a function of the relevance of the chal-

lenge and to link their changes to the degree of activation/deactivation of specific physiological

mechanisms. The specificity of SE, CSE, JTE and CJTE in describing the underpinning physio-

logical relations is assessed, their meaning is elucidated via the construction of surrogate sets and

their physiological correlates are clarified. The information-theoretic quantities are computed

under the hypothesis of Gaussanity, stationarity and linear interactions among variables. Even

though these hypotheses might appear to be quite restrictive at the first sight, they are largely

exploited in multivariate modeling of cardiovascular variability interactions [18–23] and they are

usually supposed to hold in the case of well-controlled experimental protocols designed to

achieve quasi-stationary conditions, small changes of the variables about the set point (i.e. the

mean values of HP, SAP and R) and weak interactions among physiological subsystems.

Methods

Open Loop Autoregressive Model with q Exogenous Inputs and its
Simplified Model structures

Given an effect time series y = {y(n), n = 1, . . .,N}, and q exogenous driving time series,

x1 = {x1(n), n = 1, . . .,N},. . ., xq = {xq(n), n = 1, . . .,N} where N is the series length and n is the
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progressive counter, all series are first normalized to have zero mean and unit variance by sub-

tracting the mean to each sample and by dividing the result by the standard deviation. The set

O = {y,x1,. . .,xq}, formed by the reunion of the subset exclusively including the series y (i.e. {y})

and the subset collecting all exogenous series O\y = {x1,. . .,xq}, constitutes the universe of

knowledge about the system under study. The series y is the assigned effect and describes the

behavior of the subsystem defined as destination, while O\y is the set collecting all presumed

causes describing the behavior of the subsystems defined as sources and supposed to affect the

destination. The open loop autoregressive (AR) model with q exogenous (X) inputs

(ARX1
. . .Xq) is defined as

yðnÞ ¼ Aðz�1Þ � yðnÞ þ
Xq

j¼1

Bjðz
�1Þ � xjðnÞ þ wARX1 ���Xq

ðnÞ ð1Þ

where wARX1 ���Xq
is a zero mean white Gaussian noise with variance l2ARX1 ���Xq

, A(z−1) and Bj(z
−1),

with 1�j�q, are polynomials in z-1 with constant coefficients and z-1 is the unit backward shift

operator (i.e. z-1.y(n) = y(n-1)) in the Z-domain. The polynomial

Aðz�1Þ ¼
Xp

i¼1

ai � z
�i ð2Þ

describes the self-dependence of y on p past samples of the same series where the ai’s, with

1�i�p, are the constant coefficients of the auto-regression of y and the polynomial

Bjðz
�1Þ ¼

Xp

i¼0

bji � z
�ðiþtjÞ ð3Þ

describes the cross-dependence of y on p+1 present and past samples of the series xj where the

bji‘s, with 0�i�p, are the constant coefficients of the regression of y on xj and τj is the delay

from xj to y.

Three structures, all derived from the ARX1
. . .Xq model, are of interest in this study: i) the

ARX1
. . .Xj-rXj+s

. . .Xq model, with s and r integers with 1�r�j and 1�s�q-j+1, that disregards a

block of exogenous causes (i.e. xj-r+1,. . .,xj+s-1) by ignoring the regression of y on xj-r+1,. . .,xj+s-1;

ii) the AR model that disregards all regressions of y on xj with 1�j�q; iii) the X1
. . .Xq model

that disregards only the AR part by ignoring the auto-regression of y.

Prediction of y Based on the ARX1. . .Xq Model and its Simplified Model
Structures

The one-step-ahead prediction of y, ŷðn=n� 1Þ, based on the ARX1
. . .Xq model is given by

ŷðn=n� 1Þ ¼ Âðz�1Þ � yðnÞ þ
Xq

j¼1

B̂ jðz
�1Þ � xjðnÞ ð4Þ

where the coefficients of Âðz�1Þ and B̂ jðz
�1Þ are estimated according to an optimization crite-

rion (here the least squares approach minimizing the variance of wARX1 ���Xq
) [24]. Basically

ŷðn=n� 1Þ is deterministically obtained by filtering y and xj with 1�j�q with Âðz�1Þ and

B̂ jðz
�1Þ respectively. The one-step ahead prediction of y based on the considered simplified

versions of the ARX1
. . .Xq model (i.e. the ARX1

. . .Xj-rXj+s
. . .Xq with r,s�1, AR and X1

. . .Xq struc-

tures) can be analogously obtained after a new identification of the polynomials via minimiza-

tion of the variance of their white noises (i.e. wARX1 ���Xj�rXjþs ���Xq
, wAR and wX1 ���Xq

respectively).
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Defined the prediction error as the difference between y(n) and its one-step-ahead prediction,

ŷðn=n� 1Þ, the inability of the model to describe the dynamics of y is quantified by the vari-

ance of the prediction error. It is bounded between 0 and the variance of y, σ2. Given the nor-

malization of the series as reported in the previous Section, the variance of the prediction error

actually ranges between 0 and 1, where 0 indicates perfect prediction (the entire σ2 is explained

by the model) and 1 indicates null prediction (no fraction of σ2 is explained by the model). In

the following we will indicate as s2

ARX1���Xq
, s2

ARX1 ���Xj�rXjþs ���Xq
, s2

AR and s
2

X1 ���Xq
the variance of the

prediction error of the ARX1
. . .Xq, ARX1

. . .Xj-rXj+s
. . .Xq, X1

. . .Xq and AR model structures

respectively.

Linear Gaussian Approximation of the Information-Theoretic Quantities

Under the hypothesis of joint Gaussian distribution of the variables (i.e. any subset of consecu-

tive samples derived from O has a joint Gaussian distribution), the SE, CSE, JTE and CJTE can

be exactly computed from the multivariate linear regression representation of the dynamics of

y given by the ARX1
. . .Xq model [4,7,25,26] as listed below. The full list of the information-the-

oretic quantities computed in the context of this study is given in Table 1 and their schematic

representation is given for q = 2 in Fig 1.

We define as prediction entropy (PE) of y

PEy ¼
1

2
log

s
2

s2

ARX1 ���Xq

; ð5Þ

where log is the natural logarithm, the ratio of the variance of y on that of the prediction error

of the ARX1
. . .Xq model. PE measures the reduction of the uncertainty about y, quantified by

Shannon entropy of y (ShEy) (Fig 1B) owing to the ARX1
. . .Xq fitting (Fig 1C). PEy is bounded

between 0 and ShEy being 0.5
.log(2πeσ2) under the hypothesis of Gaussian distribution [27].

SE of y, SEy, can be calculated as the ratio of the variance of y on that of the prediction error

of the AR model as

SEy ¼
1

2
log

s
2

s2

AR

ð6Þ

Table 1. Synopsis of the Information-Theoretic Quantities Considered in the Study.

Acronym Definition

ShEy Overall amount of uncertainty about the present of y [27]

PEy Amount of uncertainty about the present of y explained by past values of all
signals in Ω [7,10]

SEy Amount of uncertainty about the present of y explained by past values of y [3,6]

CSEyjx1 ;���;xq
SEy conditioned on all exogenous signals

JTEx1 ;���;xq!y Amount of uncertainty about the present of y explained by past values of all
exogenous signals above and beyond that resolved by past values of y

CJTEx1 ;���;xq!yjx1 ;���;xj�r ;xjþs ;���;xq
Portion of the JTEx1 ;���;xq!y solely attributable to the block of exogenous signals

{xj-r+1,. . .,xj+s-1}

CJTEx1 ;���;xq!yjx1 ;���;xj�1 ;xjþ1 ;���;xq
Portion of the JTEx1 ;���;xq!y solely attributable to past values of xj and coincident

with TExj!y in Ω [1,11,28]

ShE = Shannon entropy; PE = prediction entropy; SE = self-entropy; CSE = Conditional SE; TE = transfer

entropy; JTE = joint TE; CJTE = conditional JTE.

doi:10.1371/journal.pone.0132851.t001
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representing the reduction of the uncertainty about y owing to the AR fitting (Fig 1D). SEy is

bounded between 0 and PEy.

CSE of y conditioned on all assigned causes, CSEyjx1 ;���;xq
, is calculated as the ratio of the pre-

diction error variance of the X1
. . .Xq model on that of the ARX1

. . .Xq model as

CSEyjx1 ;���;xq
¼

1

2
log

s
2

X1 ���Xq

s2

ARX1 ���Xq

ð7Þ

representing the reduction of the uncertainty about y when y is described according to the

Fig 1. Graphical Representation of the Information-Theoretic Quantities inΩ = {y,x1,x2}. Amnemonic Venn diagram of the prominent information-
theoretic quantities that are computed in the context of this study. The diagram is devised to represent in the information domain the dependency of the
uncertainty associated to the current value of y = {y(n), n = 1002C. . .,N} quantified by the Shannon entropy (ShE) of y (ShEy) on the information associated to
past values of the assigned effect series y- = {[y(n-1), . . ., y(n-p)], n = p+1, . . .,N} quantified by ShEy� , and of two presumed causes x1

- = {[x1(n-τ1),. . ., x1(n-τ1-p)],

n = τ1+p+1, . . .,N} and x2
- = {[x2(n-τ2),. . ., x2(n-τ2-p)], n = τ2+p+1, . . .,N} quantified by ShEx�

1

and ShEx�
2

respectively. The four intersecting circles (or ellipses)

represent ShEy, ShEy� , ShEx�
1

and ShEx�
2

(a). Notable quantities for this contribution are highlighted by filling in black the relevant areas at the interception of the

circles (or ellipses): ShEy (b), PEy (c), SEy (d),CSEyjx1 ;x2
(e), JTEx1 ;x2!y (f),CJTEx1 ;x2!yjx1

(g),CJTEx1 ;x2!yjx2
(h), and SEy-CSEyjx1 ;x2

(i).

doi:10.1371/journal.pone.0132851.g001
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X1
. . .Xq model owing to the consideration of past values of y in addition to those of all pre-

sumed causes X1
. . .Xq (Fig 1E).

Joint TE (JTE) from all the presumed causes to y, JTEx1 ;���;xq!y, is calculated as the ratio of the

prediction error variance of the AR model on that of the ARX1
. . .Xq model as

JTEx1 ;���;xq!y ¼
1

2
log

s
2

AR

s2

ARX1 ���Xq

ð8Þ

representing the reduction of the uncertainty about y when y is described according to the AR

model owing to the consideration of all presumed causes X1
. . .Xq in addition to the past values

of y (Fig 1F). JTEx1 ;���;xq!y is bounded between 0 and PEy. The JTEx1 ;���;xq!y can be rendered more

specific by conditioning JTEx1 ;���;xq!y to a subset of causes chosen in O\y. For example, the con-

ditional JTEx1 ;���;xq!y given x1,. . .,xj-r,. . .,xj+s,. . .,xq with 1�r�j and 1�s�q-j+1

CJTEx1 ;���;xq!yjx1 ;���;xj�r ;xjþs ;���;xq
¼

1

2
log

s
2

ARX1 ���Xj�rXjþs ���Xq

s2

ARX1���Xq

; ð9Þ

computed as the ratio of the prediction error variance of the ARX1
. . .Xj-rXj+s

. . .Xq model on

that of the ARX1
. . .Xq model, represents the reduction of the uncertainty about y when y is

described according to the ARX1
. . .Xj-rXj+s

. . .Xq model owing to the consideration of past values

of the excluded set of causes O\y,x1,. . .,xj-r,. . .,xj+s,. . .,xq = {xj-r+1,. . .,xj+s-1} in addition to past

values of y and the presumed causes x1,. . .,xj-r,. . .,xj+s,. . .,xq. When the

CJTEx1 ;���;xq!yjx1 ;���;xj�r ;xjþs ;���;xq
is computed with r = 1 and s = 1, it becomes

CJTEx1 ;���;xq!yjx1 ;���;xj�1 ;xjþ1 ;���;xq
¼

1

2
log

s
2

ARX1 ���Xj�1Xjþ1 ���Xq

s2

ARX1 ���Xq

ð10Þ

representing the reduction of the uncertainty about y when y is described according to the

ARX1
. . .Xj-1Xj+1

. . .Xq model owing to the consideration of past values of the excluded cause xj
in addition to past values of y and the presumed causes x1,. . .,xj-1,xj+1,. . .,xq (Fig 1G and 1H).

This quantity is commonly indicated as complete TE [1,28] or partial TE [11] and denoted as

TExj!y in O = {y,x1,. . .,xq}. Here we prefer the acronym CJTEx1 ;���;xq!yjx1 ;���;xj�1 ;xjþ1 ;���;xq
to stress,

even formally, the relation with JTEx1;���;xq!y (i.e. JTEx1 ;���;xq!y provides the upper bound of any

CJTE in O being the lower bound 0) and the higher generality of CJTE compared to complete

TExj!y given the more general partialling condition subsuming the most widely utilized one in

TExj!y.

Experimental Protocol and Data Analysis

Ethics Statement

The study was performed according to the Declaration of Helsinki and it was approved by the

Human Research Ethics Committee of the “L. Sacco”Hospital and Department of Biomedical

and Clinical Sciences, University of Milan, Milan, Italy [14]. A written informed consent was

obtained from all subjects.

Experimental Protocol

We exploited a set of recordings collected during an experimental protocol planned to study

the effect of a graded postural challenge on the cardiac baroreflex control [14]. Briefly, we stud-

ied 19 nonsmoking healthy humans aged from 21 to 48 years (median age = 30 years, 8 males).
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All subjects had neither history nor clinical evidence of any disease. They did not take any med-

ication. They refrained from consuming any caffeine or alcohol-containing beverages in the

24h before the recording. All experiments were performed in the morning. The subjects were

on the tilt table supported by two belts at the level of thigh and waist respectively and with both

the feet touching the footrest of the tilt table. During the entire protocol the subjects breathed

spontaneously but they were not allowed to talk.

ECG (lead II), continuous plethysmographic arterial pressure (Finometer MIDI, Finapres

Medical Systems, The Netherlands) and respiratory movements via a thoracic belt (Marazza,

Monza, Italy) were recorded. Signals were sampled at 300 Hz. The arterial pressure was mea-

sured from the middle finger of the left hand being maintained at the level of heart by fixing

the subject’s arm to his/her thorax during the upright position. All experimental sessions of the

protocol included three periods in the same order: 1) 7 minutes at REST; 2) 10 minutes during

passive head-up tilt (T); 3) 8 minutes of recovery. The inclination of the tilt table, expressed as

degrees, was randomly chosen within the set {15,30,45,60,75,90} (T15, T30, T45, T60, T75,

T90). Each subject completed the sequence of tilt table angles without experiencing any sign of

pre-syncope. The arterial pressure signal was cross-calibrated in each session using a measure

provided by a sphygmomanometer at the onset of REST. The auto-calibration procedure of the

arterial pressure device was switched off after the first automatic calibration at the onset of the

session. Analyses were performed after about 2 minutes from the start of each period.

Extraction of the Beat-to-Beat Variability Series

After detecting all R-waves on the ECG and locating their peak using parabolic interpolation,

HP was approximated as the temporal distance between two consecutive parabolic apexes. The

maximum of arterial pressure inside of the n-th HP, HP(n), was taken as the n-th SAP, SAP(n).

The signal of the thoracic movements was down-sampled once per cardiac beat at the occur-

rence of the first R-wave peak delimiting HP(n), thus obtaining the n-th R measure, R(n). HP

(n), SAP(n) and R(n) were expressed in ms, mmHg and arbitrary units (a.u.) respectively. The

automatic detections of the R-waves and SAP peaks were visually checked by a trained physi-

cian. After extracting the series HP = {HP(n), n = 1,. . .,N}, SAP = {SAP(n), n = 1,. . .,N} and

R = {R(n), n = 1,. . .,N}, where n is the progressive cardiac beat counter and N is the total car-

diac beat number, 256 consecutive, synchronous, HP, SAP and R measures were chosen inside

the REST and T periods, thus focusing short-term cardiovascular regulatory mechanisms [29].

The random selection of the onset of analysis within the overall REST and T periods made this

preprocessing step operator-independent. The full set of original HP, SAP and R series is avail-

able from the Dryad URL http://dx.doi.org/10.5061/dryad.b32v1.

Construction of Surrogates

We tested the null hypothesis of HP-SAP and HP-R coupling. This test was performed by cre-

ating three sets of surrogates.

The first set was composed by the original SAP and R series, while the HP sequence was

substituted with a series obtained by randomly shuffling the HP samples [30]. The shuffling pro-

cedure was performed according to one of the N! permutations of the HP samples. As a conse-

quence these surrogates preserved the distribution of the original series, SAP and R series were

fully uncoupled to HP dynamics and solely SAP and R series maintained the original repetitive

temporal structures. This surrogate will be referred to as HP shuffled surrogate in the following.

The second set was composed by the original HP series, while SAP and R sequences were

substituted with isospectral isodistributed surrogates obtained by preserving distributions and

power spectra of the original SAP and R series respectively, while phases were modified by
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adding uniformly distributed random numbers ranging from 0 to 2π [31]. An iteratively-

refined amplitude-adjusted Fourier transform-based procedure was exploited [32]. As a conse-

quence SAP and R surrogates preserved exactly the distribution of the original series, while the

power spectrum was the best approximation of the original power spectrum according to the

number of iterates (here 100). Phase randomization procedure assured the uncoupling of SAP

and R to the original HP series [30,33]. This surrogate will be referred to as SAP-R isospectral

surrogate in the following.

The third set was composed by time-shifted versions of the original series [34]. While the

HP series was left unmodified, the SAP and R sequences were shifted according to a delay

much larger than the maximal order of the multivariate model (i.e. 50 cardiac beats), thus

destroying the short-term temporal correspondence of the SAP and R samples to HP values.

The values at the end of the SAP and R sequences were wrapped to their onset. This surrogate

will be referred to as time-shifted surrogate in the following.

Calculation of the Information-Theoretic Indexes

The HP series was modeled via ARX1X2, ARX1, ARX2, X1X2, and AR models where X1 = SAP

and X2 = R. The delays from SAP and R to HP, τSAP and τR, were set to 0 to allow the descrip-

tion of the fast vagal reflex (within the mean HP) capable to modify HP in response to changes

of SAP and R [18,35,36]. The coefficients were identified via traditional least squares approach

and Cholesky decomposition method [24,37]. The AR and X parts of the model have the same

model order q that was optimized in the range from 4 to 16 according to the Akaike figure of

merit for multivariate processes [38] over the most complex model structure (i.e. the ARX1X2,

model). The whiteness of the HP prediction error and its mutual uncorrelation, even at zero

lag, with SAP and R series was checked over the same model [37,39]. All remaining model

structures were separately identified from the data using the optimal model order estimated for

the ARX1X2 model. After the identification of the model coefficients the variances of the pre-

diction errors s2

AR, s
2

X1X2
, s2

ARX1
, s2

ARX2
and s2

ARX1X2
were computed and the indexes PEHP, SEHP,

CSEHP|SAP,R, JTESAP,R!HP, CJTESAP,R!HP|SAP and CJTESAP,R!HP|R were evaluated according

to the formulas reported in the Section Linear Gaussian approximation of the information-the-

oretic quantities. Indexes were computed over the original series and surrogates. If the values

derived from the original data were significantly different from those obtained from the surro-

gate sets the null hypothesis of HP-SAP and HP-R coupling was rejected.

Statistical Analysis

We performed one-way repeated measures analysis of variance (Dunn’s test for multiple com-

parisons) to test the difference of PEHP between original series and surrogates. Two-way

repeated measures analysis of variance (Holm-Sidak test for multiple comparisons) was uti-

lized to test the difference between indexes within original series and between original series

and surrogates within the same type of index. Linear regression analysis of PEHP, SEHP, CSEHP|

SAP,R, JTESAP,R!HP, CJTESAP,R!HP|SAP and CJTESAP,R!HP|R on tilt table angles was carried out

over original data and surrogates. Pearson product moment correlation was calculated. Statisti-

cal analysis was carried out using a commercial statistical program (Sigmastat, ver.3.0.1, Systat

Software, San Jose, California). A p<0.05 was always considered as significant.

Results

The bar graph shown in Fig 2 compares PEHP computed over the original data (white bar), HP

shuffled surrogates (backslash pattern bar), SAP-R isospectral surrogates (black bar) and time-
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shifted surrogates (slash pattern bar). The values were pooled together independently of tilt

table inclination. PEHP computed over the original data was significantly larger than that com-

puted over surrogates.

Fig 3 shows the individual values (solid circles) of PEHP as a function of the tilt table inclina-

tion in the original data (Fig 3A), HP shuffled surrogates (Fig 3B), SAP-R isospectral surrogates

(Fig 3C) and time-shifted surrogates (Fig 3D). The linear regression (solid line) and its 95 per-

cent confidence interval (dotted lines) are plotted when the slope of the regression line is signif-

icantly larger than 0. When the linear regression analysis was performed over the original data

(Fig 3A), SAP-R isospectral surrogates (Fig 3C) and time-shifted surrogates (Fig 4D), a signifi-

cant positive correlation of PEHP on tilt table angles was found (r = 0.575, p = 4.548.10−13,

r = 0.552, p = 5.742.10−12 and r = 0.55, p = 7.07.10−12 respectively). Conversely, no linear rela-

tion of PEHP on the magnitude of the orthostatic challenge was detected in the case of HP shuf-

fled surrogates (Fig 3B).

The grouped bar graph shown in Fig 4 compares SEHP and CSEHP|SAP,R computed during

head-up tilt protocol over the original data (white bars), HP shuffled surrogates (backslash

pattern bars), SAP-R isospectral surrogates (black bars) and time-shifted surrogates (slash pat-

tern bars). The values were pooled together independently of tilt table inclination. Both SEHP

and CSEHP|SAP,R were significantly different from 0 in both original data, SAP-R isospectral

and time-shifted surrogates, while they were negligible in the case of HP shuffled surrogates.

Within the original data we found that SEHP was larger than CSEHP|SAP,R. Within the same

index (i.e. SEHP or CSEHP|SAP,R) both markers computed over the original data were signifi-

cantly different from those derived from HP shuffled surrogates but similar to those derived

from the other surrogate types.

Fig 2. PEHP Derived fromOriginal Data and Surrogates. Bar graph compares PEHP computed during graded head-up tilt protocol over the original data
(white bar), HP shuffled surrogates (backslash pattern bar), SAP-R isospectral surrogates (black bar) and time-shifted surrogates (slash pattern bar). The
values are pooled together independently of the tilt table inclination and reported as mean plus standard deviation. The symbol # indicates a significant
difference between original and surrogate series.

doi:10.1371/journal.pone.0132851.g002
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Fig 3. PEHP during Graded Head-up Tilt. Individual values (solid circles) of PEHP as a function of the tilt
table inclination computed over the original data (a), HP shuffled surrogates (b), SAP-R isospectral
surrogates (c) and time-shifted surrogates (d). When the slope of the regression line is significantly larger
then 0, the linear regression (solid line) and its 95 percent confidence interval (dotted lines) are plotted as
well. A significant positive correlation on tilt table angles is found over the original data (a), SAP-R isospectral
surrogates (c) and time-shifted surrogates (d).

doi:10.1371/journal.pone.0132851.g003
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Fig 5 shows the individual values (solid circles) of SEHP and CSEHP|SAP,R as a function of the

tilt table inclination in the original data (Fig 5A and 5B), HP shuffled surrogates (Fig 5C and

5D), SAP-R isospectral surrogates (Fig 5E and 5F) and time-shifted surrogates (Fig 5G and

5H). The linear regression (solid line) and its 95 percent confidence interval (dotted lines) are

plotted when the slope of the regression line is significantly larger than 0. When the linear

regression analysis was performed over the original data, SEHP (Fig 5A) and CSEHP|SAP,R (Fig

5B) are significantly and positively correlated with tilt table angles (r = 0.572, p = 6.135.10−13

and r = 0.544, p = 1.336.10−11). The same finding held when the linear regression analysis was

performed over the SAP-R isospectral surrogates (Fig 5E: r = 0.56, p = 2.313.10−12 and Fig 5F:

r = 0.555, p = 4.034.10−12) and over the time-shifted surrogates (Fig 5G: r = 0.559,

p = 2.808.10−12 and Fig 5H: r = 0.554, p = 4.7.10−12). Conversely, no linear relation of SEHP and

CSEHP|SAP,R on the magnitude of the orthostatic challenge was detected in the case of HP shuf-

fled surrogates (Fig 5C and 5D).

The grouped bar graph shown in Fig 6 compares JTESAP,R!HP, CJTESAP,R!HP|SAP and

CJTESAP,R!HP|R computed during head-up tilt protocol over the original data (white bars), HP

shuffled surrogates (backslash pattern bars), SAP-R isospectral surrogates (black bars) and time-

shifted surrogates (slash pattern bars). The values were pooled together independently of tilt

table inclination. JTESAP,R!HP, CJTESAP,R!HP|SAP and CJTESAP,R!HP|R were significantly differ-

ent from 0 in the original data, while they were negligible in the case of all types of surrogates.

Within the original data we found that JTESAP,R!HP was larger than CJTESAP,R!HP|SAP and

CJTESAP,R!HP|R, and CJTESAP,R!HP|Rwas higher than CJTESAP,R!HP|SAP. Within the same

index (i.e. JTESAP,R!HP, CJTESAP,R!HP|SAP or CJTESAP,R!HP|R) the markers computed over the

original data were significantly higher than the same quantity calculated over surrogates.

Fig 7 shows the individual values (solid circles) of JTESAP,R!HP, CJTESAP,R!HP|SAP and

CJTESAP,R!HP|R as a function of the tilt table inclination in the original data (Fig 7A–7C), HP

Fig 4. Comparison between SEHP and CSEHP|SAP,R.Grouped bar graph compares SEHP and CSEHP|SAP,R computed during graded head-up tilt protocol
over the original data (white bars), HP shuffled surrogates (backslash pattern bars), SAP-R isospectral surrogates (black bars), and time-shifted surrogates
(slash pattern bars). The values are pooled together independently of the tilt table inclination and reported as mean plus standard deviation. Within the same
index (i.e. SEHP or CSEHP|SAP,R) the symbol # indicate a significant difference between original and surrogate series. Within the original data the symbol &
indicates a significant difference between SEHP and CSEHP|SAP,R.

doi:10.1371/journal.pone.0132851.g004
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shuffled surrogates (Fig 7D–7F), SAP-R isospectral surrogates (Fig 7G–7I) and time-shifted

surrogates (Fig 7J–7L). The linear regression (solid line) and its 95 percent confidence interval

(dotted lines) are plotted when the slope of the regression line is significantly larger then 0. When

the linear regression analysis was performed over the original data, JTESAP,R!HPwas unrelated

to tilt table inclination (Fig 7A). Conversely, CJTESAP,R!HP|SAP (Fig 7B) and CJTESAP,R!HP|R

Fig 5. SEHP and CSEHP|SAP,R during Graded Head-up Tilt. Individual values (solid circles) of SEHP and CSEHP|SAP,R as a function of the tilt table inclination
computed over the original data (a,b), HP shuffled surrogates (c,d), SAP-R isospectral surrogates (e,f) and time-shifted surrogates (g,h). When the slope of
the regression line is significantly larger then 0, the linear regression (solid line) and its 95 percent confidence interval (dotted lines) are plotted as well. A
significant positive correlation on tilt table angles is found over the original data (a,b), SAP-R isospectral surrogates (e,f) and time-shifted surrogates (g,h) in
the case of both SEHP and CSEHP|SAP,R.

doi:10.1371/journal.pone.0132851.g005
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(Fig 7C) were significantly related to tilt table angles (p = 1.99.10−2 and p = 6.71.10−3 respec-

tively). The correlation coefficient was negative in the case of CJTESAP,R!HP|SAP (r = -0.202) and

positive in the case of CJTESAP,R!HP|R (r = 0.234). When the linear regression analysis was per-

formed over surrogates, JTESAP,R!HP, CJTESAP,R!HP|SAP and CJTESAP,R!HP|Rwere unrelated to

tilt table angles regardless of the type of surrogates (Fig 7D–7L).

Discussion

The study computes PE, SE, CSE, JTE and CJTE over HP dynamics when SAP and R are con-

sidered as exogenous inputs during a protocol evoking a gradual sympathetic activation and

vagal withdrawal.

From a methodological standpoint the main findings of the study can be summarized as fol-

lows: a) CSE, obtained by conditioning SE on all possible driving signals, is a measure of infor-

mation internal to the target more specific than the information storage quantified by SE

because it accounts exclusively for information intrinsic to the effect signal and excludes the

contribution of the exogenous signals inflating the information storage; b) CJTE is a measure

of information transfer more specific than JTE because it cancels joint direct influences on the

target signal arising from driving signals utilized to condition JTE; c) CJTE is a measure of

information transfer more flexible than complete (or partial) TE because it allows the assess-

ment of the information jointly transferred from a subset of sources, selected among the whole

set of sources according to some criteria, to the destination.

From an experimental standpoint the findings of this study can be summarized as follows:

i) the PE of HP grows gradually with tilt table inclination; ii) the PE of HP is eliminated by

destroying both the HP autocorrelation and coupling of HP to SAP and R and it is reduced by

destroying the coupling of HP to SAP and R but preserving the HP autocorrelation; iii) the SE

of HP is significantly larger than the CSE of HP given SAP and R; iv) the SE of HP increases

progressively with tilt table angle and this dependence remains when CSE of HP given SAP

Fig 6. Comparison between JTESAP,R!HP, CJTESAP,R!HP|SAP and CJTESAP,R!HP|R.Grouped bar graph compares JTESAP,R!HP, CJTESAP,R!HP|SAP and
CJTESAP,R!HP|R computed during graded head-up tilt protocol over the original data (white bars), HP shuffled surrogates (backslash pattern bars), SAP-R
isospectral surrogates (back bars) and time-shifted surrogates (slash bars). The values are pooled together independently of the tilt table inclination and
reported as mean plus standard deviation. Within the same index (i.e. JTESAP,R!HP, CJTESAP,R!HP|SAP or CJTESAP,R!HP|R) the symbol # indicates a
significant difference between original and surrogate series. Within the original data the symbols & and § indicate a significant difference versus JTESAP,R!HP

and CJTESAP,R!HP|SAP respectively.

doi:10.1371/journal.pone.0132851.g006
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and R is computed; v) destroying both the HP autocorrelation and coupling of HP to SAP and

R eliminates SE of HP and CSE of HP given SAP and R and their dependence on tilt table

angles; vi) destroying the coupling of HP to SAP and R but preserving the HP autocorrelation

leaves unmodified the SE of HP and CSE of HP given SAP and R and preserves their depen-

dence on tilt table angles; vii) the JTE from SAP and R to HP is significantly larger than CJTE

from SAP and R to HP given SAP and CJTE from SAP and R to HP given R; viii) the JTE from

SAP and R to HP is unrelated to tilt table angle; ix) the CJTE from SAP and R to HP given SAP

gradually decreases with the magnitude of the orthostatic challenge, while CJTE from SAP and

R to HP given R progressively increases; x) destroying the coupling of HP to SAP and R reduces

to 0 both JTE and CJTE and eliminates the dependence of CJTE on tilt table inclination.

SE and JTE are Unspecific Measures of Internal and Transferred
Information

The present study confirms over experimental data that SE, i.e. a popular measure of informa-

tion storage [3], depends in large part on the internal dynamics of the assigned output signal.

Indeed, after destroying cross-correlation, wiping out autocorrelation eliminates SE, while

Fig 7. JTESAP,R!HP, CJTESAP,R!HP|SAP and CJTESAP,R!HP|R during Graded Head-up Tilt. Individual values (solid circles) of JTESAP,R!HP,
CJTESAP,R!HP|SAP and CJTESAP,R!HP|R as a function of the tilt table inclination computed over the original data (a-c), HP shuffled surrogates (d-f),
SAP-R isospectral surrogates (g-i) and time-shifted surrogates (j-l). When the slope of the regression line is significantly larger then 0, the linear regression
(solid line) and its 95 percent confidence interval (dotted lines) are plotted as well. A significant positive correlation on tilt table angles is found only over the
original data in the case of CJTESAP,R!HP|SAP (b) and CJTESAP,R!HP|R (c).

doi:10.1371/journal.pone.0132851.g007
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preserving it leaves a significant amount of SE. Unfortunately, SE can be inflated by the contri-

butions due to the action of the presumed sources as well [3,6], thus making it a quite unspe-

cific measure of the information internal to the target. This dependence of SE on the presumed

causes limits its interpretation because the effects of the sources cannot be dismissed. For

example, in the specific context of this study the progressive raise of SE of HP with tilt table

angles might be fully explained by the gradual raise of the contributions of SAP and R to the

HP internal dynamics. This observation prompts us to render SE more specific by conditioning

it on all the presumed causes via the CSE, thus eliminating direct influences of all sources from

the information storage and obtaining a specific measure of the internal information solely

related to the target dynamics.

In addition, the present study proves over experimental data that JTE might be insufficient

for describing the information transferred to the destination. Indeed, the assessment of the

information transfer from joint influences to the target might obscure that occurring from a

specific source to the destination. For example, in the specific context of this study the JTE

from SAP and R to HP is independent of the magnitude of the stimulus and hides the increase

of information transferred to HP solely due to SAP, quantified by the CJTE from SAP and R to

HP given R, and the decrease of information transferred to HP solely due to R, quantified by

CJTE from SAP and R to HP given SAP. Therefore, JTE might necessitate to be conditioned on

a specific subset of the sources to become a helpful measure of information transfer. This oper-

ation does not necessarily mean to compute the so-called complete (or partial) TE [1,11,28]

that implies conditioning on the entire set of sources but the one setting the origin of the infor-

mation transfer. Conversely, it means to condition on a specific subset of causes selected

among all possible ones to cancel confounding factors capable to produce effects that are not

primary driven by the mechanism under scrutiny, thus increasing the flexibility of complete

(or partial) TE via the CJTE.

The differentiation between TE, JTE and CJTE might appear at the first sight a little bit

labored. Indeed, the simpler notation TEx!y|z, where y is scalar, x and z can be multivariate

variables with z that can be even null, can subsume all the above mentioned sub-genres of TE.

However, the exploitation of the compact notation TEx!y|z might obscure differences among

information-theoretic quantities that the adopted terminology should help to put in evidence.

These differences and the diverse specificity of indexes are outlined by the experimental results

obtained during head-up tilt. This observation holds even in the case of SE and CSE.

Physiological Correlates of the PE in HP Variability

PE represents the amount of uncertainty about the current value of the assigned target signal

that can be resolved using past values of the same signal and past (and eventually present) val-

ues of all driving series in O (Fig 1C). Equivalently, PE represents the amount of information

contained in the past values of the destination signal and past (and eventually present) values

of all source signals in O about the current value of the destination signal. As expected, destroy-

ing HP autocorrelation and both HP-SAP and HP-R cross-correlation functions eliminates PE

of HP and destroying both HP-SAP and HP-R cross-correlation functions but preserving HP

autocorrelation reduces significantly PE of HP, thus confirming that all mechanisms inducing

a memory of the current HP values over past HP, SAP and R values, such as dynamical proper-

ties of the sinus node [40,41], cardiac baroreflex [42,43] and cardiopulmonary pathway

[44,45], contribute to control HP dynamics by reducing the uncertainty about its future values.

PE of HP increased as a function of tilt table angles. This result is not surprising given that

the predictability of HP based on history of HP, SAP and R raises with the magnitude of the

orthostatic challenge [46]. In the present study the metric is different compared to that
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exploited in [46] because the index was calculated in the field of information dynamics, but the

approximation related to the assumption of Gaussianity makes the computed quantity signifi-

cantly correlated with that exploited in [46]. PE of HP increased during graded head-up tilt

due to the reduction of complexity of the cardiac control associated to the vagal withdrawal

and sympathetic activation induced by the orthostatic challenge (i.e. fast variations of HP

dynamics driven by vagal neural inputs were gradually limited with tilt table inclination, while

slow HP changes associated to the sympathetic drive became progressively dominant) [15–17].

Remarkably the linear relation of PE of HP on tilt table angles was lost in HP shuffled surro-

gates but it was maintained in SAP-R isospectral and time-shifted ones. Since all surrogates

imposed the HP-SAP and HP-R uncoupling but the HP shuffled ones destroyed the HP auto-

correlation while SAP-R isospectral and time-shifted surrogates preserved it, we conclude that

the linear relation of PE of HP on tilt table inclination does not depend substantially on the

action of the exogenous sources, but rather depends mostly on the internal HP dynamics. This

conclusion is also confirmed by the linear trends of SE of HP and CSE of HP given SAP and R,

that were lost in HP shuffled surrogates and preserved in SAP-R isospectral and time-shifted

surrogates, and by the linear trends of CJTE from SAP and R to HP given SAP and given R,

that were lost in all types of surrogates. More specifically, the disruption of the link from SAP

and R to HP due to cardiac baroreflex and cardiopulmonary pathway is not sufficient to pre-

vent the increase of predictability of HP dynamics with the magnitude of the orthostatic chal-

lenge. Thus, mechanisms inducing a memory of HP over its own past values independent of

SAP and R, such as dynamical properties of the sinus node or control reflexes involving more

directly the sympathetic branch of the autonomic nervous system compared to more vagally-

mediated reflexes like cardiac baroreflex and cardiopulmonary pathways [43,47], might play a

relevant role in setting the overall level of HP predictability and its dependence on tilt table

inclination.

Physiological Correlates of the SE and CSE in HP Variability

SE represents the amount of uncertainty about the current value of the assigned target signal

that can be resolved using past values of the same signal (Fig 1D). In other words, SE represents

the amount of information carried by past values of the destination signal about the current

value of the same signal. It has been proposed as a measure of the amount of information

stored in the destination signal and usually computed as the mutual information between the

current value of the given target signal and its own past [3,6]. It depends on both internal

dynamical properties of the destination due to some memory processing that has nothing to do

with the driving signals and the action of the driving signals that can favor information storage

inside the target signal [3]. Our analysis based on surrogates supports the dependence of SE of

the target signal on dynamics totally internal to the destination and on actions of sources:

indeed, SE of HP was eliminated in HP shuffled surrogates and it was significantly reduced in

SAP-R isospectral and time-shifted surrogates.

We found that SE of HP grows as a function of the magnitude of the orthostatic challenge,

thus suggesting that sympathetic activation and vagal withdrawal facilitates progressively the

information storage in HP variability. The increase of SE of HP with tilt table inclination is not

surprising. Indeed, it is just another way to detect the augment of the predictability of HP

dynamics during head-up tilt observed using several linear and nonlinear metrics including

conditional entropy and predictability indexes applied exclusively to HP dynamics [46,48,49].

Again the progressive increase of SE of HP results from the reduced contribution of fast tempo-

ral scales to the complexity of HP dynamics as a consequence of the gradual vagal withdrawal

with tilt table inclination [15–17].
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The present study explores another interesting information-theoretic quantity, namely the

SE of HP conditioned on all the presumed causes present in O (in our case the SAP and R

series). CSE of HP given SAP and R measures the information shared by the current value of

the HP series and its own past that cannot be explained by SAP and R (Fig 1E). The SE of HP

conditioned on SAP and R was significantly smaller than the SE of HP and it was not signifi-

cantly different from the same quantity computed over SAP-R isospectral and time-shifted sur-

rogates. These observations confirm over experimental data that the SE of HP dynamics

includes contributions attributable to SAP and R. However, even though diminished compared

to SE of HP, CSE of HP assigned SAP and R remained significantly different from 0, thus sug-

gesting that HP dynamics cannot be completely explained as a result of the actions of SAP and

R over HP, and that mechanisms imposing a dependence of the current HP value on the HP

history unrelated to SAP and R play a significant role in cardiac regulation. More importantly,

CSE of HP assigned SAP and R remained under autonomic control because it gradually

increased with the magnitude of the orthostatic challenge. Since after conditioning on SAP and

R dynamics direct influences of cardiac baroreflex and cardiopulmonary pathway over HP var-

iability should be eliminated, the increase of the CSE of HP assigned SAP and R with tilt table

angles might be owing to direct sympathetic influences on the sinus node, unmediated by the

activation of baroreceptors and/or low pressure receptors, and/or to modifications of the sinus

mode dynamical properties possibly linked to the sympathetic overactivation. Therefore, we

suggest that CSE of HP dynamics given SAP and R might provide a marker of the sympathetic

drive directed to the sinus node more specific than quantities derived from univariate analysis

of HP variability [50] and, hopefully, less controversial [51–53]. We advocate a direct measure

of sympathetic discharge to finally prove the previously reported conjecture: indeed, we expect

that, if the CSE of HP given SAP and R was a valuable marker of the sympathetic drive, the

CSE of HP dynamics conditioned on sympathetic activity in addition to SAP and R series

would remain stable with tilt table angles.

Physiological Correlates of JTE and CJTE in HP Variability

The JTE from SAP and R to HP represents the amount of uncertainty associated to the current

value of HP series that can be resolved using jointly present and past values of SAP and R

above and beyond that can be explained exclusively using past samples of HP (Fig 1F). In other

words it is the amount of information carried by present and past values of SAP and R that is

helpful to predict the current value of HP and cannot be derived from past values of HP. As

expected, JTE from SAP and R to HP was abolished by destroying HP-SAP and HP-R cross-

correlation functions (i.e. in all surrogate sets). We found that this quantity is unrelated to tilt

table angles. However, this quantify is quite unspecific because it mixes the information trans-

ferred jointly from SAP and R to HP. In order to render it more specific we need to compute

two quantities by conditioning the JTE on SAP and R respectively. The CJTE from SAP and R

to HP conditioned on SAP assessed the contribution to JTE likely due to cardiopulmonary

pathway because the information provided by SAP, indicative of the cardiac baroreflex control,

was conditioned out (Fig 1G). We found that this information-theoretic quantity progressively

decreased with tilt table inclination, thus suggesting that, after canceling the influences of car-

diac baroreflex, information transferred from R to HP progressively decreased with the magni-

tude of the stimulus, probably in relation to a weakened cardiopulmonary coupling due to the

gradual vagal withdrawal [47]. The CJTE from SAP to R to HP conditioned on R assessed the

contribution to JTE due to cardiac baroreflex when the information provided by R, indicative

of the regulation imposed by the cardiopulmonary pathway, was conditioned out (Fig 1H). We

found that this information-theoretic quantity progressively increased with tilt table
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inclination, thus suggesting that, after canceling the influences of cardiopulmonary pathway,

information transferred from SAP to HP progressively increased with the magnitude of the

stimulus probably in relation to a gradually augmented involvement of cardiac baroreflex

[14,47]. The two opposite trends of the CJTE from SAP and R to HP conditioned on R and

that conditioned on SAP explained the lack of any tendency of the JTE from SAP and R to HP

with tilt table inclination. As expected, the disruption of the HP-SAP and HP-R cross-correla-

tion functions in all sets of surrogates led to the abolishment of both CJTE from SAP and R to

HP conditioned on SAP and by R and to the loss of their dependence on tilt table inclination. It

is worth noting that, even though the CJTE from SAP and R to HP conditioned on R and that

conditioned on SAP are coincident in this application with the complete (or partial) TE from R

to HP and from SAP to HP in O [1,11,28], the CJTE is a quantity more flexible than complete

TE because it allows the exploration of the information transfer from a more general subset of

sources compared to the one assumed to be responsible for the complete (or partial) TE.

Conclusions

This study shows over real data that CSE is a measure of the information internal to the target

more specific than SE and CJTE is a measure of information transfer more specific than JTE

and more flexible than TE. Indeed, when applied to HP dynamics derived during a protocol

imposing a graded sympathetic stimulus, the CSE was found to be more powerful than SE in

excluding possible influences of regulatory mechanisms on the HP information storage (i.e. the

effect of cardiac baroreflex and cardiopulmonary pathway) and CJTE was more helpful than

JTE in dissecting out relevant physiological mechanisms (i.e. the influences of the cardiac bar-

oreflex can be separated from those of the cardiopulmonary pathway and vice versa). We con-

clude that the adopted information-theoretic quantities appear to be very powerful to derive

information about the cardiovascular control from spontaneous HP, SAP and R variations in

healthy subjects and deserve applications over pathological populations and in clinical settings

to check their capability in describing deviations from the normal behavior, monitoring effect

of treatment, predicting outcome and differentiating pathological states. Since nonlinear

dynamics in cardiovascular variability are likely, even though less important in healthy subjects

in experimental conditions enhancing the sympathetic drive [54,55], we advocate studies com-

paring the linear approach proposed in the present study, with model-free, nonlinear,

approaches [5,8,9] to check the actual contribution of nonlinear dynamics to short-term car-

diovascular control.
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