
Journal of Artificial Intelligence Research 64 (2019) 931–985 Submitted 07/2018; published 04/2019

Conditional Simple Temporal Networks with Uncertainty
and Resources

Carlo Combi carlo.combi@univr.it
Dipartimento di Informatica, Università di Verona
strada le grazie 15, 37134 Verona, Italy

Roberto Posenato roberto.posenato@univr.it
Dipartimento di Informatica, Università di Verona
strada le grazie 15, 37134 Verona, Italy

Luca Viganò luca.vigano@kcl.ac.uk
Department of Informatics, King’s College London
30 Aldwych, London E7 9QU, United Kingdom

Matteo Zavatteri matteo.zavatteri@univr.it

Dipartimento di Informatica, Università di Verona

strada le grazie 15, 37134 Verona, Italy

Abstract

Conditional simple temporal networks with uncertainty (CSTNUs) allow for the repre-
sentation of temporal plans subject to both conditional constraints and uncertain durations.
Dynamic controllability (DC) of CSTNUs ensures the existence of an execution strategy
able to execute the network in real time (i.e., scheduling the time points under control)
depending on how these two uncontrollable parts behave. However, CSTNUs do not deal
with resources.

In this paper, we define conditional simple temporal networks with uncertainty and
resources (CSTNURs) by injecting resources and runtime resource constraints (RRCs) into
the specification. Resources are mandatory for executing the time points and their availabil-
ity is represented through temporal expressions, whereas RRCs restrict resource availability
by further temporal constraints among resources.

We provide a fully-automated encoding to translate any CSTNUR into an equivalent
timed game automaton in polynomial time for a sound and complete DC-checking.

1. Introduction

Temporal aspects have been studied both for business processes and for planning (Kafeza &
Karlapalem, 2000; Eder, Gruber, & Panagos, 2000; Chinn & Madey, 2000; Bettini, Wang,
& Jajodia, 2002; Combi, Gambini, Migliorini, & Posenato, 2014a; Combi & Posenato, 2009,
2010; Cimatti, Do, Micheli, Roveri, & Smith, 2018). The most commonly considered tem-
poral aspects are temporal constraints on task durations, deadlines, inter-task temporal
synchronizations, temporal uncertainty for task durations, and uncontrollable conditional
constraints, i.e., constraints that must be considered according to some external conditions.
As an example of temporal uncertainty for task duration (also known as contingent dura-
tion), consider the writing activity of a paper to be submitted to a conference. Once it
has started, it will last at least a minimum amount of time to allow the authors to get
to a polished version and at most a time determined by the deadline of the conference.

c©2019 AI Access Foundation. All rights reserved.

Combi, Posenato, Viganò, & Zavatteri

However, the exact moment when the authors will have it finished is unknown at design
time. Moreover, after the submission, in case of acceptance of the paper, further temporal
constraints will be considered for preparing the camera-ready copy. In case of rejection, no
further constraints have to be considered. Such a situation represents a case of uncontrol-
lable conditional constraints as the decision of acceptance/rejection is not under the control
of the system and it can be known only at runtime.

A further temporal aspect for business processes and for planning is related to the
scheduling of resources for executing a process (Avanes & Freytag, 2008; Watahiki, Ishikawa,
& Hiraishi, 2011; Qi, Wang, Muñoz-Avila, Zhao, & Wang, 2017). Resources may represent
both human and device-based agents, responsible for the execution of some task. For
example, an aircraft pilot must rest at least 8 hours before he is allowed to pilot again
(i.e., before being again available). Similarly, a surgeon who has just carried out a 4 hour
intervention must rest at least 2 hours before starting another one.

All such aspects cannot be considered in isolation as they are intertwined with other
constraints in real contexts. For example, the constraint related to the pilot rest has to be
merged with other constraints related to flight schedules/durations.

In this paper we propose a new model for representing processes with both temporal
constraints, possibly having different kinds of uncertainty, and resource constraints having
temporal features; we call this model Conditional Simple Temporal Network with Uncer-
tainty and Resources (CSTNUR). Moreover, we propose a technique for deriving at design
time whether such a process can be executed satisfying all the given constraints.

The CSTNUR model adopts a network-based representation of processes. Temporal
networks have long been studied for the modeling, validation and execution of process
plans subject to temporal constraints. The main components of a temporal network are time
points (e.g., variables having continuous domain) modeling the occurrence of events, and
temporal constraints, usually related to minimal and maximal temporal distances between
pairs of time points. An execution of a temporal network consists of assigning real values
to the time points (i.e., a scheduling), such that all temporal constraints are satisfied.

1.1 Contributions

The novelty of our proposal is three-fold:

1. CSTNURs allow us to represent:

(a) both time points that are under the control of the system and time points that
can be only observed when they happen (contingent time points);

(b) execution scenarios that are not under the control of the system;

(c) resource assignment constraints possibly depending on some temporal constraints.

Such constraints specify whether a resource can be committed to execute a time point
and may involve the specification of the execution times of (other) time points and,
thus, need to be evaluated at runtime. The temporal processes we consider in this
paper specify authorized resources, in charge of executing the time points, and runtime
resource constraints (RRCs) saying when and which resources are available to execute
a task according to when and which other resources have executed some other tasks in

932

Conditional Simple Temporal Networks with Uncertainty and Resources

the past. In other words, resources are assigned a further temporal expression whose
evaluation with respect to the global time models their availability, whereas RRCs
operate on these temporal expressions. As a result, resources may be available in
some time intervals and may turn unavailable in some other intervals (or vice versa).

2. We formalize Dynamic Controllability (DC) for CSTNURs. Dynamic controllability
means that a CSTNUR can be executed by suitable resources, satisfying all the given
constraints no matter what are the values of the uncontrollable parts (i.e., contingent
time points and conditions). We give this formalization in terms of real time execution
decisions (RTEDs), already used in Hunsberger (2009), Cimatti, Hunsberger, Micheli,
and Roveri (2014), Cimatti, Hunsberger, Micheli, Posenato, and Roveri (2014, 2016),
and extended here to consider resource assignments and related constraints.

3. DC can be checked at design time. To verify whether a CSTNUR is DC, we propose
an encoding of CSTNURs into Time Game Automata (TGA) and show how dynamic
controllability checking corresponds to winning a two-player game. Such an encoding
improves and extends the encoding proposed by Cimatti et al. (2016) to consider
resources and RRCs. We formally prove the correctness of the proposed encoding and
discuss its complexity.

1.2 Organization

The rest of the paper is organized as follows. Section 2 provides a motivating example we
use throughout the paper. Section 3 provides background on CSTNUs and their sound and
complete DC-checking via TGAs. Section 4 defines CSTNURs along with their execution
semantics in terms of RTEDs. Section 5 extends the encoding given in Section 3 by taking
into consideration resources and RRCs. Section 6 discusses the complexity and correctness
of the encoding. Section 7 discusses related work. Section 8 sums up our proposal. In
Appendix A, we propose the modeling and validation of our motivating example by using
Uppaal-TIGA.

2. Motivating Example

As a motivating example, we consider (a simplification of) a temporal workflow modeling
a round-trip flight from Anchorage, Alaska to Frankfurt, Germany (direct flights). We
show its graphical workflow-representation in Figure 1 through an extended BPMN no-
tation (Posenato et al., 2018). Such a notation has been completed by adding available
resources for tasks ({Alice, Bob} are available for executing task Deicing). We focus on
the part involving pilots and engineers. Once boarding is complete, take-off could be de-
layed due to extreme weather conditions and related safety procedures such as, for example,
deicing. Deicing is the process of removing snow and ice from the plane surfaces (especially
wings) by “power washing” the aircraft with chemicals which will also remain on the surfaces
in order to prevent the reformation of the ice. This (uncontrollable) condition is modeled
by a conditional split connector (diamond labeled by Deicing?). If Deicing? = ⊤ (i.e.,
Deicing? is true) then the Deicing process starts after minimum 5 minutes and within 10

933

Combi, Posenato, Viganò, & Zavatteri

[0, 0]

Deicing?

Deicing
[60, 180]

{Alice, Bob}

[0, 0]
OutFlight

[570, 630]

{Lila, Mike}

[0, 0]

SysCheck
[60, 120]

{Evie, Tim}

SecCheck
[60, 90]

{Evie, Tim}

[0, 0]
RetFlight

[570, 630]

{Lila, Mike}

NO

YES

[5, 10]

[0, 0] [0, 0] [0, 0]

E[5, 10]S

E[20, 30]S

E[60, 180]S

E[60, 180]S

E[90, ∞]S

E[90, ∞]S

E[360, 960]S

S[1440, 2160]E

Figure 1: Example of a temporal workflow for a round-trip flight in extended BPMN (Pose-
nato et al., 2018) considering also resources available for the execution of tasks
({Alice, Bob} are available for executing task Deicing). All ranges are in min-
utes. Missing ranges have value [0, ∞]. Dashed edges represent inter-task tem-
poral constraints.

minutes (Yes branch). This task lasts from 1 to 3 hours1. After Deicing has finished, the
plane takes off after minimum 5 and within 10 minutes. Alice and Bob are two specialized
workers who can be committed for this task. Instead, if Deicing? = ⊥ (i.e., Deicing? is
false), the plane just takes off after 20 and within 30 minutes modeling the time needed to
provide passengers with the safety instructions and reach the runway (No branch). Note
that in case of deicing, there is plenty of time for the safety instructions. Once the aircraft
has taken off, the outbound flight (OutFlight) lasts from 9 hours and 30 minutes to 10
hours and 30 minutes. Lila and Mike are pilots who can be committed for this task. Once
the aircraft has landed, a system check (SysCheck) and a security check (SecCheck) start
after minimum 1 and within 3 hours. Evie and Tim are two engineers who can be committed
for these two tasks. SysCheck lasts 1 to 2 hours, whereas SecCheck lasts 1 to 1 hour and
a half. Once both these two tasks are done, the plane can take off again after minimum
6 and maximum 16 hours since its landing (RetFlight) with the same pilots available for
this task. The whole process lasts minimum 24 and maximum 36 hours.

This process employs users as resources and enforces two safety properties. First, the
process enforces the USA Federal Aviation Regulations for flight time limitations and rest
requirements (FAR, 2019) saying that after a 10–12 hour (multi-time zone) flight, a pilot
must rest from 14 to 18 hours before piloting again (resource constraint). Second, we require
that if SysCheck and SecCheck are executed in parallel, they are not executed by the same
engineer (who can however execute both sequentially). For the sake of simplification, in this
paper we assume that one resource only is committed for executing each task (equivalently,
each task is executed by a single user).

According to this scenario, temporal constraints are intertwined with resource con-
straints and, therefore, it is necessary to verify whether it is possible to determine a schedule

1. Actually, deicing an aircraft does not take 3 hours, but since all leaving aircrafts have to do so following
the departure scheduling, each plane queues for its turn.

934

Conditional Simple Temporal Networks with Uncertainty and Resources

for executing such a process satisfying all temporal and resource constraints. Such a sched-
ule must be dynamic, i.e., it must assign the starting time of different tasks together with
resource assignment knowing only the durations and resource assignment of past tasks. In
this way, the schedule could be more flexible with respect to other kind of schedules, i.e.,
a schedule that requires to know in advance all task durations. Indeed, task durations are
not under the control of the schedule and they are known only once the tasks are executed.

Thus, we need to represent both temporal constraints and resource ones in a single
formalism and to verify some global properties.

3. Background

A Simple Temporal Network (STN) (Dechter, Meiri, & Pearl, 1991) is able to model a
temporal plan in which it is possible to constrain the distance between pairs of time points
and the occurrence of all time points is under the control of the executing agent (i.e., a
real-time planner). For each pair of time points, the temporal distance can be limited
to stay in a range of real values. Consistency analysis is able to determine whether it is
possible to schedule time points such that all given temporal constraints are not violated.
The decision problem of consistency for STNs has polynomial-time complexity (i.e., it is in
the P class) (Dechter et al., 1991).

One of the most important extensions of STN is the Simple Temporal Network with
Uncertainty (STNU). It extends an STN by adding contingent links to model uncontrollable
(but bounded) durations (Vidal & Ghallab, 1996; Vidal & Fargier, 1997, 1999; Morris,
Muscettola, & Vidal, 2001). The controller executing an STNU can only decide when to
execute the activation time point of a contingent link, but it merely observes the occurrence
of the corresponding contingent time point. The dynamic controllability checking aims to
verify the existence of an execution strategy to execute the time points under control of the
system such that all constraints are satisfied for any possible (combination of) durations of
contingent links. The decision problem of dynamic controllability for STNUs is in P (Morris
& Muscettola, 2005).

Conditional Simple Temporal Networks (CSTNs) extend STNs by introducing conditions
that represent different execution scenarios. Each time point/constraint may have a label
(conjunction of condition variables) that represents in which scenario it has to be executed/
satisfied.

Conditional Simple Temporal Networks with Uncertainty (CSTNUs) merge the semantics
of STNUs and CSTNs in order to deal with uncertain durations and conditional constraints
simultaneously.

In the following section, we provide more details on CSTNUs. We begin by giving a few
useful definitions for label, label entailment and label consistency. Then, we summarize the
formal specification of CSTNUs and the related notion of dynamic controllability. Finally,
we present a recent encoding of CSTNUs into Timed Game Automata (TGAs) for a sound-
and-complete dynamic controllability checking (DC-checking).

935

Combi, Posenato, Viganò, & Zavatteri

3.1 Conditional Simple Temporal Networks with Uncertainty (CSTNUs) and
the Dynamic Controllability Checking

Given a set P of propositional letters, a label ℓ is any conjunction of literals, where a literal
is either a propositional letter p ∈ P or its negation ¬p. The empty label is denoted by ⊡.
The label universe of P, denoted by P∗, is the set of all labels whose literals are drawn from
P; e.g., the label universe of P = {p, q} is P∗ = {⊡, p, q, ¬p, ¬q, p∧q, p∧¬q, ¬p∧q, ¬p∧¬q}.
Two labels ℓ1, ℓ2 ∈ P∗ are consistent if and only if their conjunction ℓ1 ∧ ℓ2 is satisfiable
and a label ℓ1 entails a label ℓ2 (written ℓ1 ⇒ ℓ2) if and only if all literals in ℓ2 appear in
ℓ1 too (i.e., if ℓ1 is more specific than ℓ2). For instance, if ℓ1 = p ∧ ¬q and ℓ2 = p, then ℓ1

and ℓ2 are consistent since p ∧ ¬q ∧ p is satisfiable, and ℓ1 entails ℓ2 since p ∧ ¬q ⇒ p. The
vice versa does not hold in general (e.g., p 6⇒ p ∧ ¬q).

The following definition summarizes the definition of CSTNUs (Hunsberger, Posenato, &
Combi, 2012; Combi, Hunsberger, & Posenato, 2014b) and some basic properties presented
by Hunsberger, Posenato, and Combi (2015) that must hold in such networks.

Definition 1 (CSTNU). A Conditional Simple Temporal Network with Uncertainty is a
tuple 〈T , P, L, OT , O, C, L〉, where:

(1) T = {X, Y, . . . } is a finite set of time points (i.e., variables with continuous domain).

(2) P = {p, q, . . . } is a finite set of propositional letters.

(3) L : T → P∗ is a function assigning a label to each time point X ∈ T .

(4) OT ⊆ T is a set of observation time points.

(5) O : P → OT is a bijection associating a unique observation time point to each propo-
sitional letter.

(6) C is a set of labeled constraints each one having the form (l ≤ Y − X ≤ u, ℓ), where
X, Y ∈ T , l, u ∈ R with l ≤ u and ℓ ∈ P∗. If, given X, Y ∈ T and ℓ ∈ P∗, there exist
two constraints (l1 ≤ Y − X ≤ u1, ℓ) and (l2 ≤ Y − X ≤ u2, ℓ) in C, then l1 = l2 and
u1 = u2, i.e., the time distance range between X and Y is unique with respect to ℓ.

(7) L is a set of contingent links each having the form (A, x, y, C), where A, C ∈ T are
different time points (written A 6≡ C), 0 < x < y < ∞ and L(A) = L(C). For any
pair (A1, x1, y1, C1), (A2, x2, y2, C2) ∈ L with A1 6≡ A2 we have that C1 6≡ C2.

(8) For each constraint (l ≤ Y − X ≤ u, ℓ) ∈ C, we have that ℓ ⇒ L(Y) ∧ L(X). This
property is called constraint label coherence (Hunsberger et al., 2015).

(9) For each literal p or ¬p appearing in ℓ, we have that ℓ ⇒ L(O(p)). This property is
called constraint label honesty (Hunsberger et al., 2015).

(10) For each X ∈ T , if literal p or ¬p appears in L(X), then O(p) has to occur before
X, i.e., (ǫ ≤ X − O(p) ≤ +∞, L(X)) ∈ C for some ǫ > 0, where ǫ is a real constant
modeling a non-instantaneous reaction time. This property is called time point label
honesty (Hunsberger et al., 2015).

936

Conditional Simple Temporal Networks with Uncertainty and Resources

D?
[⊡]

A1
[d]

C1
[d]

A2

[⊡]

C2

[⊡]

A3
[⊡]

C3
[⊡]

A4

[⊡]

C4

[⊡]

A5

[⊡]

C5

[⊡]

[5
, 1

0]
, d

[20, 30], ¬d

[5, 30], d
[6

0,
18

0]
,⊡

[60, 180],⊡

[90,∞
],⊡

[9
0,

∞
],
⊡

[360, 960],⊡

[60, 180]

[570, 630]

[60, 120]

[60, 90]

[570, 630]

[1440, 2160],⊡

Figure 2: CSTNU modeling the temporal plan in Figure 1 without any resource specifica-
tion. D? models the conditional split connector, whereas A1 ⇒ C1, A2 ⇒ C2,
A3 ⇒ C3, A4 ⇒ C4 and A5 ⇒ C5 model tasks Deicing, OutFlight, SysCheck,
SecCheck and RetFlight.

In a contingent link (A, x, y, C), A is called activation time point, whereas C is called
contingent time point. Once A is executed, C is only observed to occur. However, C is
guaranteed to occur after A, satisfying the constraint C −A ∈ [x, y]. Moreover, a contingent
link has an implicit label given by the label ℓ = L(A) = L(C).

In general, a non-contingent time point is executed by the system executing the network
by assigning it a real value when its label is true. Instead, for each contingent link, once
its activation time point has been executed, the corresponding contingent time point is
executed by the environment, which assigns it a real value among those allowed by the
range of the corresponding contingent link. If a time point is also an observation one, then
the value of associated proposition is set by the environment when it is executed.

The truth values of the propositions and the durations of contingent links in a CSTNU
are not known in advance. Instead, they are incrementally revealed over time as the cor-
responding observation and contingent time points are executed, respectively. A dynamic
execution strategy executes the time points in a CSTNU, by reacting to the truth value
assignments and to the occurrence of the contingent time points in real time.

A viable and dynamic execution strategy for a CSTNU is a strategy guaranteeing that
all relevant constraints, i.e., constraints having true label, will be satisfied no matter which
truth values for the propositions and which durations for the contingent links are incre-
mentally revealed over time. We say that a CSTNU having such a strategy is dynamically
controllable.

Figure 2 depicts a graphical representation of a CSTNU modeling the temporal plan
in Figure 1 without any resource specification2. Nodes represent time points, single ar-
rows represent labeled constraints, whereas double ones contingent links. Each node/single
arrow is labeled by a label ℓ specifying in which scenario such a component must be con-
sidered. D? models the conditional split connector (diamond), whereas (A1, 60, 180, C1),
(A2, 570, 630, C2), (A3, 60, 120, C3), (A4, 60, 90, C4) and (A5, 570, 630, C5) model Deicing,

2. This representation is a simplified one obtained considering the mapping presented by Posenato et al.
(2018) where nodes that have [0, 0] distance have been collapsed in a single CSTNU node.

937

Combi, Posenato, Viganò, & Zavatteri

OutFlight, SysCheck, SecCheck and RetFlight. The execution of the observation time
point D? entails a truth value assignment to the associated proposition d.

If d is assigned ⊤, the contingent link (A1, 60, 180, C1) is considered, else ignored. Then,
all other activation time points A2, A3, A4 and A5 are executed such that all constraints are
satisfied whatever the real value assignments to the corresponding C2, C3, C4 and C5.

In order to formally characterize the execution semantics of CSTNUs, we introduce the
notion of real-time execution decisions (RTEDs) and instantaneous reactions. We model
the execution of a CSTNU as a two-player game: the controller ctrl and the environment
env (Cimatti et al., 2016). Intuitively, an RTED is a decision to execute a set of time
points or a decision to wait for something to happen (i.e., waiting for the occurrence of
some contingent time points), whereas an instantaneous reaction is the capability of the
environment to react to the controller’s actions by executing, instantaneously, some contin-
gent time points or by setting the truth values of propositions associated to the (possible)
just executed observation time points.

For a CSTNU it is necessary to specify RTEDs for both ctrl and env, and instantaneous
reactions for env only. ctrl’s RTEDs model a strategy for executing all relevant non-
contingent time points of the network, whereas env’s RTEDs model an unknown strategy
for executing contingent time points. Likewise, the instantaneous reactions represent an
unknown strategy for both reacting to ctrl’s actions and setting the truth values of the
propositions.

The purpose of ctrl is that of executing all relevant non-contingent time points such
that constraints involving those time points will eventually be satisfied no matter what
durations for contingent links and truth values for propositions the environment decides.

For example, suppose that env’s RTED (in words) is “if nothing happens before or at
time 10, then env shall execute C at time 10”, and suppose that at 10, ctrl executes B.
env can withdraw its decision to execute C and instantaneously react by executing some
other contingent time point(s) at time 10.

We now introduce the notion of partial schedule, which we will use to define the RTEDs
and the instantaneous reactions.

Definition 2 (Partial Schedule). A partial schedule for a CSTNU is a pair PS = (Executed,

Assigned), where

• Executed is a set of pairs (X, k) meaning that time point X was executed at time
k. We shorten the set of time points and execution times of the elements in this
set as ExecutedT = {X | (X, k) ∈ Executed} and ExecutedR = {k | (X, k) ∈
Executed}, respectively. If (X, k) ∈ Executed, then time(X) = k. last(Executed) =
max {v | v ∈ ExecutedR} represents the time instant of the last executed time point;
when Executed = ∅, we assume last(Executed) = −∞.

• Assigned is a set of pairs (p, b) meaning that proposition p was assigned b ∈ {⊤, ⊥}.
ℓcps = {p | (p, ⊤) ∈ Assigned}∪{¬q | (q, ⊥) ∈ Assigned} represents the current partial
scenario according to PS.

A partial schedule is called locally consistent (formerly, respectful (Cimatti et al., 2014))
if all constraints (x ≤ Y − X ≤ y, ℓ) of the considered CSTNU such that ℓcps ⇒ ℓ and

938

Conditional Simple Temporal Networks with Uncertainty and Resources

Y, X ∈ ExecutedT are satisfied. Finally, PS∗ represents the set of all possible partial
schedules.

We can now proceed by defining ctrl’s and env’s RTEDs.

Definition 3 (RTED for ctrl). An RTED for ctrl, in symbols, ∆ctrl, specifies which
action has to be performed by ctrl during an execution (represented by a considered PS).
It has two forms: wait or (t, NonContingent).

• ∆ctrl = wait means that ctrl decides to do nothing and waits for some contingent
time point to occur. It is applicable only if at least one contingent link has been acti-
vated (i.e., the activation time point A has been executed but the related contingent
C has not).

• ∆ctrl = (t, NonContingent) represents the conditional constraint: “if env does noth-
ing before time t, then ctrl shall execute the time points in NonContingent at time
t”. Such an RTED is applicable if and only if t > last(Executed), NonContingent

is a non-empty set of unexecuted non-contingent time points (i.e., NonContingent ⊆
T \ExecutedT and NonContingent 6= ∅) and ℓcps ⇒ L(X) for each X ∈ NonContingent

(i.e., X must be considered in the current partial scenario).

The set of all RTEDs for ctrl is denoted by ∆∗
ctrl.

Definition 4 (RTED for env). An RTED for env, in symbols, ∆env, specifies which action
has to be performed by env during an execution. It has two forms: wait or (t, Contingent).

• ∆env = wait means that env decides to do nothing. It is applicable only if no
contingent link has been activated, i.e., its activation time point has been already
executed.

• ∆env = (t, Contingent) represents the conditional constraint: “if ctrl does nothing
before or at time t, then env shall execute the contingent time points in Contingent

at time t”. Such a decision is applicable if and only if t > last(Executed), Contingent

is a non-empty subset of unexecuted contingent time points. That is, Contingent =
{C | (A, x, y, C) ∈ L ∧ A ∈ ExecutedT ∧ t ∈ [time(A) + x, time(A) + y]}.

The set of all RTEDs for env is denoted by ∆∗
env.

We now consider the instantaneous reactions for env. Such reactions entail that env

operates instantaneously on some uncontrollable part(s). For example, env could execute
some, not previously planned, contingent time points or assign truth values to the propo-
sitions associated to a set of just executed observation time points, or do both actions. Of
course, more instantaneous reactions are possible at the same time.

Definition 5 (Instantaneous Reaction for env). Let PS = (Executed, Assigned) be a par-
tial schedule. Let χ0 be the set of contingent time points Ci such that Ai ∈ ExecutedT

and time(Ai) + yi = last(Executed), i.e., their execution windows terminate precisely at
last(Executed). Let χ⋆ be any (possibly empty) subset of the contingent time points Ci

such that Ai ∈ ExecutedT and last(Executed) ≤ time(Ai) + yi, i.e., their execution windows
include last(Executed). Finally, Let IC = χ0 ∪ χ⋆. An instantaneous reaction IR for env is
a decision

939

Combi, Posenato, Viganò, & Zavatteri

(1) to execute all contingent time points in IC at time last(Executed), or

(2) to assign to each proposition p a truth value if (P?, last(Executed)) ∈ Executed, where
we represent such assignments as a set IB of pairs (p, b) with p ∈ P and b ∈ {⊤, ⊥},
or

(3) to do both actions.

Thus, we denote an IR for env by a pair (IC , IB). The set of all instantaneous reactions
is denoted by IR∗.

We now define how the outcome of the interplay between ∆env and ∆ctrl is handled.
We start from the partial outcome that neglects IR, and then we build the full outcome
on top of the partial one considering IR.

Definition 6 (Partial Outcome). Let PS = (Executed, Assigned) be a locally consistent
partial schedule; ∆ctrl be an RTED for ctrl and ∆env be an RTED for env. We model the
partial outcome of ∆ctrl and ∆env as a mapping PO : PS∗ ×∆∗

ctrl ×∆∗
env → PS∗ neglecting

any instantaneous reaction. We have four possible cases:

(1) PO(PS, wait, (t, Contingent)) = Executed ∪ {(C, t) | C ∈ Contingent}.

(2) PO(PS, (t1, NonContingent), (t2, Contingent)) = Executed ∪ {(C, t2) | C ∈
Contingent} if t2 < t1.

(3) PO(PS, (t, NonContingent), wait) = Executed ∪ {(X, t) | X ∈ NonContingent}.

(4) PO(PS, (t1, NonContingent), (t2, Contingent)) = Executed ∪ {(X, t1) | X ∈
NonContingent} if t1 ≤ t2.

(1) says that env executes the time points in Contingent at time t if ctrl decides to do
nothing. (2) says that env can execute the time points in Contingent because env decided
to do so before ctrl executes his (t2 < t1). (3) is similar to (1) but with respect to ctrl.
(4) says that when ctrl decides to execute a set of time points before or at the same time
of those env has decided to execute, ctrl moves first to allow env to react instantaneously
as explained in the following definition.

Definition 7 (Full Outcome). Let PO(PS, ∆ctrl, ∆env) be a partial outcome and let IR =
(IC , IB) be an instantaneous reaction. We model the full outcome as a mapping FO : PS∗×
∆∗

ctrl × ∆∗
env × IR∗ → PS∗ and we define it the same way we did for PO(PS, ∆ctrl, ∆env)

except that in cases (3) and (4) Executed is augmented with {(C, t) | C ∈ IC} and Assigned

is augmented with {(p, b) | (p, b) ∈ IB}. Either way t = last(Executed).

The full outcome says how PS evolves according to the interplay of the RTEDs for ctrl

and env, and env’s instantaneous reactions.

Given a partial schedule PS, there are many possible RTEDs both for ctrl and for env.
A strategy fixes ctrl’s RTEDs.

940

Conditional Simple Temporal Networks with Uncertainty and Resources

Definition 8 (RTED-based strategy). An RTED-based strategy for ctrl is a mapping
σctrl : PS∗ → ∆∗

ctrl from locally consistent partial schedules to RTEDs, whereas an RTED-
based strategy for env is a mapping σenv : PS∗ → ∆∗

env × IR∗ from locally consistent sched-
ules to RTEDs and instantaneous reactions, respectively.

Definition 9 (One Step and Terminal Outcome). The one-step outcome of the game played
by ctrl and env is FO1(PS, σctrl, σenv) = FO(PS, σctrl(PS), v1, v2), where σenv(PS) =
(v1, v2). The terminal outcome FO∗(σctrl, σenv) is the complete schedule that results from
the following recursive definition:

{

PS0 = (∅, ∅)

PSi+1 = FO1(PSi, σctrl, σenv)

Given the execution semantics for CSTNUs defined above, we can now provide the
definition of dynamic controllability.

Definition 10 (Dynamic controllability of a CSTNU). A CSTNU is dynamically control-
lable (DC) if there exists an RTED-based strategy σctrl such that for all RTED-based
strategies σenv, the variable assignments (X, k) in the complete schedule FO∗(σctrl, σenv)
satisfy all constraints in C whose labels are implied by the (complete) scenario ℓcps which
defines the truth value of all relevant propositions.

3.2 Dynamic Controllability of CSTNUs via Timed Game Automata

The DC-checking problem is the problem of deciding whether an arbitrary CSTNU is DC.
We can answer the DC-checking problem by using sound and complete algorithms based on
Timed Game Automata (TGAs) (Cimatti et al., 2014, 2016). We model this checking as a
two-player game between ctrl and env according to the semantics we gave in Section 3.1.

The purpose of ctrl is to reach a specific location as soon as all time points have been
executed and all constraints have been satisfied with respect to the specific scenario, whereas
env’s goal is to prevent ctrl from entering that location. If ctrl wins, the network is DC,
otherwise it is not.

In the following, we present some preliminary notions about TGAs and how to encode
CSTNUs into TGAs. The DC-checking problem in a CSTNU is shown to be equivalent to
the reachability problem in the corresponding TGA.

A Finite Automaton is defined as a tuple 〈S, →〉, where S is a finite set of states and →
is a finite set of labeled transitions. S always contains both a starting state and a subset of
final states. Each transition specifies a legal move from one state to another (Hopcroft &
Ullman, 1979).

A Timed Automaton (TA) refines a Finite Automaton by adding real-valued clocks and
clock constraints. All clocks increase at the uniform rate keeping track of the time with
respect to a fixed global time frame. Clocks are fictitious, i.e., invented to express the
timing properties of the system. More formally,

Definition 11 (Timed Automaton, Alur & Dill, 1994). A Timed Automaton (TA) is a
tuple 〈Loc, Act, X , →, Inv〉, where

• Loc is a finite set of locations (with L0 set as the initial one).

941

Combi, Posenato, Viganò, & Zavatteri

• Act is a finite set of actions. They are used as transition labels (they can be viewed
as input symbols).

• X is a finite set of real-valued clocks.

• →⊆ Loc × H(X) × Act × 2X × Loc is the transition relation. An edge (Li, G, A, R, Lj)
represents a transition from location Li to location Lj realizing action A. G ∈ H(X)
is a guard consisting on a conjunction of clock constraints having the form x ∼ k or
y − x ∼ k with x, y ∈ X , k ∈ N and ∼∈ {<, ≤, =, >, ≥}.3 If the values of the clocks
satisfy the guard, the transition can be taken. The set R ⊆ 2X specifies which clocks
have to be reset (i.e., set to 0) whenever the transition is taken.

• Inv : Loc → H(X) is a function assigning an invariant (i.e., a conjunction of clock
constraints) to each location. An invariant is a condition under which the automaton
may stay in that location.

Figure 3a shows an example of a TA. L0 is the initial location. The TA has one clock
cX set to 0 upon the start of an execution and it is allowed to remain in L0 while cX ≤ 3,
then it has to leave the location. The pass transition can be taken whenever cX ≥ 1 and
along with Inv(L0) ensures that the TA will enter L1 at any instant such that 1 ≤ cX ≤ 3.
When pass is taken, cX resets to 0. After that, the gain transition may be taken as soon
as cX ≥ 5. If taken, the TA gets back to L0 and cX resets to 0. If not, the TA may remain
in L1 forever.

Definition 12 (Timed Game Automaton, Maler, Pnueli, & Sifakis, 1995). A Timed Game
Automaton (TGA) extends a TA by partitioning the set of transitions into controllable and
uncontrollable ones. Uncontrollable transitions have priority over controllable ones.

In other words, if during an execution there are a set of controllable and a set of uncon-
trollable transitions that can be executed, then the uncontrollable ones are executed first
and might prevent the controllable ones from being taken.

A TGA models a two-player timed game between a controller and the environment.
The controller is assigned to controllable transitions, whereas the environment is assigned
to uncontrollable ones. Moreover, in a TGA a location can be labeled as urgent to express
that an enabled transition from the location must be taken immediately on entering.

Figure 3b shows an example of a TGA. The TGA has four clocks ĉ, cδ, cA and cC.
Solid arrows represent controllable transitions, whereas dashed arrows uncontrollable ones.
The initial location is L0, and goal is the location that ctrl must reach in order to win
the game. Consider the following possible run. When all clocks are equal to 5, the gain

transition is taken and the current location changes to L1. At the same time, 5, the
transition 〈L1, cA = ĉ, ExA, {cA}, L1〉 is taken resulting in the reset of cA. After that, the
pass transition is taken always at time 5. Therefore, the current location becomes L0

and the clock cδ is reset to 0. At time 6, both the ExC and gain transitions are enabled
and ctrl decides to take gain. At the same time, env decides to take ExC. Since ExC

has priority, it executes first and, therefore, the clock cC is reset to 0. Then, the gain

3. The original definition allows one to consider the Q set as constant domain. However, Alur and Dill
(1994) show that it is possible to consider N without loss of generality.

942

Conditional Simple Temporal Networks with Uncertainty and Resources

L0

cX ≤ 3

L1

〈cX ≥ 1, pass, {cX}〉〈cX ≥ 5, gain, {cX}〉

(a) Timed automaton

goal

L1L0

〈⊤, pass, {cδ}〉

〈cδ > 0, gain, ∅〉

〈cC < ĉ, win, ∅〉
〈cA = ĉ, ExA, {cA}〉

〈cC = ĉ ∧ cA < ĉ,

ExC, {cC}〉

(b) Timed game automaton

Figure 3: Examples of a) TA and b) TGA

transition can be taken at the same time 6 or later. After gain, the win transition can
be taken to enter the goal location. For this TGA there does not exist a winning control
strategy as the environment controlling the uncontrollable transitions can always refuse to
take the uncontrollable transition. If it decides to do so, cC will never be reset, preventing
the controller to take the win transition.

In what follows, we provide an improvement of the encoding given by Cimatti et al.
(2016) from a CSTNU into a suitable TGA such that the CSTNU is DC if and only if
ctrl can always win the game in the corresponding TGA by reaching the location goal.
The peculiar property of Cimatti et al.’s encoding is that controllable transitions model
the actions of environment, whereas uncontrollable transitions model the actions of the
controller. This is due to the fact that the semantics given in terms of RTEDs for CSTNUs
imposes that the controller’s moves must go first. In what follows, ĉ is a clock representing
the global time and it is never reset, whereas cδ is a special clock regulating the interplay
between the game.

Figure 4 depicts the TGA corresponding to the CSTNU shown in Figure 2. The core of
the TGA obtained by the CSTNU-TGA encoding always consists of three locations:

• L0 (initial) is the location where env can take the controllable transitions modeling
the occurrence of contingent time points and truth value assignments.

• L1 (urgent) is the location where ctrl can take transitions for executing non-contingent
time points.

• goal is the final location that, if reached (by ctrl), implies DC of the initial CSTNU.

We model the interplay between ctrl and env with a clock cδ and two transitions:

1. (L1, ⊤, pass, {cδ}, L0)

2. (L0, cδ > 0, gain, ∅, L1)

The first transition guarantees that, after some action(s) of ctrl, the environment can react
immediately (⊤ shortens the absence of any clock constraint and it is always interpreted

943

Combi, Posenato, Viganò, & Zavatteri

L⊡Ldgoal

(L
¬d)

L1

L0

〈⊤
, p

a
s
s
, {

c
δ }〉

〈c
δ

>
0
, g

a
i
n
, ∅〉

〈cD = ĉ, ExD, {cD}〉

〈cA1 = ĉ ∧ bD = ĉ ∧ cD < ĉ∧
cD ≥ 5 ∧ cD ≤ 10, ExA1, {cA1}〉

〈cA2 = ĉ, ExA2, {cA2}〉

〈cA3 = ĉ ∧ cC2 < ĉ ∧ cC2 ≥ 60∧
cC2 ≤ 180, ExA3, {cA3}〉

〈cA4 = ĉ ∧ cC2 < ĉ ∧ cC2 ≥ 60∧
cC2 ≤ 180, ExA4, {cA4}〉

〈cA5 = ĉ ∧ cC2 < ĉ ∧ cC2 ≥ 360 ∧ cC2 ≤ 960∧
cC3 < ĉ ∧ cC3 ≥ 90 ∧ cC4 < ĉ ∧ cC4 ≥ 90, ExA5, {cA5}〉

〈cA1 < ĉ ∧ cC1 = ĉ ∧ cA1 ≥ 60 ∧ cA1 ≤ 180, ExC1, {cC1, cδ}〉

〈cA2 < ĉ ∧ cC2 = ĉ ∧ cA2 ≥ 570 ∧ cA2 ≤ 630, ExC2, {cC2, cδ}〉

〈cA3 < ĉ ∧ cC3 = ĉ ∧ cA3 ≥ 60 ∧ cA3 ≤ 120, ExC3, {cC3, cδ}〉

〈cA4 < ĉ ∧ cC4 = ĉ ∧ cA4 ≥ 60 ∧ cA4 ≤ 90, ExC4, {cC4, cδ}〉

〈cA5 < ĉ ∧ cC5 = ĉ ∧ cA5 ≥ 570 ∧ cA5 ≤ 630, ExC5, {cC5, cδ}〉

〈cD < ĉ ∧ cD = 0 ∧ bD = ĉ; dFalse; {bD, cδ}〉

〈cA1 < ĉ ∧ cC1 = ĉ ∧ cA1 > 180, failC1, ∅〉

〈cA2 < ĉ ∧ cC2 = ĉ ∧ cA2 > 630, failC2, ∅〉

〈cA3 < ĉ ∧ cC3 = ĉ ∧ cA3 > 120, failC3, ∅〉

〈cA4 < ĉ ∧ cC4 = ĉ ∧ cA4 > 90, failC4, ∅〉

〈cA5 < ĉ ∧ cC5 = ĉ ∧ cA5 > 630, failC5, ∅〉

〈c
δ

>
0

∧
c
D

<
ĉ

∧
c
A 2

<
ĉ

∧
c
C 2

<
ĉ

∧
c
A 3

<
ĉ

∧
c
C 3

<
ĉ

∧
c
A 4

<
ĉ

∧
c
C 4

<
ĉ
∧

c
A 5

<
ĉ

∧
c
C 5

<
ĉ
c
C 5

−
c
D

≤
−

14
40

∧
c
A 3

−
c
C 2

≤
−

60
∧

c
A 4

−
c
C 2

≤
−

60
∧

c
A 5

−
c
C 2

≤
−

36
0

∧
c
C 2

−
c
A 3

≤
18

0
∧

c
A 5

−
c
C 3

≤
−

90
∧

c
C 2

−
c
A 4

≤
18

0∧

c
A 5

−
c
C 4

≤
−

90
∧

c
C 2

−
c
A 5

≤
96

0
∧

c
D

−
c
C 5

≤
21

60
, s

a
t ⊡

, ∅
〉

〈cA1 < ĉ ∧ cC1 < ĉ∧
cA1 − cD ≤ −5 ∧ cD − cA1 ≤ 10∧

cA2 − cC1 ≤ −5 ∧ cC1 − cA2 ≤ 10, satd, ∅〉

〈cD = ĉ, skip1
d , ∅〉

〈bD < ĉ, skip2
d , ∅〉

〈cA2 − cD ≤ −20 ∧ cD − cA2 ≤ 30, sat¬d, ∅〉

〈cD = ĉ, skip1
¬d, ∅〉

〈bD = ĉ, skip2
¬d, ∅〉

Figure 4: TGA encoding the CSTNU in Figure 2. L0 is the initial location, L1, L⊡, Ld, goal

are urgent. Solid (resp., dashed) edges model controllable (resp., uncontrollable)
transitions.

944

Conditional Simple Temporal Networks with Uncertainty and Resources

true). The second one guarantees that ctrl can react to an action of env only after a
positive delay ǫ > 0 (modeled by cδ > 0).

We associate a clock bP to each propositional letter p. If bP = ĉ it means that p = ⊤,
whereas if bP < ĉ that p = ⊥ (e.g., bD in Figure 4).

We associate a clock cX to each time point X ∈ T . If cX = ĉ, it means that X has not
been executed yet, whereas if cX < ĉ, it means that X was executed at time ĉ − cX. We
reset the clocks associated to time points at most once. Therefore, we model the execution
of a time point X by means of an uncontrollable self-loop transition at location L1

(L1, cX = ĉ, ExX, {cX}, L1)

This transition can be executed only when cX is equal to ĉ (i.e., X has not been executed
yet). The transition resets cX fixing forever the time instant in which X was executed. A
first improvement at this stage can be done considering also label honesty and conditions
on predecessors in the transition guards (Zavatteri, 2017) in order to prevent the TGA from
exploring impossible runs during the controller synthesis phase. For example, consider A1

in Figure 2 and its label L(A1) = d. Following the time point label honesty property for
CSTNUs, we can extend the guard of ExA1 by appending bD = ĉ∧cD < ĉ∧cD > 0 to model
that A1 must be executed if only if d = ⊤ (i.e., bD = ĉ), which also implies that A1 must
be executed after D? (i.e., D? have been executed (cD < ĉ)) and a positive amount of time
ǫ has elapsed (cD > 0).

Definition 13 (Encoding time point label honesty). A label encoder is a mapping
Lenc : T → H(X) translating the label of a time point into the equivalent clock constraint
Lenc(X) encoding all literals containing propositions. Formally,

Lenc(X) :
∧

p∈L(X)

(bP = ĉ ∧ cP < ĉ ∧ cP > 0)
∧

¬q∈L(X)

(bQ < ĉ ∧ cQ < ĉ ∧ cQ > 0)

We now focus on constraints. Consider the requirement link D? [5, 10], d A1 in the CSTNU
depicted in Figure 2. Such a constraint says that A1 must be executed after 5 and within
10 since D?. This requirement link has also an important characteristic: L(A1) coincides
with the label of the link. Therefore, whenever A1 is executed, the constraint must hold.
Thus, we extend the guard of ExA1 by further appending cD < ĉ ∧ cD ≥ 5 ∧ cD ≤ 10, where
the new conjuncts say that D? has already been executed (cD < ĉ) and A1 − D? ∈ [5, 10]
(cD ≥ 5 ∧ cD ≤ 10). Since clocks are reset upon the execution of time points we just need
to measure the elapsed time since the reset of cD to make sure that once we reset cA1 the
constraint holds (see also the modeling of contingent links that we discuss below). More
formally:

Definition 14 (Encoding predecessors). Given a CSTNU, a predecessor of a time point
Y ∈ T is a time point X ∈ T such that there exists a constraint (X − Y ≤ −x, L(Y)) ∈ C,
where x > 0. Π : T → 2T returns the predecessors of a time point and it is formalized as

Π(Y) = {X | (X − Y ≤ −x, ℓ) ∈ C ∧ x > 0 ∧ ℓ = L(Y)}

A predecessor encoder is a mapping Πenc : T → H(X) translating each X ∈ Π(Y) (along
with its temporal bounds) into an equivalent clock constraint as follows:

Πenc(Y) =
∧

X∈Π(Y)

cX < ĉ ∧ cX ≥ x ∧ cX ≤ y ,

945

Combi, Posenato, Viganò, & Zavatteri

where cX ≥ x models (X − Y ≤ −x, L(Y)) and cX ≤ y models (Y − X ≤ y, L(Y)) (if any).

Therefore, for each non-contingent time point X, the (improved) guard of ExX becomes

(L1, cX = ĉ ∧ Lenc(X) ∧ Πenc(X), ExX, {cX}, L1)

Figure 4 contains 7 transitions (ExD, ExA1, ExA2, ExA3, ExA4 and ExA5) modeling the exe-
cution (by ctrl) of the non-contingent time points D?, A1, A2, A3, A4 and A5 of the original
CSTNU in which we enforced label honesty and predecessors according to (Zavatteri, 2017).

To allow the environment to flip the value of p (which is ⊤ by default), we add a
controllable self loop at L0

(L0, cP < ĉ ∧ cP = 0 ∧ bP = ĉ, pFalse, {bP, cδ}, L0)

saying that env might decide to assign ⊥ to p resetting bP. env may decide to do so
only immediately after ctrl executed P?. That is, cP < ĉ (P? has been executed) and
cP = 0 (time has not elapsed). If env does not take such a transition, p will remain set to ⊤
forever. Furthermore, such a transition also resets cδ allowing env to take other controllable
transitions. The complete management of a proposition p is realized by two transitions: one
(uncontrollable) allowing ctrl to execute P?, and another one (controllable) allowing env

to assign ⊥ to p. In Figure 4, we label such a transition as pFalse.

For each contingent link (A, x, y, C) ∈ L, env can set the value of the contingent time
point C by means of a controllable self-loop transition at L0

(L0, cA < ĉ ∧ cC = ĉ ∧ cA ≥ x ∧ cA ≤ y, ExC, {cC, cδ}, L0)

This transition can be taken only when time point A has been executed (cA < ĉ), time
point C has not been executed (cC = ĉ), and the time elapsed since A was executed falls
in [x, y] (modeled as the clock constraint cA ≥ x ∧ cA ≤ y). The transition resets cC fixing
the time in which C was executed and, again, cδ to allow other possible IRs. Differently
from truth-value assignments, env has to take this transition. If it does not, ctrl can win
the game by taking the uncontrollable transition

(L1, cA < ĉ ∧ cC = ĉ ∧ cA > y, failC, ∅, goal)

once it gets back to L1. Indeed, this last transition says that the activation time point
has been executed (cA < ĉ), the contingent time point has not be set (cC = ĉ) and it is
currently out of its range of allowed values (cA > y). For any contingent link, there are
two transitions to manage the contingent time point: one to execute C and another one to
force such an assignment. We call this latter transition a fail transition. In general, fail
transitions for contingent links are always necessary because, otherwise, env would always
be able to prevent ctrl from winning the game just “waiting forever” in L0.

In Figure 4, there are 5 transitions for the execution of C1, C2, C3, C4 and C5 (ExC1,
ExC2, ExC3, ExC4, ExC5) and 5 to handle their failure (failC1, failC2, failC3, failC4,
failC5).

We model the winning conditions of the game as a winning path of n+1 urgent locations
L⊡ Lℓ1

 · · · Lℓn
(= goal) going from L0 to goal, where n is the number of possible

946

Conditional Simple Temporal Networks with Uncertainty and Resources

distinct labels labeling time points and constraints. The winning path serves to verify that
all relevant time points have been executed and all constraints involving them have been
satisfied. The first location in this path is always L⊡, reachable as soon as cδ > 0 and all time
points having empty label have been executed satisfying all constraints having empty label.
Then, the remaining locations are sequentially connected through sets of transitions. Each
set of transitions between two consecutive locations Lℓi−1

, Lℓi
represents the conditional

meta constraint “if the current scenario is associated to ℓi, then all time points labeled by
ℓi must have been executed and all constraints labeled by ℓi must be satisfied”. Such a
conditional meta constraint can be represented as a disjunction of conjunctive expressions
involving clocks and each single disjunct can be represented by a transition from Lℓi−1

to
Lℓi

(Cimatti et al., 2016).
Therefore, each set of transitions between two consecutive locations represents two cases:

1. if ℓcps 6⇒ ℓi, then at least one transition of the set allows ctrl to move to the next
location, or

2. if ℓcps ⇒ ℓi, then exactly one transition allows ctrl to move to the next location if
and only if all time points labeled by ℓi have been executed and all the constraints
labeled by ℓi have been satisfied.

In Figure 4, the winning path consists of 3 locations only: L⊡, Ld and L¬d (L¬d coincides
with goal). There is a set of 3 transitions connecting L⊡ to Ld and another set of 3
transitions between Ld and goal. We give an example for the set of transitions going from
Ld to goal.

The conditional meta constraint for generating such a set of transitions is: “If D? has
been executed and d was assigned ⊤, then all time points labeled by d must have been
executed and all constraints labeled by d must have been satisfied”. In symbols:4

(cD < ĉ ∧ bD = ĉ) ⇒ (cA1 < ĉ ∧ cC1 < ĉ ∧ cA1 − cD ≤ −5 ∧ cD − cA1 ≤ 10∧

cA2 − cC1 ≤ −5 ∧ cC1 − cA2 ≤ 10)

However, TGAs don’t allow logical implications, disjunctions or negations of clock con-
straints in the guards. If a guard of a transition contains implications or disjunctions or
negations of clock constraints, then it must be transformed in the disjunctive normal form
and, then, the transition containing such a guard has to be represented as a set of parallel
transitions, each containing as a guard a disjunct of the transformed guard. Therefore, we
rewrite the previous meta conditional constraint as

¬(cD < ĉ ∧ bD = ĉ)∨

(cA1 < ĉ ∧ cC1 < ĉ ∧ cA1 − cD ≤ −5 ∧ cD − cA1 ≤ 10 ∧ cA2 − cC1 ≤ −5 ∧ cC1 − cA2 ≤ 10)

4. For each l ≤ Y − X ≤ u ∈ C, the corresponding guard is l ≤ (ĉ − cY) − (ĉ − cX) ≤ u, which simplifies in
cX − cY ≥ l ∧ cX − cY ≤ u as ∀X ∈ T . (ĉ − cX) is the time in which X was executed.

947

Combi, Posenato, Viganò, & Zavatteri

which simplifies to

(cD = ĉ)∨

(bD < ĉ)∨

(cA1 < ĉ ∧ cC1 < ĉ ∧ cA1 − cD ≤ −5 ∧ cD − cA1 ≤ 10 ∧ cA2 − cC1 ≤ −5 ∧ cC1 − cA2 ≤ 10)

Note that we could have simplified the first two disjuncts to cD ≥ ĉ and bD ≥ ĉ. However,
we prefer to adhere to the standard semantics in which cD = ĉ means that D? has not been
executed and bD = ĉ means that d is ⊤.

Figure 4 represents these three disjuncts as a set of 3 transitions: satd whose guard is
(cA1 < ĉ ∧ cC1 < ĉ ∧ cA1 − cD ≤ −5 ∧ cD − cA1 ≤ 10 ∧ cA2 − cC1 ≤ −5 ∧ cC1 − cA2 ≤ 10),
skip1

d whose guard is cD = ĉ and skip2
d whose guard is bD < ĉ. We generate the set of

transitions going from L⊡ to Ld similarly.
Without loss of generality, this encoding does not allow the execution of time points at

time 0. Indeed, any run starts at L1 and can enter L0 only after a positive amount of time,
cδ > 0. Such a limitation is not really meaningful, as it is always possible to translate the
obtained schedule into a corresponding one where all time assignments are shifted of −cδ.

In (Cimatti et al., 2014, 2016) the authors showed that the DC-checking of a CSTNU is
equivalent to (model) checking the corresponding TGA and looking for a control strategy
for env to always prevent ctrl from reaching goal. If such a strategy exists, then the
original CSTNU is not DC, otherwise it is.

4. CSTNUs with Resources (CSTNURs)

In this section, we propose Conditional Simple temporal Networks with Uncertainty and
Resources (CSTNURs) as an extension of CSTNUs obtained by injecting:

• resources with associated temporal expressions,

• runtime resource constraints.

Informally, in a CSTNUR, a resource must be committed for executing a time point. Such a
resource can be chosen from a set associated to the time point. Each resource is associated
to a temporal expression representing its temporal availability during execution. A resource
can be committed to execute a time point at a certain time instant t if and only if t satisfies
the temporal expression associated to the resource. Moreover, the availability of a resource
may be constrained by means of a special kind of constraints, runtime resource constraints.
A runtime resource constraint further restricts the availability of a resource at runtime
according to the execution time of previous time points or previous resource commitments.

4.1 Syntax of CSTNURs

In what follows, we introduce some preliminary notions before giving the formal definition
of CSTNUR.

A temporal expression represents an assertion with respect to an implicit temporal in-
stant and a possible time point; a temporal expression is useful to characterize the temporal
availability of resources in a CSTNUR in a compact way.

948

Conditional Simple Temporal Networks with Uncertainty and Resources

Definition 15 (Temporal Expression). A temporal expression (TE) τ is a (temporal) as-
sertion defined according to the grammar:

τ ::= ⊙ | θk | θX + k | τ1 ∧ τ2

where ⊙ is the empty constraint, θ ∈ {>, <, ≥, ≤, =}, k ∈ N, X is a time point, and τ1, τ2

are two TEs. There are 4 types of TEs:

Type 0 : τ = ⊙ (empty).

Type 1 : τ = θk (constant)

Type 2 : τ = θX + k (relative to a time point X)

Type 3 : τ = τ1 ∧ τ2 (conjunction)

The set of all possible TEs is denoted by T E .

Every TE of Type 2, τ = θX + k, is equivalent to a Type 1 once X has been executed.
We determine the truth value of a TE τ , with respect to a particular instant t, by means
of the following interpretation.

Definition 16 (TE interpretation). The interpretation of a TE τ with respect to a temporal
instant t ∈ R≥0 is defined as follows:

1. t |= ⊙

2. t |= θk iff t θ k, where k ∈ N and θ ∈ {>, <, ≥, ≤, =}.

3. t |= θX + k iff t θ (tX + k), where k ∈ N, θ ∈ {>, <, ≥, ≤, =}, and tX is the time at
which X was executed. If X is unexecuted when expression has to be evaluated, then
tX is assumed to be +∞.

4. t |= τ1 ∧ τ2 iff t |= τ1 and t |= τ2.

By using temporal expressions, it is possible to represent the notion of availability of
resources at runtime in a compact way.

Definition 17 (Temporal availability). Given a set of resources R, a set of time points T
and the set of all possible temporal expressions T E , the temporal availability of resources is
a pair (RA, RE), where:

• RA ⊆ R × T determines which resources can be committed for each time point. We
write R(X) = {r | (r, X) ∈ RA} to represent the resources committable for time point
X and we impose that for each contingent link (A, x, y, C) ∈ L, R(A) = R(C) and
for each X ∈ T , R(X) 6= ∅.

• RE : RA → T E represents the temporal expression associated to an element (r, X),
where r ∈ R(X).

A resource r ∈ R(X) is committable at time t if t |= RE(r, X), not committable, otherwise.

949

Combi, Posenato, Viganò, & Zavatteri

X
{r1〈>2〉, r2〈⊙〉}

[⊡]

Y
{r1〈⊙〉, r2〈<X + 15〉}

[⊡][5, 20],⊡

〈>X + 10, =〉

Figure 5: An augmented CSTNU. Each time point has an associated set consisting of el-
ements having the form r〈τ〉 meaning (r, X) ∈ RA ∧ RE(r, X) = τ . The dash-
dotted edge represents a Runtime Resource Constraint (RRC), introduced in
Definition 18.

Figure 5 shows an augmented CSTNU consisting of two time points X and Y connected
by two edges. Each time point has two labels: one representing the CSTNU propositional
label associated to the time point (in the figure both time points have ⊡ as propositional
label), and the other representing the set of committable resources for the time point. To
simplify the notation, the expression r〈τ〉 associated to a time point X means (r, X) ∈ RA

and RE(r, X) = τ . In details, for X, the expression r1〈> 2〉 means that r1 can be committed
to execute X only when the execution time is greater than 2. For the resource r2, the
temporal expression with respect to Y is < X + 15 meaning that r2 can be committed to
execute Y only if the execution time is smaller than tX +15, where tX is the execution time
of X.

Runtime resource constraints (RRCs) refine temporal expressions of resources by spec-
ifying further resource constraints involving multiple time points. Each RRC is defined
between two time points, a firing time point and a target time point. When the firing time
point is executed, the effect of the RRC is to append new TEs to the existing ones associated
to the resources of the target time point (if such a time point is still unexecuted) consider-
ing the relation defined in the RRC. In this way, it is possible to adjust, for example, the
committable resources of the target time point considering which resource was committed
for the firing time point.

Definition 18 (Runtime Resource Constraint). A Runtime Resource Constraint (RRC) is
a 4-tuple 〈X, τ, Y, ρ〉, where:

• X, Y ∈ T are the firing and target time points, respectively, such that X 6= Y , Y is
non contingent, and L(X) is consistent with L(Y) (and with L(W) if τ is a Type 2
TE involving time point W).

• τ ∈ T E is a temporal expression.

• ρ ⊆ R × R is a binary relation over resources. As usual, = shortens {(r, r) | r ∈ R},
6= shortens {(r1, r2) | r1, r2 ∈ R ∧ r1 6= r2}, and ∗ shortens {(r1, r2) | r1, r2 ∈ R} (the
universal relation).

We interpret each RRC 〈X, τ, Y, ρ〉 as follows: when a resource rX is committed to
execute X, then τ is instantaneously appended to all temporal expressions of those resources
rY committable for Y such that (rX , rY) ∈ ρ. In symbols,

∀rY ∈ R(Y). (rX , rY) ∈ ρ =⇒ RE(rY , Y) := RE(rY , Y) ∧ τ ,

950

Conditional Simple Temporal Networks with Uncertainty and Resources

where rX ∈ R(X) is the resource committed for X. An RRC does not imply an execution
order among time points. An RRC 〈X, τ, Y, ρ〉 has effect on Y instantaneously, after the
execution of X, providing that Y is still unexecuted. Therefore, if there is an RRC between
X and Y and the two time points have to be executed at the same time, it is necessary to
fix an execution order between them to decide whether the RRC applies. Moreover, if there
is an RRC between a contingent time point C and a non-contingent time point X and the
two time points occur at the same time t (because env decided to execute C after ctrl

had decided to execute X at time t), then the RRC is ignored because C is assumed to be
executed after X even if the two time points are executed at the same instant.

In Figure 5, the RRC 〈X, >X +10, Y, =〉, drawn as X 〈>X + 10, =〉 Y , represents the fact
that the resource committed for X can be committed for Y only if the execution time of Y is
greater than 10 time units since X was executed. Note that the temporal constraint between
X and Y allows the execution of Y just 5 time units after X. Suppose that r2 is committed
for X at time 1. R(Y) is instantaneously updated considering 〈X, >X + 10, Y, =〉. Since
the RRC becomes 〈X, >11, Y, =〉 at time 1 because X = 1, its TE part >11 is appended to
all TEs associated to the resources satisfying ρ. In this case, it applies only to r2 because ρ

is ’=’. Therefore, the application of the RRC results in evolving the “state” of the temporal
expressions of the resources in R(Y) as follows:

R(Y) when t<1
︷ ︸︸ ︷

{r1〈⊙〉, r2〈<X + 15〉}

R(Y) when t≥1
︷ ︸︸ ︷

{r1〈⊙〉, r2〈>11 ∧ <16〉}

The delay allowed for executing Y after X is [5, 20]. If ctrl decides to fix the execution of Y

at t′ in [5, 11] (respectively, [16, 20]), then the only committable resource is r1 (respectively,
r1 and r2).

Now, it is possible to give the formal definition of a CSTNUR putting together everything
we have discussed so far.

Definition 19 (Conditional Simple Temporal Network with Uncertainty and Resources).
A Conditional Simple Temporal Network with Uncertainty and Resources (CSTNUR) is a
tuple 〈T , P, L, OT , O, C, L, R, RA, RE , RRC〉, where:

1. 〈T , P, L, OT , O, C, L〉 is a CSTNU.

2. R = {r0, r1, . . . } is a finite set of resources.

3. The pair (RA, RE) specifies temporal availability according to Definition 17.

4. RRC is a set of runtime resource constraints according to Definition 18.

Figure 6 shows the CSTNUR extending the CSTNU in Figure 2 and considering resource
specification. There are seven users, Alice, Bob, Lila, Mike, Evie, Tim (shortened as a,
b, l, m, e, and t, respectively) and wf, where wf represents an internal agent, such as, for

example, a workflow engine. C2
〈≥C2 + 840, =〉 A5 (RRC1) models a temporal separation of

duties (TSoD) meaning that the same pilot (=) who executes C2 (i.e., piloted the aircraft
in the OutFlight) will return available to pilot again after 14 hours (FAA regulations).

A3
〈>C3, =〉 A4 (RRC2) and A4

〈>C4, =〉 A3 (RRC3) model a “no multi-tasking” policy for

951

Combi, Posenato, Viganò, & Zavatteri

D?
[⊡]

{wf〈⊙〉}

A1
[d]

{a〈⊙〉, b〈⊙〉}
C1
[d]

{a〈⊙〉, b〈⊙〉}

A2

[⊡]

{l〈⊙〉, m〈⊙〉}

C2

[⊡]

{l〈⊙〉, m〈⊙〉}

A3
[⊡]

{e〈⊙〉, t〈⊙〉}
C3
[⊡]

{e〈⊙〉, t〈⊙〉}

A4

[⊡]

{e〈⊙〉, t〈⊙〉}

C4

[⊡]

{e〈⊙〉, t〈⊙〉}

A5

[⊡]

{l〈⊙〉, m〈⊙〉}

C5

[⊡]

{l〈⊙〉, m〈⊙〉}

[5
, 1

0]
, d

[20, 30], ¬d

[5, 30], d
[6

0,
18

0]
,⊡

[60, 180],⊡

[90,∞
],⊡

[90
,∞

],⊡

[360, 960],⊡

〈≥C2 + 840, =〉

〈>
C

3 ,=
〉〈>

C
4
,=

〉

[60, 180]

[570, 630]

[60, 120]

[60, 90]

[570, 630]

[1440, 2160],⊡

Figure 6: CSTNUR modeling the temporal plan in Figure 1 with access control. Dashed
edges represent RRCs.

SysCheck and SecCheck requiring that either different resources are committed for those
tasks when executed in parallel, or the same resource can be committed for both, provided
that these tasks are executed sequentially. Indeed, RRC2 specifies that the user who exe-
cutes A3 will return available for executing A4 as soon as C3 has executed. Likewise, RRC3

specifies that the user who starts A4 will become again available for executing A3 as soon
as C4 has executed.

4.2 Execution Semantics of CSTNURs

In a CSTNUR, resources are committed to execute time points. Resources committed for
contingent time points are the same that were committed for the corresponding activation
time points. However, env is still free to schedule these time points when he wants.

Since CSTNURs extend CSTNUs, we still have that the truth values of propositions and
the duration of contingent links are incrementally revealed over time as the corresponding
observation and contingent time points are executed, respectively. Again, a dynamic execu-
tion strategy reacts to observations and contingent time points in real time also saying which
resources are committed for which time points. A viable and dynamic execution strategy
for a CSTNUR is a strategy executing all non-contingent time points such that all relevant
constraints about temporal distances and resource commitments will be satisfied no matter
which truth values for propositions and durations for contingent links are incrementally
revealed over time. A CSTNUR with such a strategy is called dynamically controllable.

A more formal description of the execution semantics of CSTNURs can be given in
terms of extended RTEDs. In what follows, we extend the RTEDs given for CSTNUs to
also consider resources and RRCs. For a CSTNUR, ctrl seeks a strategy for scheduling all
relevant non-contingent time points such that all relevant temporal constraints involving
resources and time points are eventually satisfied no matter what env does.

952

Conditional Simple Temporal Networks with Uncertainty and Resources

A partial schedule for a CSTNUR is still a pair PS = (Executed, Assigned) but here
Executed is a set of triples (r, X, t), where r is the resource committed for X at time
t. Instead, Assigned remains the same. For each X ∈ ExecutedT , time(X) still queries
Executed to get information about when X was executed, whereas res(X) does the same
but with respect to the committed resource. PS is locally consistent if Executed satisfies
all temporal constraints of the underlying CSTNU and for each (r, X, t) ∈ ExecutedT ,
r ∈ R(X) and t |= RE(r, X), where RE(r, X) is the temporal expression associated to the
pair (r, X).5 The set of all possible partial schedules remains represented by PS∗.

In the following, we fully formalize the execution semantics of CSTNURs in terms of
extended RTEDs for env and ctrl. Moreover, NonContingent is now a set of pairs (r, X),
where r is the resource that ctrl wants to commit for X.

Definition 20 (RTED for ctrl). An RTED for the controller ctrl, ∆ctrl, specifies which
action has to be performed by ctrl during an execution (represented by PS). It has two
forms: wait or (t, NonContingent).

• ∆ctrl = wait is the same as that given in Definition 3.

• ∆ctrl = (t, NonContingent) represents the conditional constraint: “if env does noth-
ing before time t, then for each pair (r, X) ∈ NonContingent, commit the resource
r to execute time point X at time t.” Such a decision is applicable if and only if
t > last(Executed), NonContingent is a (non empty) ordered set of pairs (ri, Xi) i =
1, . . . , k, where ri is a resource associated to Xi and committable at time t and Xi is
a non-contingent unexecuted time point such that ℓcps ⇒ L(Xi).

Definition 21 (RTED for env). An RTED for the environment env, ∆env, specifies which
action has to be performed by env during an execution. It has two forms: wait or
(t, Contingent).

• ∆env = wait is the same as that given in Definition 4.

• ∆env = (t, Contingent) is the same as that given in Definition 4 committing res(A)
to execute C. In other words, such a decision is applicable if and only if t >

last(Executed), Contingent is a non-empty subset of pairs (r, C), where C is the con-
tingent time point such that (A, x, y, C) ∈ L and A ∈ ExecutedT , r = res(A) is the
resource that was committed for A and t ∈ [time(A) + x, time(A) + y]}.

∆∗
ctrl and ∆∗

env still denote the sets of all RTEDs for ctrl and env. Furthermore, since the
association of resources to contingent time points is implicit and the assignment of truth
values to propositions does not involve resources, the instantaneous reactions definition is
the same as the one given for CSTNUs in Definition 5.

We are now ready to extend the notion of the partial and full outcome between ∆ctrl

and ∆env.

5. Once r has been committed for X at time t, no RRC will ever be able to restrict r’s associated temporal
expression for X as RRCs only apply to unexecuted target time points. Therefore, the valuation of
t |= RE(u, X) will remain fixed forever.

953

Combi, Posenato, Viganò, & Zavatteri

Definition 22 (Partial Outcome). Let PS be a locally consistent partial schedule. Let
∆ctrl be an RTED for ctrl and ∆env and RTED for env. We model the partial outcome
of ∆ctrl and ∆env as a mapping PO(Executed, ∆ctrl, ∆env) neglecting any instantaneous
reaction IR. There are four possible cases:

(1) PO(Executed, wait, (t, Contingent)) = Executed ∪ {(res(A), C, t) | C ∈ Contingent}
Also, for any 〈C, τ, Y, ρ〉 ∈ RRC such that Y 6∈ ExecutedT we have that ∀rY ∈ R(Y),
(res(A), rY) ∈ ρ =⇒ RE(rY , Y) := RE(rY , Y) ∧ τ .

(2) PO(Executed, (t1, NonContingent), (t2, Contingent)) = Executed ∪ {(res(A), C, t2) |
C ∈ Contingent} if t2 < t1. Also, for any 〈C, τ, Y, ρ〉 ∈ RRC such that Y 6∈ ExecutedT

we have that ∀rY ∈ R(Y), (res(A), rY) ∈ ρ =⇒ RE(rY , Y) := RE(rY , Y) ∧ τ .

(3) PO(Executed, (t, NonContingent), wait) = Executed ∪ {(ri, Xi, t) | (ri, Xi) ∈
NonContingent, ∀i = 1, . . . , k}. Also, every time we add (ri, Xi, t) to Executed we
fire the related RRCs (if any). That is, for any 〈Xi, τ, Y, ρ〉 ∈ RRC such that Y 6∈
ExecutedT we have that ∀rY ∈ R(Y), (ri, rY) ∈ ρ =⇒ RE(rY , Y) := RE(rY , Y) ∧ τ .

(4) PO(Executed, (t1, NonContingent), (t2, Contingent)) =
Executed ∪ {(ri, Xi, t) | (ri, Xi) ∈ NonContingent for i = 1, . . . , k} if t1 ≤ t2. Again,
every time we add (ri, Xi, t) to Executed we fire the related RRCs (if any). That is, for
any 〈Xi, τ, Y, ρ〉 ∈ RRC such that Y 6∈ ExecutedT we have that ∀rY ∈ R(Y), (ri, rY) ∈
ρ =⇒ RE(rY , Y) := RE(rY , Y) ∧ τ .

The explanations are similar to those given for Definition3 considering resources who are
now committed for time points. The definitions of full outcome and RTED-based strategies
for ctrl and env are the same as those given for CSTNUs. The definition of dynamic
controllability thus refines to:

Definition 23 (Dynamic Controllability of a CSTNUR). A CSTNUR is dynamically con-
trollable (DC) if there exists an RTED-based strategy σctrl such that for all RTED-based
strategies σenv, the variable assignments (r, X, k) in the complete schedule FO∗(σctrl, σenv)
satisfy all temporal constraints of the underlying CSTNU, and each assignment (r, X, k)
satisfies both r ∈ R(X) and k |= RE(r, X).

5. Encoding CSTNURs into TGAs

In this section, we extend the encoding into TGAs given in Section 3.2 for CSTNUs in order
to represent the DC checking of CSTNURs as a two-player game between ctrl and env

according to the semantics we gave in Section 4.2.
We encode committable resources into dedicated clocks and resource commitments for

time point executions considering RRCs into circular paths.
Such an encoding runs in polynomial time. We prove the correctness and complexity of

such an encoding in Section 6.

5.1 Encoding Committable Resources into Dedicated Clocks

As we have already pointed out, in a CSTNUR resources are committed for time points
according to the RA relation. Therefore, to model which resource has been committed for

954

Conditional Simple Temporal Networks with Uncertainty and Resources

which time point, we start by associating a dedicated clock rX to each element (r, X) ∈ RA

and interpreting the value of such clocks as follows (cX is the clock associated to X):

1. If rX = cX = ĉ, it means that X has not been executed yet and r is committable for
X.

2. If rX = cX < ĉ, it means that X has been executed and r is not the resource committed
for X.

3. If rX = ĉ > cX , it means r was committed for X at time ĉ − cX.

4. If rX < cX = ĉ, it means that X has not been executed yet and r cannot be committed
for X because r is not available. In details, rX becomes less than cX by a reset action.
The reset of rX occurs when it is necessary to prevent r from being committed for X

since ĉ 6|= RE(r, X).

Differently from what we have done for clocks associated to time points, here rX clocks
may be reset more than once. If r is committable for X and rX has never been reset, then
r can be committed to execute X. To determine which resource was committed for a time
point X, it suffices to check that cX < ĉ and find the unique clock rX such that rX > cX. It
is guaranteed that all other clocks rjX where rj ∈ R(X) and rj 6= r are equal to cX.

Getting back to our example, the relation RA specified for the CSTNUR in Figure 6
implies the following clocks.

• wD models R(D?) = {wf}

• aA1, bA1 model R(A1) = {Alice, Bob}

• aC1, bC1 model R(C1) = {Alice, Bob}

• lA2, mA2 model R(A2) = {Lila, Mike}

• lC2, mC2 model R(C2) = {Lila, Mike}

• eA3, tA3 model R(A3) = {Evie, Tim}

• eC3, tC3 model R(C3) = {Evie, Tim}

• eA4, tA4 model R(A4) = {Evie, Tim}

• eC4, tC4 model R(C4) = {Evie, Tim}

• lA5, mA5 model R(A5) = {Lila, Mike}

• lC5, mC5 model R(C5) = {Lila, Mike}

The following encoding aims to guarantee some properties that are necessary to state the
equivalence between the CSTNUR DC checking problem and the reachability problem in
the corresponding TGA. Before introducing such properties, we propose a compact notation
about the clocks and state of G. Let ~c = (ĉ,cδ, cX, . . . , cY, bP, . . . , r0X, . . . , r0Y, . . .) be the
vector containing all clocks of G. A state of the TGA G is a pair (L,~c), where L is a location
and ~c represents the values of all clocks. The properties that must be guaranteed in each
state TGA (L,~c) corresponding to a locally consistent partial schedule of the considered
CSTNUR are:

• L = L0, cδ = 0, last(Executed) = ĉ.

• For each executed time point X, time(X) = ĉ − cX and res(X) = rX, where rX is the
only riX clock not reset.

955

Combi, Posenato, Viganò, & Zavatteri

• For each unexecuted time point X, time(X) = ĉ and res(X) is not defined (i.e., all
riX = ĉ).

• For each executed observation time point P?, if p = ⊤ then bP = ĉ, and if p = ⊥ then
bP < ĉ. If the time point is not executed, the value of bP means nothing.

5.2 Encoding Resource Commitments into Circular Paths

In the encoding for CSTNUs given in Section 3.1 the executions of time points are modeled
as self-loop transitions at L1. In CSTNURs, we must extend this part to model that
resources are committed to execute time points. A resource r is committable to execute a
time point Y at time t if r ∈ R(Y) and t satisfies its associated TE. The latter condition
entails validating all fired RRCs (if any) targeting the time point we are trying to execute.
We achieve all this as follows.

Instead of having a (possibly) exponential number of self-loop transitions modeling all
possible executions with respect to all possible combinations of RRCs, we model the com-
mitment of a resource r for a time point X by means of a circular path of urgent locations
starting and ending at L1 (see Figure 7a). All transitions involving these locations are un-
controllable. The first location has the same name of the time point to execute (i.e., Y). A
run of the TGA enters Y if and only if the corresponding time point has not been executed
yet (the guard is exactly the same of that given for the self-loop transitions for CSTNUs).
Then, the run goes through a set of n locations Y1, . . . , Yn, where n is the number of RRCs
targeting Y . Moving from Yi−1 to Yi means validating the ith RRC targeting Y . In Fig-
ure 7a, each thick edge connecting Yi−1 to Yi abstracts a DAG with Yi−1 as a source and
Yi as a sink. Such a DAG has two possible forms according to the type of TE contained
in an RRC (see below). Validating RRCs may result in blocking some resources—those for
which the current time does not satisfy their associated TEs (refined by the RRC itself)—by
resetting their associated clocks. The validation of several different RRCs could block the
same resource r more than once by keeping on resetting rY.

Finally, m transitions connect Yn to Yr, where m is the number of resources committable
for Y . Taking one of these transitions means to commit one and only one committable
resource among those associated to Y . Recall that, at any time, r ∈ R(Y) is committable
if and only if rY = ĉ. Therefore, none, a few or all of these transitions could be disabled as
their guards might be false.

If r is not committable, it means that r’s current associated TE is violated. Since in the
previous locations Y1, . . . , Yn all RRCs having Y as a target have been validated, at least
one of these transitions must have blocked r by resetting rY. If the run can enter Yr, it
means that at least one resource for Y is committable (i.e., survived the blocking process).
Again, none, a few or all resources can survive this process. Each one of these transitions
verifies that ri is committable (having riY = ĉ as the unique clock constraint in its guard)
and resets all clocks rjY associated to all other resources rj 6= ri committable for the same
time point. The last (single) transition connecting Yr to L1 fixes the execution time of Y

by resetting cY. Eventually, if r is committed for Y at time ĉ − cY, the following three
conditions hold:

1. r ∈ R(Y)

956

Conditional Simple Temporal Networks with Uncertainty and Resources

L1

Y Y1

Yn−1

· · ·

Yr Yn

〈cY = ĉ ∧ . . . , GoY, ∅〉

Validate RRC r1

Validate . . .

Validate . . .

Validate RRC rn

〈r1Y = ĉ, r1ExY, R1〉

〈⊤, ExY, {cY}〉

(a) Circular path modeling the execution of Y . A run enters this
circular path only if Y is unexecuted (L1 Y). Then, it verifies
all the RRCs targeting Y (if any) (Y · · · Yn). After that, it
commits one and only one committable resource among those asso-
ciated to Y (if any) (Yn Yr). Finally, it fixes the execution time
of Y going back to L1 (Yr L1). Thick edges labeled by “Vali-
date RRC ri” are a compact representation of the DAGs depicted
in Figure 7(c)-(d).

L1

Y

Yr

〈cY = ĉ ∧ . . . , GoY, ∅〉

〈r1Y = ĉ, r1ExY, R1〉

〈⊤, ExY, {cY}〉

(b) Circular path modeling the gen-
eral execution of Y when no RRC
targets Y . A run just commits one
and only one committable resource
among those associated to X and
fixes the time of such an execution.

Yi

F V

Yj
〈cX = ĉ, skip, ∅〉

〈c
X

<
ĉ
,
f
i
r
e
d
,
∅
〉

〈ĉθk, sat, ∅〉

〈ĉ ⊲⊳1 k, viol1, ∅〉

〈ĉ ⊲⊳2 k, viol2, ∅〉

〈r
1
X

>
c
X
,
b
l
o
c
k

1
,
R

1
〉

(c) Encoding RRCs specifying a sin-
gle TE of Type 1 〈X, θk, Y, ρ〉. A run
enters F if only if the RRC has fired
(Yi F), otherwise it skips the ver-
ification (Yi Yj). At F , either θk

is satisfied, and then no resource is
blocked (F Yj), or θk is violated
(F V), and a few resources may
eventually be blocked (V Yj).

Yi

F V

Yj
〈cX = ĉ, skip, ∅〉

〈c
X

<
ĉ
,
f
i
r
e
d
,
∅
〉

〈ĉθ
1 k

1 ∧
· · · ∧

ĉθ
n k

n , sat, ∅〉

〈ĉ ⊲⊳1 k1, viol1, ∅〉

〈r
1
X

>
c
X
,
b
l
o
c
k

1
,
R

1
〉

(d) Encoding RRCs specifying
conjunctions of TEs of Type 1
〈X,

∧

i
θiki, Y, ρ〉. skip, fired and

blocki transitions remain the same of
those given in Figure 7c. sat extends
by checking that the entire conjunction
is true. Finally, there are as many
violi transitions as the number of
disjuncts arising from ¬(

∧

i
ĉθiki).

Figure 7: Modeling resource commitments: (a) shows the general circular path, (b) shows
the case in which a time point does not appear as a target in any RRC, (c) and (d)
give the encodings for Type 1 TEs and conjunctions of Type 1 TEs, respectively.

957

Combi, Posenato, Viganò, & Zavatteri

2. ĉ − cY |= RE(r, Y)

3. rY > cY and riY = cY for all ri ∈ R(Y) such that r 6= ri.

As a simple case, let us assume that a partial schedule for the considered CSTNUR
executes only time point Y because some temporal constraints do not allow any further time
point execution. In the corresponding TGA, after reaching L1, no other urgent transition
for executing another time point can be taken, because it is straightforward to show that the
guards on other urgent transitions for executing other time points are false (see Section 3.2).
Therefore, the TGA goes to L0, where the properties presented in Section 5.1 hold:

• L = L0, cδ = 0 because transition pass resets it, last(Executed) = ĉ because L1 is
urgent.

• For the executed time point Y , time(Y) = ĉ − cY and res(Y) = rY, where rY is the
only riY clock not reset as shown before.

• For each unexecuted time point X, time(X) = ĉ and res(X) is not defined (i.e., all
riX = ĉ).

We now discuss in more detail how we encode RRCs and block resources. The simplest
case is when no RRC targets a time point Y (Figure 7b). In such a case the circular path
reduces to three locations only: L1, Y and Yr. Again, a run enters Y if the corresponding
time point has not been executed yet, and then moves (for sure) to Yr since no resource has
been blocked. Finally, it fixes the execution time of Y .

Instead, when a time point Y appears as target in some RRC, we must make sure that,
if this RRC has fired and the related TEs of the resources committable for Y have been
updated, the global time ĉ must satisfy at least one of the TEs associated to different
resources. This way, at least one resource can be committed to execute the time point.

In the rest of the paper we will only consider RRCs whose embedded TEs are either
conjunctions of Type 1 TEs or of Type 2. We do not consider Type 0 TEs as current
time (no matter its value) always satisfies them. Each Type 3 TE containing conjuncts of
Type 1/Type 2 is transformed into a set of RRCs each containing either a Type 2 TE or a
conjunction of Type 1 TEs. This can be done in linear time with respect to the number of
conjuncts. For example, the RRC

〈X, > 3 ∧ ≤ 7
︸ ︷︷ ︸

1

∧ > C
︸︷︷︸

2

∧ ≤ Z + 5
︸ ︷︷ ︸

3

, Y, ρ〉

is composed by a conjunction of two Type 1 TEs (group 1) and two Type 2 TEs (groups 2
and 3). It is normalized as

{〈X, > 3 ∧ ≤ 10, Y, ρ〉, 〈X, > C, Y, ρ〉, 〈X, ≤ Z + 5, Y, ρ〉}

We now proceed by discussing how we encode RRCs in the circular path. As we discussed
at the beginning of this section, we validate the jth RRC rj by going from Yi to Yj . There
are two possible cases: (1) the considered RRC contains a conjunction of TEs of Type 1,
or (2) the considered RRC contains a TE of Type 2.

958

Conditional Simple Temporal Networks with Uncertainty and Resources

5.2.1 Encoding RRCs containing (a conjunction of) TEs of Type 1

We encode an RRC rj having the form 〈X, θk, Y, ρ〉 by means of four locations Yi, Yj , F ,
and V (see Figure 7c) and we connect such locations as discussed below.

Entering F means that the RRC has fired (i.e., that X has been executed), whereas
entering V means that both the RRC has fired and the TE of Type 1 specified in it is
violated. Therefore, starting from Yi, there are two possible transitions: one going to F

(fired) and one going to Yj (skip).

At F we have two transitions: either t |= θk or not.

In the first case, no resource will be blocked since current time satisfies the TE. In such
a case, the run moves to Yj (sat transition) and goes ahead. The guard of sat contains the
clock constraint ĉθk modeling tθk. From Definition16, it holds that t |= θk iff tθk whatever
θ is. Since in a CSTNUR TEs are evaluated with respect to global time (modeled by ĉ), it
is sufficient to substitute ĉ for t getting ĉθk.

In the second case, t 6|= θk and thus we must block all resources having θk associated.
To achieve this aim, the run first enters V . Either one or two transitions connect F to
V according to which θ is specified. If θ is ‘=’ (i.e., the corresponding clock constraint
is ĉ = k), then there are two transitions, one having guard ĉ < k and the other having
guard ĉ > k. Since ¬(θk) is true, then one of these two transitions must be true. If
θ ∈ {<, >, ≤, ≥}, then we just need to specify a unique transition going from F to V whose
guard is ¬(ĉθk). In Figure 7c, such transitions have labels viol1 and viol2, where viol2

(drawn in gray) exists if and only if θ is ‘=’. ⊲⊳1 and ⊲⊳2 model the new θ operators arising
from the negation of θk. Finally, a set of transitions connects V to Yi. There exists one
transition for each resource rX ∈ R(X) saying that if rX was committed for X, then all
resources rY associated to Y such that the pair (rX , rY) belongs to the relation ρ expressed
in the considered RRC must be blocked by resetting their associated clocks. That is, the
guard of each transition blocki is riX > cX (i.e., ri was committed for X), whereas each
update specifies the set Ri of clocks to reset. Each Ri is computed as follows:

Ri = {rjY | rj ∈ R(Y) ∧ (ri, rj) ∈ ρ}

We do not leave “anything behind” as all of these transitions are mutually-exclusive.

Now that we have discussed how to encode an RRC containing a single TE of Type 1, we
consider RRCs containing TEs of Type 3 where each conjunct is of Type 1, i.e., RRCs having
the form 〈X,

∧n
i θiki, Y, ρ〉. Figure 7d shows the encoding of such an RRC, where rather

than encoding 〈X,
∧n

i θiki, Y, ρ〉 and obtaining 〈X, θ1k1, Y, ρ〉, . . . , 〈X, θnkn, Y, ρ〉 and then
encoding each RRC according to Figure 7c resulting in a circular path Y1 · · · Yn Yr

of n DAGs, we generate a refined shorter path Y1 Yr, consisting of one DAG only, ables
to deal with the entire conjunction of TEs. This encoding substantially extends the sat

and violi transitions in Figure 7c. All other transitions remain the same. We refine sat so
that it verifies the clock constraint ĉθ1k1 ∧ · · · ∧ ĉθnkn. To generate violi transitions, we
proceed exactly as we did in Figure 7c. That is, we compute ¬(ĉθ1k1 ∧· · ·∧ ĉθnkn) resulting
in

∨

j ¬(ĉθikj), where, again, if θ is ’=’ in some conjunct of the initial TE, we generate two
disjuncts.

959

Combi, Posenato, Viganò, & Zavatteri

As an example, consider the following RRC having a single Type 1 TE: 〈X, =6, Y, ρ〉.
TE =6 is translated as clock constraint ĉ = 6 (sat), and ¬(ĉ = 6) becomes (ĉ < 6)∨(ĉ > 6),
from which viol1, and viol2 are generated (connecting F to V).

Let us now consider an RRC having a conjunction of Type 1 TEs: 〈X, ≤ 7∧> 5, Y, ρ〉. It
follows that, ≤ 7∧> 5 becomes the clock constraint ĉ ≤ 7∧ĉ > 5 (sat), and ¬(ĉ ≤ 7∧ĉ > 5)
becomes (ĉ > 7) ∨ (ĉ ≤ 5), from which we generate viol1 and viol2 connecting F to V .

5.2.2 Encoding an RRC containing a TE of Type 2

We encode an RRC having the form 〈X, θZ + k, Y, ρ〉 by building a DAG consisting of the
locations Yi, Yj , F , V , Ze and Zu (see Figure 8a) and connecting such locations as discussed
below. The meaning of F and V as well as that of the transitions from Yi to F and to Yj

are the same of those given for RRCs expressing TEs of Type 1 (Figure 7c). At F , the
RRC has fired and the TEs related to some resources associated to Y have been updated
(possibly differently depending on whether or not Z has been executed). Indeed, if Z has
been executed, then θZ + k is equivalent to θ(tZ + k), where tZ is the time at which Z has
been executed. If Z has not yet been executed, tZ is assumed to be +∞ and thus θZ + k

is either ⊤ or ⊥ depending on θ. Therefore, instead of connecting F to both V and Yj as
we have done before, we connect F to Ze and Zu, modeling the fact that Z has, or has not,
been executed, respectively. A run moves to Ze if and only if Z has been executed (cZ < ĉ),
whereas it moves to Zu if and only if Z has not (cZ = ĉ).

At Zu we might block some resource(s) according to θ. If θ ∈ {=, >, ≥}, then t 6|= θZ+k.
Therefore, from Zu to Yj , there are as many blocking transitions as the number of resources
in R(X). Each one specifies the set Ri as we have done for RRCs having TEs of Type 1. If
θ ∈ {<, ≤}, then the run moves to Yj not blocking any resource (indeed, t |= θZ + k implies
Ri = ∅).

At Ze, we must valuate θZ + k; thus, this TE becomes the clock constraint ĉ θ (ĉ − cZ +
k), which simplifies to cZ θ k. If cZ θ k is true, no resource will be blocked and a sat

transition allows the run to move to Yj . If cZ θ k does not hold, then ¬(cZ θ k) = cZ ⊲⊳ k

and, therefore, there are one or two violi transitions allowing the run to move to V . At
V the run moves to Yj by (possibly) blocking some resources for Y and generating again
a blocking transition for each resource associated to the firing time point X as we did for
RRCs having TEs of Type 1.

Now that we have discussed the general encoding for RRCs whose TEs are of Type 2,
we consider those RRCs where the firing time point and the time point belonging to the
embedded TE are the same, i.e., those having form 〈X, θX + k, ρ, Y 〉. For this case, we can
remove the redundancy of the original encoding given in Figure 8a (locations Ze and Zu).
Figure 8b shows such an encoding. Differently from what we discussed for the case depicted
in Figure 7b, this encoding does not result in reducing the number of DAGs, but it avoids
generating Ze and Zu for each DAG going from Yi−1 to Yi. Indeed, when X = Z, keeping
Ze and Zu would correspond to checking twice if X has been executed or not. Therefore,
this encoding first removes Ze and Zu along with the transitions to enter these locations
and, then, it connects F directly to Yj and to V , maintaining the same sat and viol1,2

transitions.

960

Conditional Simple Temporal Networks with Uncertainty and Resources

Yi

F Ze V

Yj

Zu

〈cX = ĉ, skip, ∅〉

〈c
X

<
ĉ
,
f
i
r
e
d
,
∅
〉

〈cZ < ĉ, Ze, ∅〉

〈cZ =
ĉ, Zu , ∅〉

〈cZθk, sat, ∅〉

〈cZ ⊲⊳ k, viol1, ∅〉

〈cZ ⊲⊳2 k, viol2, ∅〉

〈r
iX >

cX, block
i , R

i 〉

〈r
i X

>
c
X
,
b
l
o
c
k

i ,
R

i 〉
(a) Encoding normalized RRCs whose TEs are of Type 2 〈X, θZ +
k, Y, ρ〉. A run enters F if only if the RRC has fired (Yi F),
otherwise it skips the verification (Yi Yj . At F , either Z has
been executed (F Ze) or not (F Zu). At Zu a few resources
might eventually be blocked (Zu Yj). At Ze either θZ + k is
satisfied and no resource is blocked (Ze Yj), or θZ+k is violated
(Ze V) and a few resources might be blocked (V Yj).

Yi

F V

Yj
〈cX = ĉ, skip, ∅〉

〈c
X

<
ĉ
,
f
i
r
e
d
,
∅
〉

〈cXθk, sat, ∅〉

〈cX ⊲⊳1 k, viol1, ∅〉

〈cX ⊲⊳2 k, viol2, ∅〉
〈r

1
X

>
c
X
,
b
l
o
c
k

1
,
R

1
〉

(b) Optimizing the encoding of nor-
malized RRCs whose TEs of Type 2
have the form 〈X, θX+k, Y, ρ〉. skip,
fired, sat, violi and blocki transi-
tions remain the same of those given
in Figure 8a (they just connect differ-
ent locations).

Figure 8: Encoding RRCs specifying TEs of Type 2 〈X, θZ +k, Y, ρ〉: (a) shows the general
encoding, and (b) refines it for the case X = Z.

Figure 9a shows the circular paths modeling the resource commitments for the execution
the non-contingent time points D?, A1, A2, A3, A4 and A5 of the CSTNUR in Figure 6,
whereas Figure 9b and Figure 9c detail the validation of the related RRCs (thick edges in
Figure 9a) for the circular paths modeling the authorized execution of A3, A5, respectively.
We do not discuss the encoding for A4 as it is similar to that for A3.

5.3 Encoding Contingent Time Points into Contingent Circular Paths

In the encoding for CSTNUs, transitions modeling the execution of the contingent time
points are controllable self-loop transitions at L0. In the semantics we gave for CSTNURs
(see Section 4.2), the two time points of a contingent link (A, x, y, C) must be executed by
committing the same resource. Moreover, contingent time points cannot appear as targets
in any RRC. Therefore, for each contingent time point the encoding generates a contingent
circular path similar to that depicted in Figure 7b neglecting the validation of RRCs.

The path starts and ends at L0 and contains two internal urgent locations C and Cr (see
Figure 10a). A unique transition GoC goes from L0 to C, whereas a set of |R(A)| transitions
connects C to Cr. A run can enter C as soon as the clock constraint for contingent time
points (i.e., cA < ĉ ∧ cC = ĉ ∧ cA ≥ x ∧ cA ≤ y) becomes true. GoC is unique and does not
reset any clock. After that, the resource that was committed for A is committed for C as
well by means of a transition riExC going from C to Cr. The only enabled transition riExC

is the one whose guard contains the clock constraint riC > cA, i.e., the transition associated
to the resource ri committed for A. Indeed, for all other rj ∈ R(A) where rj 6= ri, it holds

961

Combi, Posenato, Viganò, & Zavatteri

L1

A3

A3,2

A3,r

〈cA3
= ĉ, GoA3

, ∅〉

Validate RRC r2

〈e
A

3
=

ĉ
,
e
E
x
A

3
, {

t
A

3
}
〉

〈t
A

3
=

ĉ
,
t
E
x
A

3
,{

e
A

3
}
〉

〈⊤, ExA
3 , {cA

3}〉

A4

A4,3

A4,r

〈cA
4 = ĉ, GoA

4 , ∅〉

Validate RRC r
3

〈e
A

4
=

ĉ
,
e
E
x
A

4
,
{
t
A

4
}
〉

〈t
A

4
=

ĉ
,
t
E
x
A

4
,
{
e
A

4
}
〉

〈⊤, ExA4
, {cA4

}〉

A1

A1,r

〈c
A1

=
ĉ,

Go
A1

, ∅
〉

〈aA
1 =

ĉ, aExA
1 , {bA

1 }〉

〈bA
1 =

ĉ, bExA
1 , {aA

1 }〉

〈⊤
,
E
x
A

1
,
{
c
A

1
}
〉

A2

A2,r

〈c
A

2
=

ĉ
,
G
o
A

2
, ∅

〉

〈lA2
=

ĉ, l
ExA2

, {mA2
}〉

〈mA2
=

ĉ, m
ExA2

, {lA2
}〉

〈⊤
, ExA

2 , {cA
2 }〉

A5

A5,1

A5,r

〈c
A5

=
ĉ,

Go
A5

, ∅
〉

Val
id

at
e

RRC
r1

〈lA
5 =

ĉ, lExA
5 , ∅〉

〈mA
5 =

ĉ, mExA
5 , ∅〉

〈⊤
,
E
x
A

5
,
{
c
A

5
}
〉

D?

D?r

〈c
D

=
ĉ
,
G
o
D
, ∅

〉

〈wD =
ĉ, W

fExD, ∅〉

〈⊤
, ExD, {cD}〉

(a) Circular paths for assigning a value and a resource to time points A1, A2, A3, A4, A5, and D?. For the
sake of simplicity, the guard of each transition from L1 to A1, A2, A3, A4, A5, and D? does not contain the
extended parts introduced in Section 3.2.

A5

F1 V1

A5,1
〈cC2 = ĉ, skip, ∅〉

〈c
C

2
<

ĉ
,
f
i
r
e
d
,
∅
〉 〈cC

2 ≥
840, sat, ∅〉

〈cC2 < 840, viol1, ∅〉

〈l
C

2
>

c
C

2
,
b
l
o
c
k

1
, {

l
A

5
}
〉

〈m
C

2
>

c
C

2
,
b
l
o
c
k

2
, {

m
A

5
}
〉

(b) Validation of RRC
r1 = 〈C2, ≥C2 + 840, A5, =〉.

A3

F2 C4,e V2

A3,2

C4,u

〈cA4 = ĉ, skip, ∅〉

〈c
A

4
<

ĉ
,
f
i
r
e
d
,
∅
〉

〈cC4 < ĉ, C4,e, ∅〉

〈cC
4 =

ĉ, C
4,u , ∅〉

〈cC
4

>
0, sat, ∅〉

〈cC4 ≤ 0, viol, ∅〉

〈eA
4 >

cA
4 , block

1 , {eA
3 〉

〈tA
4 >

cA
4 , block

2 , {tA
4 〉

〈e
A

4
>

c
A

4
,
b
l
o
c
k

1
,{

e
A

3
〉

〈t
A

4
>

c
A

4
,
b
l
o
c
k

2
, {

t
A

4
〉

(c) Validation of RRC r2 = 〈A4, >C4, A3, 6=〉.

Figure 9: Circular paths modeling the authorized execution of the non-contingent time
points of the CSTNUR in Figure 6 and two RRC encodings.

962

Conditional Simple Temporal Networks with Uncertainty and Resources

L0

C

Cr

〈c
A

<
ĉ
∧

cC
=

ĉ∧

cA
≥

x
∧

cA
≤

y,
Go

C,
∅〉

〈r
i A

>
cA, r

i ExC, R
i 〉

〈⊤, ExC, {cC, cδ}〉

(a) Modeling the authorized execution of a generic contingent time point C. This path just commits the
same resource ri that was committed for the corresponding activation time point A. Once A has been
executed, only one transition connecting C Cr will be enabled. For each of these transitions Ri = {rjC |
rj ∈ R(C) ∧ rj 6= ri}.

L0

C1

C1,r

〈cA
1

<
ĉ

∧
cC

1

=
ĉ∧

cA
1 ≥

60
∧

cA
1 ≤

180, GoC
1 , ∅〉

〈a
A 1

>
cA

1
, a

Ex
C 1

, {
bC

1
}〉

〈b
A 1

>
cA

1
, b

Ex
C 1

, {
aC

1
}〉

〈⊤, ExC
1 , {cC

1 , cδ }〉

C2

C2,r

〈c
A 2

<
ĉ

∧
cC

2
=

ĉ∧

cA
2

≥
57

0
∧

cA
2

≤
63

0,
Go

C 2
, ∅

〉

〈lA
2
>

cA
2 , lExC

2 , {mC
2 }〉

〈mA
2
>

cA
2 , mExC

2 , {lC
2 }〉

〈⊤, ExC2
, {cC2

, cδ}〉

C3

C3,r

〈cA
3

<
ĉ

∧
cC

3

=
ĉ∧

cA
3 ≥

60
∧

cA
3 ≤

120, GoC
3 , ∅〉

〈e
A 3

>
cA

3
, e

Ex
C 3

, {
tC

3
}〉

〈t
A 3

>
cA

3
, t

Ex
C 3

, {
eC

3
}〉

〈⊤, ExA
3 , {cC

3 , cδ }〉

C4 C4,r

〈c
A 4

<
ĉ

∧
c
C 4

=
ĉ
∧

c
A 4

≥
60

∧
c
A 4

≤
90

, G
o
C 4

, ∅
〉

〈eA4 > cA4, eExC4, {tC4}〉

〈tA4 > cA4, tExC4, {eC4}〉

〈⊤
, E

x
C

4 , {
c
C

4 , c
δ }〉

C5

C5,r

〈c
A 5

<
ĉ

∧
cC

5
=

ĉ∧

cA
5

≥
57

0
∧

cA
5

≤
63

0,
Go

C 5
, ∅

〉

〈lA
5
>

cA
5 , lExC

5 , {mC
5 }〉

〈mA
5
>

cA
5 , mExC

5 , {lC
5 }〉

〈⊤, ExC5
, {cC5

, cδ}〉

(b) The encoding of C1, C2, C3, C4, and C5 of Figure 6.

Figure 10: Modeling the executions of contingent time points: (a) shows the pattern for
modeling the execution of a contingent time point C, whereas (b) shows the
encoding of C1, C2, C3, C4, and C5 of Figure 6.

that rjC ≤ cA. Finally, the run moves back to L0 by resetting cC, i.e., fixing the execution
time for C and cδ.

Even in this case, it is straightforward to show that the properties presented in Sec-
tion 5.1 hold when the TGA returns to state L0.

963

Combi, Posenato, Viganò, & Zavatteri

Figure 10 sums up the general pattern for modeling the execution of contingent time
points (Figure 10a) and the application of such a pattern to the contingent time points of
the CSTNUR in Figure 6 (Figure 10b).

6. Complexity and Correctness of the Encoding

In this section, we discuss the computational temporal complexity and the correctness
of encoding a CSTNUR N into a TGA. In Section 5 we introduced in a constructive
way how to rewrite RRCs in the corresponding DAGs. Therefore, firstly, we discuss the
temporal computational-complexity, hereinafter complexity, of encoding each single RRC.
Then, we discuss the complexity to connect all these encodings into the TGA and, finally,
the complexity to encoding the check of all temporal constraint into the winning path. The
overall complexity is the sum of all these steps and it will result to be polynomial with
respect to the size of the network.

Lemma 1 (RRC Encoding Complexity).
Given a CSTNUR N = 〈T , P, L, OT , O, C, L, R, RA, RE , RRC〉, for each RRC r ∈ RRC,
the complexity for determining its corresponding TGA fragment (see Section 5) is O(|R|2),
where R is the set of resources.

Proof. Let us consider the patterns for building TGA fragments from RRCs depicted in
Figure 7c (for RRC having only Type 1 TE), Figure 7d (for RRC having conjunction of
Type TEs), and Figure 8a (for RRC having a Type 2 TE). For each pattern, the number of
TGA nodes is 6 at most and the number of edges representing block actions is equal to the
possible number of resources that can be associated to a CSTNUR node. In the worst case,
this number of resources is equal to |R|. Moreover, each TGA block edge blocki has to reset
clocks associated to some resources. Indeed, in the worst case, its label may have length
O(|R|) as it must contain the references to clocks associated to all the other resources.
Therefore, in the worst case, the complexity of building a TGA fragment associated to a
RRC is O(|R|2).

Lemma 2 (Resource Commitments Encoding Complexity).
Given a CSTNUR N = 〈T , P, L, OT , O, C, L, R, RA, RE , RRC〉, the complexity for deter-
mining all TGA fragments corresponding to the resource commitments (as, for example, all
fragments in Figure 9a) is O(n3), where n is the encoding length of N .

Proof. For each non-contingent time point Y , the modeling of its execution and its re-
source commitment is given by a TGA circular path L1 Y Y1 · · · Yn Yr L1

(cf. Figure 7a). In such path, the more expensive fragments to build are:

• the edge L1 Y , because it represents the TGA action for evaluating whether Y is
not yet executed and whether its (possible) predecessors have been already executed.
The label of this edge may contain O(|P|) clocks specifications, where P is the set of
possible propositions of the network. Therefore, its building complexity is O(|P|).

• each fragment Yi−1 Yi, because it represents a DAG handling the validation of the
ith RRC associated to Y . The complexity of each fragment is O(|R|2) as proved in
Lemma 1, and

964

Conditional Simple Temporal Networks with Uncertainty and Resources

• the edges riExY, i = 1, . . . , m from Yn to Yr, because they can be |R| at most and each
of them can have label with length O(|R|). Indeed, in the worst case, each action
(i.e., edge) is associated to a resource and it has to reset all clocks associated to all
the other resources. Therefore, the complexity for building such edges is O(|R|2).

For each non-contingent time point, the complexity for building the corresponding cir-
cular path without RRCs is O(|P| + |R|2). The complexity for building all RRC fragments
is O(|RRC||R|2), where RRC is the set of all RRCs in the considered CSTNUR. The cost
for positioning all RRC fragments into the right circular paths is O(|T ||RRC|). Therefore,
the complexity for representing into a TGA the execution of all non-contingent time points
with their resource commitments is O(|T |(|P|+|R|2+|RRC|)+|RRC||R|2) = O(n3), where
n is the length of the N encoding.

Lemma 3 (Contingent Time Point Encoding Complexity).
Given a CSTNUR N = 〈T , P, L, OT , O, C, L, R, RA, RE , RRC〉, the complexity for deter-
mining all TGA fragments for modeling the execution of contingent time points (cf. Fig-
ure 10a) is O(n3), where n is the encoding length of N .

Proof. For each contingent time point C, the modeling of its execution is given by a TGA
circular path L0 C Cr L0 (cf. Figure 10a), where between C are Cr there are |R|
edges at most. Each of the edges connecting C to Cr commits a resource for executing C

resetting the clocks associated to all the other resources. Therefore, in the worst case, each
label of such edges may contain |R| − 1 clock resets.

As a consequence, for each contingent time point, the complexity for building the cor-
responding TGA fragment is O(|R|2) and the overall complexity for building all TGA
fragments is O(n3), where n is the encoding length of N .

Theorem 1. Any CSTNUR N = 〈T , P, L, OT , O, C, L, R, RA, RE , RRC〉 can be encoded
into a corresponding TGA in O(n3) time, where n is the encoding length of N .

Proof. In Section 5 we presented how to encode CSTNURs into TGAs by extending the
encoding presented in Section 3.2. In particular, in Section 5 we propose to replace all
TGA transitions encoding the execution of non-contingent and contingent time points with
circular paths presented in Section 3.2 while maintaining the encoding of winning path for
checking that all relevant temporal constraints are satisfied.

By Lemma 2 and Lemma 3, the complexity for building all circular paths in the TGA is
O(n3), where n is the encoding length of N .

The complexity for encoding the winning path is linear in the number of distinct labels
present in the input network (Cimatti et al., 2016)). The number of distinct labels in N is
O(n).

Therefore, the overall complexity for building a TGA from a CSTNUR N is O(n3).

We prove the correctness of the encoding given in Section 5 by means of the following
two theorems. Such theorems extend those given in (Cimatti et al., 2016) proving the
correctness of the CSTNU-to-TGA encoding. Our extension takes into account resources
and RRCs. We first prove the equivalence between the execution semantics of the resulting
TGA and the semantics of RTEDs (Theorem 2), and then that any counter-strategy for ctrl

965

Combi, Posenato, Viganò, & Zavatteri

synthesized by reachability analysis of the resulting TGA corresponds to an RTED-based
strategy (Theorem 3).

Theorem 2. Let N = 〈T , P, L, OT , O, C, L, R, RA, RE , RRC〉 be a CSTNUR and let G be
the encoding of N into a TGA, as described in Section 5. Then G correctly captures the
execution semantics for N in the sense that any sequence of partial schedules that can be
generated for N according to the execution semantics for CSTNURs corresponds to a run
for G that can be generated by following its transitions according to the TGA semantics.

Proof. We show that any sequence of partial schedules that can be generated for any CST-
NUR according to the execution semantics given in Section 4.2 corresponds to a run for the
equivalent TGA that can be generated by following its transitions according to the classic
TGA semantics.

In the following, we write ~c = k meaning that all clocks in ~c are equal to k and we write
~c + k meaning that we refer to value of clocks in ~c increased of k each.

The proof is given by induction considering the already introduced invariants, recalled
here for sake of readability.

Invariant Each locally consistent partial schedule that can be generated for N corre-
sponds to a state (L,~c) of the TGA G in which:

• L = L0, cδ = 0, last(Executed) = ĉ.

• For each executed time point X, time(X) = ĉ − cX and res(X) = rX, where rX is the
only riX clock not reset.

• For each unexecuted time point X, time(X) = ĉ and res(X) is not defined (i.e., all
riX = ĉ).

• For each executed observation time point P?, if p = ⊤ then bP = ĉ, and if p = ⊥ then
bP < ĉ. If the time point is not executed, the value of bP means nothing.

Base case. The initial PS corresponds to the initial state (L0,~c) where ~c = 0. This
partial schedule is trivially locally consistent.

Inductive step. Suppose that PS is a locally consistent partial schedule that has been
generated according to the execution semantics for CSTNURs, and that PS satisfies the
above invariant. Let (Li,~ci) be the corresponding state of the TGA. Since cδ = 0, the
only transitions that are immediately enabled are those entering the contingent circular
paths and those that set truth values to propositions. In case a run enters a contingent
circular path corresponding to the executing of a contingent time point C, it enters location
C and then it must move to location Cr, representing the event that a resource has been
committed, picking the transition having the same resource that was committed for the
related activation time point A. Finally, it must move back to L0. Since the homonymous
location C and the location Cr are urgent, time does not elapse. All transitions executed
during a walk through contingent circular paths and the transitions modeling the truth value
assignments represent the instantaneous reactions of env, in which a set of one or more
contingent time points and/or proposition assignments can be executed simultaneously.
Suppose that env does not take any transition when cδ = 0. As soon as cδ > 0, both ctrl

966

Conditional Simple Temporal Networks with Uncertainty and Resources

and env may execute enabled transitions (i.e., those with true guards). For example, env

might decide to execute one or more contingent time-points C1, . . . , Cn when cδ = 3. That
would correspond to ∆env = (k, {C1, . . . , Cn}), where k = last(Executed) + 3.

Each time env takes a transition pFalse to reset the clock associated to transition p

(i.e.,, setting p to ⊥) or a transition ExC to execute a contingent time point, cδ is reset to 0,
making ctrl unable to interrupt env during the execution of the initiated transition. Thus,
at these time instants, it holds that ∆ctrl = wait and the resulting outcomes are exactly the
ones described in cases 1 and 2 of Definition 22. The guard of the env transition, enforcing
the duration bounds for a contingent link (A, x, y, C), ensures that the resulting partial
schedule is respectful as C can only be executed in an instant such that C − A ∈ [x, y].
Likewise, for a truth value assignment, the fail transition that ctrl can take (if δ > 0)
ensures that env assigns a truth value to a proposition instantaneously after the execution
of the observation time point.

Also, when env’s sequence of “simultaneous” transitions completes, ĉ equals the time of
the most recent execution (e.g., last(Executed) + 3). In addition, for each newly executed
time-point C, the clock cC is reset and for each ri ∈ R(C), if riC = ĉ then riA = ĉ and if
riC < ĉ then riA < ĉ ensuring that ĉ − cC equals the execution time of C. Analogously, for
each pFalse taken, it holds that bP < ĉ. Since cC is reset only once and each proposition
is assigned only once, the values of ĉ − cC and bP remain fixed forever.

Instead, suppose that ctrl has decided to commit a set of resources to execute a set of
non-contingent time points before env executes some contingent time points (for example,
ctrl has decided to execute some time points at time last(Executed) + 2). This situation
results in ctrl taking the gain transition to take back control and then, once in its location,
instantaneously go through the circular paths (for non-contingent time points) to commit
the resources to execute those time points at that time, and immediately returning to the env

location by means of the pass transition. Since all the locations but L0 are urgent, ĉ does
not change its value (in our example, it is last(Executed) + 2). The sequence of transitions
to go through the circular paths corresponds to the partial outcome in Definition 22 (cases
3 and 4) where ∆ctrl = (t, {(r1, X1), . . . , (rn, Xn)}), t = last(Executed) + 2, and for each
(r, X) ∈ NonContingent (of ∆ctrl), r ∈ R(X).

Finally, if at time last(Executed), ctrl and env both decide to execute some time points
at time last(Executed)+1, then the CSTNUR semantics (inheriting the CSTNU semantics)
ensures that ctrl time points are executed first, and that env is able to instantaneously
react if it decides to do so (equivalent to ctrl transitions having priority over env). As soon
as the execution returns to the location of env, ĉ has still the same value last(Executed)+1
because, again, time has not elapsed. Since, in all cases, the resulting state of the TGA
satisfies the desired invariant property, the result is proven.

Theorem 3. Let N be a CSTNUR, G be the encoding of N , and σG be a winning TGA
counter-strategy for ctrl. Then, there is an equivalent RTED-based strategy σctrl for ctrl

that will ensure the satisfaction of all temporal constraints in N and all RRCs, if fired,
whatever the contingent durations and truth value assignments.

Proof. If N , G, σG are as assumed, then we can interpret σG as a function σG : S → Act

∪ wait, where S is the state set of the TGA and Act is the ctrl action set (equivalently,
the set of uncontrollable transitions).

967

Combi, Posenato, Viganò, & Zavatteri

Suppose the TGA has just got into the state (L0,~c). As we have already noted, for any
time point X associated to clock cX, it holds that:

• cX = ĉ,

• all riX have value ĉ before X executes, and

• all riX but one have value cX < ĉ after X executes. The clock riX remaining equal to
ĉ represents that the corresponding resource has been committed to execute X.

For each observation time point P?, when cP = ĉ, the associated proposition modeled by
bP is bP = ĉ (i.e., unknown before P? executes), and when cP < ĉ, either bP = ĉ (i.e., ⊤)
or bP < ĉ (i.e., ⊥) (i.e., P? has been executed and its proposition is known). Thus, (L0,~c)
specifies a partial schedule.

Now, suppose that ĉ > last(Executed), i.e., that some positive time has elapsed since
the last execution event in PS. If nothing has happened, it means that there has been a
sequence of gain and pass transitions going back and forth between env and ctrl locations.
In such a loop, ctrl has not executed any non-contingent time point, and env has just
waited. Let (L0,~c′) be a state preceding such loop. Then, for some ǫ > 0, all the clocks
in ~c equal those in ~c′ + ǫ, and by construction, last(Executed) refers to the clocks in ~c′.
Next, let d = min{d | σG(L0,~c′ + d) 6= wait ∧ σG(L0,~c′ + d) 6= pass} be the minimum
time that can elapse from ~c′ before the strategy σG recommends a transition different from
gain and pass, and let ~c0 = ~c′ + d. The unique sequence of execution transitions at ctrl

is σG(L1,~c0), . . . , σG(L1,~cn), where each ~ci+1 = ~ci, except for cX with X the time point
executed by σG(L1,~ci). The termination of this sequence of transitions is guaranteed since
time points are finite and can only be executed once. If σG(L1,~cn) is the last execution
transition, then pass = σG(L1,~cn). That transition leads back to the state (L0,~cn), where
~cn is the same as ~c0, except that the clocks for the time points executed by the transitions
plus those for resources for those time points, σG(L1,~c0), . . . , σG(L1,~cn), are all 0 in ~cn.

Next, let t be the time at which σG recommends ctrl a non-trivial transition, and
NonContingent be the set of pairs (resource, time point) corresponding to the execution
transitions, σG(L1,~c0), . . . , σG(L1,~cn). Then (t, NonContingent) is a ∆ctrl corresponding
to what the strategy recommends at (L0,~c′). Note that env may decide to instantaneously
react by executing some contingent point at time t too, an outcome that is prevented by
the execution semantics for CSTNURs (Definition 22, cases 3 and 4). Finally, env may
decide to intervene before time t arrives, by executing one or more contingent time-points
and effectively generating a new partial schedule PS ′. In that case, the same procedure
could be applied to PS ′ to generate an appropriate ∆ctrl. Since the guard of gain requires
a positive time delay, that ∆ctrl is properly prohibited from any kind of instantaneous
reaction (by ctrl). This procedure gives a mapping from any (L0,~c) state that is reachable
following σG .

Finally, as proof-of-concept, we modeled and validated the motivating example for a
round-trip flight process (see Section 2) encoding it into a corresponding TGA. The dynamic
controllability of such an example has been determined by synthesizing a memoryless exe-
cution strategy using the well-known model checker Uppaal-TIGA (Behrmann, Cougnard,

968

Conditional Simple Temporal Networks with Uncertainty and Resources

David, Fleury, Larsen, & Lime, 2007). We verified that the example is dynamically con-
trollable and that the model checking phase took 207 minutes and 28 seconds to synthesize
a 1.6MB memoryless execution strategy as a certificate of YES for this decision problem.
Appendix A presents more details about this proof-of-concept.

7. Related Work

In the following sections, we discuss the main contributions related to the uncertainty for
conditions and for durations, and how these features have been combined also with access
control policies and resource management.

7.1 Managing Decisions and Conditions

Temporal Plan Networks (TPNs) (Kim, Williams, & Abramson, 2001) extend STNs by
adding decision nodes (as new labeled STN nodes) and symbolic constraints (as new labels
for STN edges) to model temporal plans with controllable choices. Each outgoing edge of
a decision node represents a decision. A symbolic constraint is either the label Ask(c) (is c

true?) or the label Tell(c) (c is true!) where c is a literal. A TPN edge may be labeled with
a symbolic constraint as well as a duration. Symbolic constraints may exclude nodes from
being executed. A plan is consistent if it satisfies both temporal and symbolic constraints.
TPNs do not specify more than one temporal constraint on the same edge. Consistency is
checked by means of a backtracking algorithm that builds iteratively a sequence of decisions,
(if any), for which all constraints are satisfied.

In (Tsamardinos, Vidal, & Pollack, 2003), the authors introduced Conditional Simple
Temporal Networks even if they didn’t name them as such. A Conditional Simple Tem-
poral Network (CSTN) is a data structure for representing and reasoning about temporal
constraints in domains where some constraints may apply only in certain scenarios. Each
condition in a CSTN is represented by a propositional letter whose truth value is not con-
trolled, but instead is observed in real time. An execution strategy for a CSTN specifies the
times at which various time-points will be executed. Such a strategy can be dynamic in that
its execution decisions can react to the information obtained from such observations. The
Conditional Simple Temporal Problem (CSTP) is the problem of determining whether a
given CSTN admits a dynamic execution strategy that can guarantee the satisfaction of all
constraints no matter which combination of propositional outcomes happens to be observed
over time. If such a strategy exists, the CSTN is said to be dynamically consistent (DC).
Thus, the CSTP is the DC-checking problem for CSTNs. The authors proposed to solve
the CSTP by encoding it as a meta-level Disjunctive Temporal Network (DTN) (Stergiou
& Koubarakis, 2000), where constraints may be specified as a set of disjunctive constraints
between pairs of time points. Then, the corresponding DTN is solved by an off-the-shelf
DTN solver. Although of theoretical interest, this approach is not practical because the
CSTP-to-DTN encoding has exponential size and, on top of that, the DTN solver runs in
exponential time.

In (Léauté & Williams, 2005), the authors provided a continuous model-based executive
for systems having state variables and continuous dynamics. Their approach is based on
encoding sub-parts of the main temporal problem into disjunctive linear programs (DLPs,
(Balas, 1979)), reformulating them as Mixed-Integer Linear Programs, and solving these

969

Combi, Posenato, Viganò, & Zavatteri

last ones exploiting some constraint-pruning policies for both state constraints and temporal
constraints. Their experimental evaluation shows that the adopted pruning policies enable
the executive to design near-optimal control sequences in real time even if the worst case
complexity of the problem is exponential.

Drake (Conrad & Williams, 2011) is an executive for temporal plans with choices mod-
eled as Labeled STNs, which extend STNs by labeling constraints with environments (set
of instantiated discrete decision variables). There are no decision points, and therefore
decision variables can be set anytime. The main goal of the developers of Drake was to
implement a dispatching executive with a lower memory footprint. To that end, Drake uses
an Assumption-based Truth Maintenance System to maintain a minimal representation of
the constraints needed to execute the network. During execution, decisions are discrimi-
nated by generating conflicts according to the time Drake decides to schedule some event.
In (Conrad & Williams, 2011), the authors proved that Labeled STNs are equivalent to
DTNs (Stergiou & Koubarakis, 2000). They also proved that, in general, a dispatchable
solution found by Drake is more compact by over two orders of magnitude with respect to
the equivalent one found with previous methods for DTNs.

In (Yu & Williams, 2013), the authors faced a slightly different problem: to face over-
constrained temporal problems, they represent them as Controllable Conditional Temporal
Problems (CCTPs) and solve them by the Best-first Conflict-Directed Relaxation (BCDR)
algorithm. CCTP extends CSTP (Tsamardinos et al., 2003) assuming that all CSTP con-
dition variables are controllable (in other words, they are decisions) and that domains of
condition variables may be any finite domains instead of binary ones. Consequently, to
solve a CCTP, it is sufficient to find one consistent set of discrete variable assignments. The
BCDR algorithm enumerates the best continuous relaxations of a given network (CCTN)
associated to a CCTP. In particular, the BCDR algorithm reformulates an over-constrained
CCTN by identifying its continuously relaxable temporal constraints, whose bounds can be
partially relaxed to restore consistency. It uses a conflict-directed strategy to enumerate
continuous relaxations in best-first order: after learning conflicts between constraints and
variable assignments, it uses the resolutions to these conflicts to guide the search away
from infeasible regions. Since controllable choices are not dependent on observation events,
solving CCTP is simpler than determining the dynamic/weak consistency of a CSTN.

Pike is an executive for temporal plans with both controllable and uncontrollable choices,
i.e., conditions, that achieves plan recognition and adaptation concurrently (Levine &
Williams, 2014). Pike employs Temporal Plan Networks with (decision) Uncertainty (TP-
NUs), which extend TPNs to address both controllable and uncontrollable choices. Pike
adapts controllable choices to uncontrollable ones made by the environment. As stated in
(Levine & Williams, 2014), Pike takes as input (1) a TPNU, (2) the initial and goal states
(sets of Planning Domain Definition Language (PDDL) predicates, (Fox & Long, 2003)),
(3) a stream of state estimates (sets of predicates), and (4) a stream of time assignments
and outcomes to the uncontrollable choices in the TPNU. Pike outputs (1) a stream of
choice assignments to the TPNU’s controllable variables, and (2) a dispatch of the TPNU’s
events, such that there is at least one complete and consistent candidate sub-plan for the
choices made.

In (Hunsberger et al., 2015), the authors proposed Conditional Simple Temporal Net-
works (CSTNs) extending the CSTN implicitly proposed in (Tsamardinos et al., 2003) by

970

Conditional Simple Temporal Networks with Uncertainty and Resources

labeling both time points and constraints by conjunctions of propositional letters, i.e., con-
ditions. In (Tsamardinos et al., 2003) only time points can be labeled. Each proposition is
associated to an observation time point, a special type of time point that, when executed,
allows the environment to set the proposition truth value. Dynamic consistency analysis
ensures the existence of a strategy executing all (relevant) time points satisfying all (rele-
vant) temporal constraints whatever the combination of proposition truth values revealed
during the execution. The CSTP for these CSTNs is PSPACE-complete (Cairo & Rizzi,
2016).

In the previous models supporting the concept of condition, namely CSTN, CCTP, Pike
and CSTN, is possible to represent uncertainty by means of a suitable use of conditions as
shown, for example, by Hunsberger and Posenato (2018b). On the other side, CSTNURs
cannot represent decisions as in TPNs, Drake and Pike. The CSTN (Tsamardinos et al.,
2003; Hunsberger et al., 2015) models are subsumed by the CSTNUR one. Indeed, a
CSTNUR instance without any resource and contingent link is a CSTN instance. Moreover,
all the previous models do not consider and do not allow a compact representation and
management of resources and of related constraints.

7.2 Managing Conditional and Temporal Uncertainty

A Conditional Simple Temporal Network with Uncertainty (CSTNU) merges the semantics
of STNUs and CSTNs to deal with both conditional constraints and uncontrollable dura-
tions simultaneously (Hunsberger et al., 2012). Hunsberger and Posenato (2018a) proposed
a sound-and-complete constraint-propagation-based algorithm for checking the dynamic
controllability (DC) of a CSTNU that results to be more practical than the DC algorithms
based on TGA proposed by Cimatti et al. (2016).

A Controllable Conditional Temporal Problem with Uncertainty (CCTPU) extends
CCTP to address temporal plans with also uncertain durations (Yu, Fang, & Williams,
2014). A Conflict-Directed Relaxation with Uncertainty algorithm (CDRU) is provided to
deal with over constrained temporal problems extending the result obtained for CCTPs.
In particular, the CDRU algorithm generates continuous relaxations restoring both strong
and dynamic controllability. It extends the conflict learning and resolution process in previ-
ous relaxation algorithms to account for contingent constraints, and incorporates this new
capability into a conflict-directed framework for efficient enumeration of solutions.

A CSTNU with Decisions (CSTNUD) extends a CSTNU by adding decisions (i.e., con-
trollable choices) that are taken dynamically whatever any combination of truth-value as-
signments to the uncontrollable propositions and durations of contingent links (Zavatteri,
2017; Zavatteri & Viganò, 2018a). The dynamic controllability checking of CSTNUDs is
sound and complete as it is done via TGAs.

When in a CSTNUD there is no temporal uncertainty and decisions can be taken in
advance, then it is possible to check the dynamic controllability in a faster way (Cairo,
Combi, Comin, Hunsberger, Posenato, Rizzi, & Zavatteri, 2017a).

Let us now informally discuss the expressivity of the CSTNUR formalism with respect to
the CSTNUD one. Even though it seems plausible that resource allocations can be modeled
as decisions, a polynomial-size encoding seems to be unfeasible.

971

Combi, Posenato, Viganò, & Zavatteri

CSTNUR

Streamlined
CSTNUR

CDTNU

TGA
Direct Encoding (Section 5)

Stream
lining

(Cairo
et al., 2017b) Encoding 1

(Section 7.2.1)

Enco
din

g
2

(C
im

at
ti

et
al

.,
20

16
)

Figure 11: Deciding dynamic controllability of CSTNURs via TGAs: direct encoding (path
above), reduction to CDTNUs (path below).

Indeed, if we consider a simple CSTNUR where resources have no TEs and there are no
RRCs, it is possible to represent the instance as a CSTNUD one using decision variables to
represent resource commitments to time points. In particular, it is necessary to represent
any time point in the CSTNUD by replicating it as many times as the number of its
possible resources and to represent the associated resource set as a set of decision nodes
with a suitable set of constraints. Such constraints force the fact that if a decision is true
(hence a resource is committed to the corresponding time point), all other decisions must
be false and related time points must not be executed. Such set of constraints requires an
exponential number of labeled values with respect to the number of resources. Therefore,
the representation becomes quite cumbersome even in this simple case. If TEs and RRCs
must be considered, it is open to state if it is possible to represent a CSTNUR instance as
a CSTNUD one even with an exponential mapping size.

A Conditional Disjunctive Temporal Network with Uncertainty (CDTNU) extends
a CSTNU by allowing disjunctive temporal constraints and disjunctive contingent
links (Cimatti et al., 2016). CSTNURs are not more expressive than CDTNUs but they
offer a compact language to model a temporal plan with resources and a direct encoding into
TGAs. Indeed, if we employed CDTNUs we first should encode CSTNURs into CDTNUs
and then encode CDTNUs into TGAs to decide dynamic controllability (double encoding).
Figure 11 depicts the two different approaches for encoding a CSTNUR instance into a
TGA, while Section 7.2.1 describes how to encode CSTNURs into CDTNUs.

7.2.1 Encoding CSTNURs into CDTNUs

Since resources can basically be seen as controllable (discrete) choices, one could wonder
if a CSTNUR can be encoded into a Conditional Disjunctive Temporal Networks with Un-
certainty (CDTNU, (Cimatti et al., 2016)), a formalism able to deal with uncontrollable
choices, disjunctive uncontrollable durations and disjunctive constraints. The answer is yes
and we prove it.

Before starting we summarize the streamlined model of CSTNs given in (Cairo et al.,
2017b), which plays an important role in this encoding. Figure 12a gives an example of
well-defined CSTN with three time points: P?, Q? (always executed) and X (executed iff

972

Conditional Simple Temporal Networks with Uncertainty and Resources

P?
[⊡]

Q?
[⊡]

X
[pq]

[1, 2], pq

[1, 2], p
q

(a) Example of CSTN. X is executed
if and only if p = q = ⊤.

Z
[⊡]

P?
[⊡]

Q?
[⊡]

X
[⊡]

[1, 2], pq

[1, 2
], p

q

[0,
h],⊡

[0, h],⊡

[0, h], pq

[h∗, ∞], ¬p

[h∗, ∞], ¬q

(b) Streamlined CSTN. X is always executed (within h

if relevant, after h otherwise).

Figure 12: Streamlined models for conditional temporal networks: Removing labels from
nodes preserving dynamic controllability. For this example, the deadline h = 6
and the delay h∗ = 7 are good values to express “within” and “after” the horizon.

p = q = ⊤). Since labeling time points complicates proofs by adding further conditions such
as “if the time point is executed” (i.e., if it is relevant), a streamlined model was proposed to
convert a CSTN with labels on nodes into an equivalent streamlined CSTN with labels on
constraints only. Figure 12b shows the streamlined representation of Figure 12a. The main
idea is the following. We add a time point Z whose execution is fixed at 0. We compute
an horizon value h = M × N , where M is the maximum delay in the network and N the
number of time points. For Figure 12a M = 2 and N = 4 (once we have added Z), therefore
h = 6. We constrain every time point to occur within h (if relevant in the original CSTN),
and after h otherwise. For Figure 12a “after h” is modeled by h∗ = h + 1 = 7 (any h∗ > h

is fine).

A streamlined CSTN is dynamically controllable if and only if the original CSTN is
so (Cairo et al., 2017b). Therefore, “streamlining” a CSTN (but in general any temporal
network subject to conditionals) preserves dynamic controllability (or uncontrollability) of
the network getting another network in which all time points are always executed. Note
that well-defined properties such as label honesty, constraint honesty and label coherence
necessary for defining a CSTN instance become superfluous as they trivially hold in the
streamlined CSTN (Cairo et al., 2017b). In what follows, we will consider streamlined
models of the temporal networks under analysis obtained the same way of CSTNs (we just
consider a bigger horizon to address upper bounds of contingent links).

Definition 24. (Cimatti et al., 2016) A Conditional Disjunctive Temporal Network with
Uncertainty (CDTNU) is a tuple 〈T , C, L, OT , O, P, L〉, where

• T , L, OT , O, P are the same as those given for a CSTNU (Definition 1).

• C is a set of constraints (φ, ℓ), where φ is an arbitrary Boolean combination of atoms
of the form Y − X ≤ k for X, Y ∈ T and k ∈ R and ℓ ∈ P∗.

973

Combi, Posenato, Viganò, & Zavatteri

A[⊡]

{R〈⊙〉, Q〈⊙〉}

C[⊡]
{R〈⊙〉, Q〈⊙〉}

Y [⊡]

{R〈⊙〉, Q〈⊙〉}

[1, 4],⊡

[1, 2]
〈≤ 3, 6=〉

〈≥ A + 2, 6=〉

〈> C + 3, =〉

Figure 13: Fragment of CSTNUR

• L is a set of contingent links (A, B, C), where A, C ∈ T and B is a finite set of (disjoint)
ranges [x, y] such that 0 < x < y < ∞.

When each contingent link specifies exactly one range and all constraints (φ, ℓ) are such
that φ does not contain any disjunction, then the CDTNU boils down to a classic CSTNU.

For example, if C contains φ = ((Y −X ≤ −3)∨(Y −X ≥ 4), p¬q) it means that whenever
p is true and q is false, then the controller must schedule Y and X in a way that must satisfy
either (Y − X ≤ −3) or (Y − X ≥ 4). Instead, a contingent link (A, {[2, 3] ∨ [5, 7]}, C)
means that once the controller executes A, the environment first chooses to assign either
[2, 3] or [5, 7] to the contingent link and then it schedules C such that C − A belongs to the
chosen range.

We compact the notation for constraints and write

• Y − X = k as a short for Y − X ≤ k and X − Y ≤ −k, and

• X = k, X ≤ k, and X ≥ k as shorts for X − Z = k, X − Z ≤ k, Z − X ≤ −k, where
Z is the zero time point.

Consider the fragment of CSTNUR in Figure 13, where h = 4 and h∗ = 5.

The first problem we come across is that of encoding resources and their commitment
for time point executions. All unlabeled time points (observation ones included), contingent
links and labeled constraints in the streamlined CSTNUR belong to the CDTNU too (note
that contingent links do not turn disjunctive in the CDTNU). We assume to have an extra
time point Z in the CSTNUR such that R(Z) = {r∗} and that no RRC will have Z neither
as firing nor target time point. To model resources associated to time points, for each time
point X (in the CSTNUR) such that R(X) = {r1, . . . , rn}, we add |R(X)| time points

Xr1
, . . . , Xrn

to the CDTNU such that L(Xr1
) = · · · = L(Xrn) = ⊡. Each of these Xri

can only be
assigned two values: the same value that X gets during execution or h∗. If Xri

= X, then it
means that ri is committed to execute X, whereas if Xri

= h∗, then it means that ri is not
committed. Since we do not have a way to exclude some time point Xri

from the execution,
we follow the ideas of streamlined models and distinguish between executed or not executed
time points by reasoning on the horizon. If a time point Xri

is executed within the horizon,

974

Conditional Simple Temporal Networks with Uncertainty and Resources

then ri was committed for X, whereas if Xri
is executed after the horizon, then ri was not

committed.
Now, we must enforce that for each non-contingent time point X in the CSTNUR one

and only one associated resource is committed for its execution. We model this condition
in the CDTNU with the constraint

(

r1 is committed for X
︷ ︸︸ ︷

Xr1
= X ∧ · · · ∧ Xrj

= h∗) ∨ · · · ∨

rn is committed for X
︷ ︸︸ ︷

(Xr1
= h∗ ∧ · · · ∧ Xrj

= X),⊡)

In Figure 13, we have that R(A) = R(Y) = {R, Q}, thus we add to the CDTNU the
time points Z, AR, AQ, CR, CQ, YR, YQ (recall that, L(Z) = L(AR) = L(AQ) = L(CQ) =
L(CQ) = L(YR) = L(YQ) = ⊡) and the constraints

• (Zr∗ = Z ∨ Zr∗ = h∗

︸ ︷︷ ︸

φ1

,⊡) (but this constraint really doesn’t matter)

• (

R is committed for A
︷ ︸︸ ︷

(AR = A ∧ AQ = h∗) ∨

Q is committed for A
︷ ︸︸ ︷

(AR = h∗ ∧ AQ = A)
︸ ︷︷ ︸

φ2

,⊡)

• (

R is committed for Y
︷ ︸︸ ︷

(YR = Y ∧ YQ = h∗) ∨

Q is committed for Y
︷ ︸︸ ︷

(YR = h∗ ∧ YQ = Y)
︸ ︷︷ ︸

φ3

,⊡)

to model the resource commitment for Z, A and Y .
For contingent time points we must commit the same resource that was committed for

the related activation. We do so as follows. For each (A, x, y, C) ∈ L such that R(A) =
R(C) = {r1, . . . , rn}, we add the constraint

(

Commit the same resource for C
︷ ︸︸ ︷

(A = Ar1
∧ C = Cr1

) ∨ · · · ∨ (A = Arn ∧ C = Crn),⊡)

In Figure 13, we have the contingent link (A, 1, 2, C), therefore we add

((A = AR ∧ C = CR) ∨ (A = AQ ∧ C = CQ)
︸ ︷︷ ︸

φ4

,⊡)

We are left to model RRCs in the CDTNU. We shorten the discussion focusing on the
RRCs of Figure 13. Since an RRC between two time points X, Y either fires or doesn’t
fire depending on the order of execution of X and Y , we must hard-code a condition to
understand which time point executes first. Note that this is necessary to handle limit
cases where a temporal constraint [0, 0] is specified between X and Y . Therefore, for every
RRC 〈X, τ, ρ, Y 〉 we add a time point XY (L(XY) = ⊡) and add the disjunctive constraint
(XY = X ∨ XY = h∗,⊡). If XY = X, then X is executed before Y (even when Y − X = 0).
If we have another RRC 〈Y, τ, ρ, X〉, then we will add a YX and (YX = X ∨ YX = h∗,⊡)
and also ((XY = X ∧ YX = h∗) ∨ (XY = h∗ ∧ YX = Y),⊡) (either X is before Y or the
contrary). If X executes before Y , then the temporal constraint X − Y ≤ 0 must hold.
Therefore, for each 〈X, τ, ρ, Y 〉 we add the pair of constraints

975

Combi, Posenato, Viganò, & Zavatteri

• (XY = X ⇒ X − Y ≤ 0,⊡)

• (XY = h∗ ⇒ X − Y ≥ 0,⊡)

Consider the RRC A → Y labeled by 〈≤ 3, 6=〉 in Figure 13. The condition we need to
model is: If A is executed before Y and the resources committed for A and Y are different,
then Y must occur within global time 3. That is, we add AY and the constraints

• (AY = A ∨ AY = h∗

︸ ︷︷ ︸

φ5

,⊡)

• (AY = A ⇒ A − Y ≤ 0
︸ ︷︷ ︸

φ6

,⊡)

• (AY = h∗ ⇒ A − Y ≥ 0
︸ ︷︷ ︸

φ7

,⊡)

• (AY = A ∧

Resources committed for A and Y are different
︷ ︸︸ ︷

((AR = A ∧ YQ = Y) ∨ (AQ = A ∧ YR = Y)) ⇒ Y ≤ 3
︸ ︷︷ ︸

φ8

,⊡)

Consider RRC A → Y labeled by 〈≥ A + 2, =〉 in Figure 13. The condition we need
to model is: If A is executed before Y and the resources committed for A and Y are equal,
then Y must be executed after minimum 2 since A. That is, we add the constraint

(AY = A ∧

Resources committed for A and Y are equal
︷ ︸︸ ︷

((AR = A ∧ YR = Y) ∨ (AQ = A ∧ YQ = Y)) ⇒ Y ≥ A + 2
︸ ︷︷ ︸

φ9

,⊡)

Finally, consider the RRC A → Y labeled by 〈> C + 3, =〉 in Figure 13. The condition
we need to model is: If A is executed before Y and the resources committed for A and
Y are equal, then (if C has already been executed, then Y must be executed after 3 since
C), whereas (if C has not been executed, then no solution exists). Since once fired, RRCs
involve the execution of Y , we encode “C has already been executed” as “C is executed
before Y ”, and “C has not been executed yet” as “C is executed after Y ” (“whereas” here
means “and”). Moreover, the “no solution exists” is because if C is still unexecuted by the
time Y executes, then equal resources have associated temporal expressions that are not
satisfied by the current time. Therefore, we add CY and the constraints

• (CY = C ∨ CY = h∗

︸ ︷︷ ︸

φ10

,⊡)

• (CY = C ⇒ C − Y ≤ 0
︸ ︷︷ ︸

φ11

,⊡)

• (CY = h∗ ⇒ C − Y ≥ 0
︸ ︷︷ ︸

φ12

,⊡)

976

Conditional Simple Temporal Networks with Uncertainty and Resources

• (φ13, ℓ) is ((AY = A ∧

Resources committed for A and C are equal
︷ ︸︸ ︷

((AR = A ∧ YR = Y) ∨ (AQ = A ∧ YQ = Y))) ⇒
((CY = C ⇒ Y − C ≤ 3)
︸ ︷︷ ︸

First case

∧ (CY = h∗ ⇒ Y − Y ≤ −1
︸ ︷︷ ︸

No sol. exists
︸ ︷︷ ︸

Second case

)),⊡)

Note that “no solution exists” is modeled as a negative self loop. In this example, we used
−1 as weight for Y → Y , but any negative real value or any unsatisfiable constraint fulfills
this purpose: “break the execution by using this”.

Similar encodings apply for the other cases of RRCs with respect to the specific θ.
Finally, C consists of the native temporal constraints of the initial CSTNUR plus

(φ1,⊡) ∧ · · · ∧ (φ13,⊡) that can be compacted as (CNF((φ1) ∧ · · · ∧ (φ13)),⊡).
After that, dynamic controllability of the CDTNU can be checked by using the methods

in (Cimatti et al., 2016). We point out that since resource commitments are Boolean
conditions (any resource for any time point is either committed or not), when computing
the conjunctive normal forms, we can safely impose that ¬(Xri

= X) is equivalent to
Xri

= h∗ (like we did for clocks modeling Boolean propositions in the TGA encodings
where ¬(bP < ĉ) becomes bP = ĉ).

Such an encoding keeps a polynomial number of time points and constraints with respect
to the size of the initial CSTNUR.

7.3 Managing Access Control Policies under Uncertainty

Shah, Conrad, and Williams (2009) proposed Chaski, an executive that dynamically dis-
patches plans with task assignment over heterogeneous, cooperative agents, represented by
a Temporal Constraint Satisfaction Network (TCSN), an extension of STNs where each
edge can be labeled by a disjunction of non-overlapping ranges (Dechter et al., 1991). The
focus of authors is on providing a compact representation of constraints, thus improving the
performance of scheduling. In the paper, the authors considered only one rule for assigning
agents to tasks, agent occupancy constraints, meaning that each agent may only perform one
activity at a time. Even if their algorithms seems to be able to manage different assignment
rules, there is no a formal definition of such rules and it is not specified whether they can
depend on temporal aspects or they can be modified at runtime like our RRCs.

Combi, Viganò, and Zavatteri (2016) proposed a model where a workflow and a fragment
of Temporal Role-Based Access Control (TRBAC) (Bertino, Bonatti, & Ferrari, 2001) are
encoded into an STNU, and security policies are modeled by security constraints (SCs)
along with security constraint propagation rules (SCPRs) that propagate them depending
on which user is executing which time point. Dynamic controllability checking for this
augmented network is addressed in this paper where the previously proposed SCs and
SCPRs have been evolved into TEs and RRCs, respectively.

Access Controlled Temporal Networks (ACTNs) (Combi, Posenato, Viganò, & Zavatteri,
2017) face the same issue we studied in this paper but do not employ TEs and RRCs. Indeed,
ACTNs specify a static set of resource constraints. Dynamic controllability checking is
addressed via TGAs by using a different encoding, where the resource constraints are verified
in the winning path. Depending on the arising scenario, the relevant constraints must always
be satisfied. ACTNs are able to handle contingent durations, conditional constraints, and

977

Combi, Posenato, Viganò, & Zavatteri

disjunctive resource constraints with respect to the authorization policy defining the security
part. This work is completely different as RRCs are a kind of “directional constraints” which
might, or might not, be taken into consideration depending on the order in which time points
are executed.

Vasilikos, Nielson, and Nielson (2017) proposed a network of Timed Automata to model
distributed systems and provide Behavior Timed Computational Tree Logics (BTCTL), an
extension of Timed Computation Tree Logic (TCTL) (Alur, Courcoubetis, & Dill, 1993)
to express time-dependent access control policies. Such a logic allows the expressions of
security policies in which temporal, data and information flow aspects must be considered
together. In particular, the authors proposed a reduction of a fragment of Behavior TCTL
(BTCTL) into TCTL+ (a variation of TCTL) that can be validated using Uppaal. In
this model no uncontrollable part is supported. Our work focuses on resource allocation
and deals with uncontrollable parts, an issue which is managed by TGAs instead of classic
TAs. Furthermore, besides for the fact that CSTNURs do not deal with any data, the
main difference is that the proposal in (Vasilikos et al., 2017) enforces security policies
at system level, whereas we synthesize a controller that avoids breaching security policies
when the constraints of the system would allow some execution to do so. We also showed
that CSTNURs can be encoded into (native) TGAs without using extra variables and that
TCTL model checking is enough for our purpose.

Zavatteri, Combi, Posenato, and Viganò (2017) proposed an initial approach to check
weak, strong and dynamic controllability for access controlled workflows under conditional
uncertainty by mapping workflow paths to Constraint Networks (CNs) (Dechter, 2003)
and reasoning on the intersection of common parts. The proposed approach pointed out
that dynamic controllability might be a matter of how the components of the workflow are
ordered, an hypothesis that was later confirmed with the proposal of Constraint Networks
Under Conditional Uncertainty (CNCUs) (Zavatteri & Viganò, 2018b; Zavatteri & Viganò,
2019). However, both these last two works do not deal with temporal constraints.

8. Conclusions

In this paper, we proposed Conditional Simple Temporal Networks with Uncertainty and
Resources to manage all together temporal constraints with uncertainty, uncertain condi-
tions and resource assignments. Resource assignments can be subject to further temporal
constraints that can contain an explicit reference to the execution time. Indeed, resources
may be associated to Temporal Expressions (TE) to specify when resources are available
to be assigned to time points. Moreover, it is possible to specify also Runtime Resource
Constraints (RRCs), a new class of temporal constraints, for refining TEs associated to
resources in real time depending on the specific execution. We described and discussed the
CSTNUR model through a real-world motivating example representing a round-trip flight
process in which we enforced the flight time limitations and rest requirements for pilots
according to the official FAA regulations.

A CSTNUR instance is dynamically controllable if there exists an execution strategy
(specified as an RTED strategy) to execute all time points by assigning an executing agent to
each of them and satisfying all temporal constraints, all applicable TEs and RRCs, no matter

978

Conditional Simple Temporal Networks with Uncertainty and Resources

which truth values for propositions and durations for contingent links are incrementally
revealed over time.

To check the dynamic controllability property of CSTNUR instances, we proposed a new
mapping from CSTNURs into Time Game Automata by extending the encoding proposed
in (Cimatti et al., 2016) for CSTNUs. We proved that such mapping is correct and can be
determined in polynomial time.

Appendix A. A possible implementation with Uppaal-TIGA

Uppaal is an integrated software tool for the modeling, validation and verification of real-
time systems modeled as networks of Timed Automata, extended with data types (bounded
integers, Boolean variables, arrays, etc.). Uppaal-TIGA is an extension of Uppaal im-
plementing the first efficient on-the-fly algorithm for solving games based on TGAs with
respect to reachability and safety properties (Behrmann et al., 2007).

As a proof-of-concept, we wrote the specification of the TGA encoding the CSTNUR
depicted in Figure 6 and ran Uppaal-TIGA to answer to the decision problem of dynamic
controllability (Zavatteri, 2019).We took advantage of Boolean variables to represent propo-
sitions and the RA relation6.

We used a FreeBSD virtual machine running on top of a VMWare ESXi using a phys-
ical machine equipped with an Intel i7 2.80GHz and 20GB of RAM for the experimental
evaluation. The VM was assigned 16GB of RAM7 and full CPU power.

We verified that the CSTNUR in Figure 6 is dynamically controllable. The model
checking phase took 207 minutes and 28 seconds to synthesize a 1.6MB memoryless exe-
cution strategy as a certificate of YES for this decision problem. Such a strategy consists
of statements like state → action, where state abstracts conditions over locations, clock
constraints (and Boolean variables), whereas action says either to take a specific transition
or to wait. Figure 14 shows how the TGA encoding the CSTNUR in Figure 6 looks like in
Uppaal-TIGA.

6. For each proposition p, p = ⊤ (resp., p = ⊥) means bP = ĉ (resp., bP < ĉ). For each (u, X) ∈ RA,
uX = ⊤ means uX > ĉ if cX < ĉ (u executed X), uX = ĉ if cX = ĉ (u is available), whereas uX = ⊥
means uX = cX if cX < ĉ (u did not execute X) or uX < cX if cX = ĉ (u has been blocked).

7. Plenty, since Uppaal-TIGA is compiled for 32bit architectures.

979

Combi, Posenato, Viganò, & Zavatteri

Figure 14: Modeling and validation of Figure 6 with Uppaal-TIGA.

980

Conditional Simple Temporal Networks with Uncertainty and Resources

References

Alur, R., Courcoubetis, C., & Dill, D. (1993). Model-checking in dense real-time. Inf.
Comput., 104 (1), 2–34, doi: 10.1006/inco.1993.1024.

Alur, R., & Dill, D. L. (1994). A theory of timed automata. Theor. Comput. Sci., 126 (2),
183–235, doi: 10.1016/0304-3975(94)90010-8.

Avanes, A., & Freytag, J.-C. (2008). Adaptive workflow scheduling under resource allocation
constraints and network dynamics. Proc. VLDB Endow., 1 (2), 1631–1637, doi: 10.

14778/1454159.1454238.

Balas, E. (1979). Disjunctive programming. In Hammer, P., Johnson, E., & Korte, B.
(Eds.), Discrete Optimization II, Vol. 5 of Annals of Discrete Mathematics, pp. 3 –
51. Elsevier, doi: 10.1016/S0167-5060(08)70342-X.

Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K. G., & Lime, D. (2007).
Uppaal-tiga: Time for playing games!. In Computer Aided Verification, 19th Interna-
tional Conference, CAV 2007, pp. 121–125, doi: 10.1007/978-3-540-73368-3_14.

Bertino, E., Bonatti, P. A., & Ferrari, E. (2001). TRBAC: A temporal role-based access
control model. ACM Trans. Inf. Syst. Secur., 4 (3), 191–233, doi: 10.1145/501978.

501979.

Bettini, C., Wang, X. S., & Jajodia, S. (2002). Temporal reasoning in workflow systems.
Distributed and Parallel Databases, 11 (3), 269–306, doi: 10.1023/A:1014048800604.

Cairo, M., Combi, C., Comin, C., Hunsberger, L., Posenato, R., Rizzi, R., & Zavatteri,
M. (2017a). Incorporating decision nodes into conditional simple temporal networks.
In Schewe, S., Schneider, T., & Wijsen, J. (Eds.), 24th International Symposium on
Temporal Representation and Reasoning, TIME 2017, Vol. 90 of LIPIcs, pp. 9:1–9:17,
doi: 10.4230/LIPIcs.TIME.2017.9.

Cairo, M., Hunsberger, L., Posenato, R., & Rizzi, R. (2017b). A streamlined model of
conditional simple temporal networks. In Schewe, S., Schneider, T., & Wijsen, J.
(Eds.), 24th International Symposium on Temporal Representation and Reasoning,
TIME 2017, Vol. 90 of LIPIcs, pp. 10:1–10:19, doi: 10.4230/LIPIcs.TIME.2017.10.

Cairo, M., & Rizzi, R. (2016). Dynamic controllability of conditional simple temporal
networks is pspace-complete. In 23nd International Symposium on Temporal Repre-
sentation and Reasoning, TIME 2016.

Chinn, S. J., & Madey, G. R. (2000). Temporal representation and reasoning for workflow in
engineering design change review. IEEE Transactions on Engineering Management,
47 (4), 485–492.

Cimatti, A., Do, M., Micheli, A., Roveri, M., & Smith, D. E. (2018). Strong temporal
planning with uncontrollable durations. Artificial Intelligence, 256, 1–34, doi: 10.

1016/j.artint.2017.11.006.

Cimatti, A., Hunsberger, L., Micheli, A., Posenato, R., & Roveri, M. (2014). Sound and
complete algorithms for checking the dynamic controllability of temporal networks
with uncertainty, disjunction and observation. In 21st International Symposium on

981

https://doi.org/10.1006/inco.1993.1024
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.14778/1454159.1454238
https://doi.org/10.14778/1454159.1454238
https://doi.org/10.1016/S0167-5060(08)70342-X
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1145/501978.501979
https://doi.org/10.1145/501978.501979
https://doi.org/10.1023/A:1014048800604
https://doi.org/10.4230/LIPIcs.TIME.2017.9
https://doi.org/10.4230/LIPIcs.TIME.2017.10
https://doi.org/10.1016/j.artint.2017.11.006
https://doi.org/10.1016/j.artint.2017.11.006

Combi, Posenato, Viganò, & Zavatteri

Temporal Representation and Reasoning, TIME 2014, pp. 27–36, doi: 10.1109/TIME.

2014.21.

Cimatti, A., Hunsberger, L., Micheli, A., Posenato, R., & Roveri, M. (2016). Dynamic
controllability via Timed Game Automata. Acta Informatica, 53 (6–8), 681–722,
doi: 10.1007/s00236-016-0257-2.

Cimatti, A., Hunsberger, L., Micheli, A., & Roveri, M. (2014). Using timed game automata
to synthesize execution strategies for simple temporal networks with uncertainty. In
Proceedings of the 28th AAAI Conference on Artificial Intelligence, pp. 2242–2249.

Combi, C., Gambini, M., Migliorini, S., & Posenato, R. (2014a). Representing business
processes through a temporal data-centric workflow modeling language: An applica-
tion to the management of clinical pathways. IEEE Trans. On Systems, Man, and
Cybernetics. Systems, 44 (9), 1182–1203, doi: 10.1109/TSMC.2014.2300055.

Combi, C., Hunsberger, L., & Posenato, R. (2014b). An algorithm for checking the dy-
namic controllability of a conditional simple temporal network with uncertainty -
revisited. In Proceedings of 5th International Conference on Agents and Artificial
Intelligence, ICAART 2013, Revised Selected Papers, pp. 314–331, doi: 10.1007/

978-3-662-44440-5_19.

Combi, C., & Posenato, R. (2009). Controllability in temporal conceptual workflow
schemata. In Proceedings of 7th International Conference on Business Process
Management, BPM 2009, Vol. 5701 of LNCS, pp. 64–79. Springer, doi: 10.1007/

978-3-642-03848-8_6.

Combi, C., & Posenato, R. (2010). Towards temporal controllabilities for workflow
schemata. In Proceedings of 17th International Symposium on Temporal Represen-
tation and Reasoning, TIME 2010, pp. 129–136, doi: 10.1109/TIME.2010.17.

Combi, C., Posenato, R., Viganò, L., & Zavatteri, M. (2017). Access controlled temporal
networks. In van den Herik, H. J., Rocha, A. P., & Filipe, J. (Eds.), Proceedings of
the 9th International Conference on Agents and Artificial Intelligence, ICAART 2017,
pp. 118–131. SciTePress, doi: 10.5220/0006185701180131.

Combi, C., Viganò, L., & Zavatteri, M. (2016). Security constraints in temporal role-based
access-controlled workflows. In Proceedings of the Sixth ACM Conference on Data and
Application Security and Privacy, CODASPY ’16. ACM.

Conrad, P. R., & Williams, B. C. (2011). Drake: An efficient executive for temporal plans
with choice. J. Artif. Int. Res., 42 (1), 607–659.

Dechter, R. (2003). Constraint processing. Elsevier.

Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal constraint networks. Artif. Intell.,
49 (1-3), 61–95, doi: 10.1016/0004-3702(91)90006-6.

Eder, J., Gruber, W., & Panagos, E. (2000). Temporal Modeling of Workflows with Condi-
tional Execution Paths BT - Database and Expert Systems Applications. In Database
and Expert Systems Applications, Vol. LNCS 1873, pp. 243–253. Springer, Berlin, Hei-
delberg.

982

https://doi.org/10.1109/TIME.2014.21
https://doi.org/10.1109/TIME.2014.21
https://doi.org/10.1007/s00236-016-0257-2
https://doi.org/10.1109/TSMC.2014.2300055
https://doi.org/10.1007/978-3-662-44440-5_19
https://doi.org/10.1007/978-3-662-44440-5_19
https://doi.org/10.1007/978-3-642-03848-8_6
https://doi.org/10.1007/978-3-642-03848-8_6
https://doi.org/10.1109/TIME.2010.17
https://doi.org/10.5220/0006185701180131
https://doi.org/10.1016/0004-3702(91)90006-6

Conditional Simple Temporal Networks with Uncertainty and Resources

FAR (2019). Electronic Code of Federal Regulations. https://www.ecfr.gov/cgi-bin/

text-idx?view=text&node=14:2.0.1.3.10#se14.2.91_11059.

Fox, M., & Long, D. (2003). PDDL2.1: an extension to PDDL for expressing temporal
planning domains. J. Artif. Intell. Res., 20, 61–124, doi: 10.1613/jair.1129.

Hopcroft, J. E., & Ullman, J. D. (1979). Introduction to Automata Theory, Languages and
Computation. Addison-Wesley.

Hunsberger, L. (2009). Fixing the semantics for dynamic controllability and providing
a more practical characterization of dynamic execution strategies. In Proceedings
of 16th International Symposium on Temporal Representation and Reasoning, TIME
2009, pp. 155–162, doi: 10.1109/TIME.2009.25.

Hunsberger, L., & Posenato, R. (2018a). Dynamic Controllability Checking for Conditional
Simple Temporal Networks with Uncertainty: New Sound-and-Complete Algorithms
based on Constraint Propagation. In Alechina, N., Nørvåg, K., & Penczek, W. (Eds.),
25th International Symposium on Temporal Representation and Reasoning, TIME
2018, Vol. 120 of LIPIcs, pp. 14:1–14:17, doi: 10.4230/LIPIcs.TIME.2018.14.

Hunsberger, L., & Posenato, R. (2018b). Sound-and-Complete Algorithms for Check-
ing the Dynamic Controllability of Conditional Simple Temporal Networks with
Uncertainty. In Alechina, N., Nørvåg, K., & Penczek, W. (Eds.), 25th Interna-
tional Symposium on Temporal Representation and Reasoning (TIME 2018), Vol.
120 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 14:1–14:17,
doi: 10.4230/LIPIcs.TIME.2018.14.

Hunsberger, L., Posenato, R., & Combi, C. (2012). The Dynamic Controllability of Condi-
tional STNs with Uncertainty. In PlanEx at ICAPS 2012, pp. 1–8.

Hunsberger, L., Posenato, R., & Combi, C. (2015). A sound-and-complete propagation-
based algorithm for checking the dynamic consistency of conditional simple temporal
networks. In Grandi, F., Lange, M., & Lomuscio, A. (Eds.), 22nd International Sym-
posium on Temporal Representation and Reasoning, TIME 2015, pp. 4–18. IEEE CPS,
doi: 10.1109/TIME.2015.26.

Kafeza, E., & Karlapalem, K. (2000). Gaining control over time in workflow management
applications. In Proceedings of 11th International Conference on Database and Expert
Systems Applications, DEXA 2000, pp. 232–242, doi: 10.1007/3-540-44469-6_22.

Kim, P., Williams, B. C., & Abramson, M. (2001). Executing reactive, model-based pro-
grams through graph-based temporal planning. In Proceedings of the 17th Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2001, Vol. 1, pp. 487–493.

Léauté, T., & Williams, B. C. (2005). Coordinating agile systems through the model-
based execution of temporal plans. In Proceedings of the 20th national conference on
Artificial intelligence, AAAI’05, pp. 114–120.

Levine, S. J., & Williams, B. C. (2014). Concurrent plan recognition and execution for
human-robot teams. In Chien, S. A., Do, M. B., Fern, A., & Ruml, W. (Eds.), Pro-
ceedings of the 24th International Conference on Automated Planning and Scheduling,
ICAPS 2014.

983

https://www.ecfr.gov/cgi-bin/text-idx?view=text&node=14:2.0.1.3.10#se14.2.91_11059
https://www.ecfr.gov/cgi-bin/text-idx?view=text&node=14:2.0.1.3.10#se14.2.91_11059
https://doi.org/10.1613/jair.1129
https://doi.org/10.1109/TIME.2009.25
https://doi.org/10.4230/LIPIcs.TIME.2018.14
https://doi.org/10.4230/LIPIcs.TIME.2018.14
https://doi.org/10.1109/TIME.2015.26
https://doi.org/10.1007/3-540-44469-6_22

Combi, Posenato, Viganò, & Zavatteri

Maler, O., Pnueli, A., & Sifakis, J. (1995). On the synthesis of discrete controllers for timed
systems, pp. 229–242. Springer, doi: 10.1007/3-540-59042-0_76.

Morris, P. H., & Muscettola, N. (2005). Temporal dynamic controllability revisited. In Pro-
ceedings 20th National Conference on Artificial Intelligence and the 27th Innovative
Applications of Artificial Intelligence Conference, pp. 1193–1198.

Morris, P. H., Muscettola, N., & Vidal, T. (2001). Dynamic control of plans with temporal
uncertainty. In Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence, IJCAI 2001, pp. 494–502.

Posenato, R., Zerbato, F., & Combi, C. (2018). Managing Decision Tasks and Events in
Time-Aware Business Process Models. In Business Process Management. BPM 2018,
Vol. 11080 of LNCS, pp. 102–118. Springer, doi: 10.1007/978-3-319-98648-7_7.

Qi, C., Wang, D., Muñoz-Avila, H., Zhao, P., & Wang, H. (2017). Hierarchical task network
planning with resources and temporal constraints. Knowledge-Based Systems, 133,
17–32, doi: 10.1016/j.knosys.2017.06.036.

Shah, J. A., Conrad, P. R., & Williams, B. C. (2009). Fast distributed multi-agent plan
execution with dynamic task assignment and scheduling. In Gerevini, A., Howe, A. E.,
Cesta, A., & Refanidis, I. (Eds.), Proceedings of the 19th International Conference on
Automated Planning and Scheduling, ICAPS 2009. AAAI.

Stergiou, K., & Koubarakis, M. (2000). Backtracking algorithms for disjunctions of temporal
constraints. Artif. Intell., 120 (1), 81–117, doi: 10.1016/S0004-3702(00)00019-9.

Tsamardinos, I., Vidal, T., & Pollack, M. E. (2003). CTP: A new constraint-based formal-
ism for conditional, temporal planning. Constraints, 8 (4), 365–388, doi: 10.1023/A:

1025894003623.

Vasilikos, P., Nielson, F., & Nielson, H. R. (2017). Time Dependent Policy-Based Ac-
cess Control. In Schewe, S., Schneider, T., & Wijsen, J. (Eds.), 24th International
Symposium on Temporal Representation and Reasoning, TIME 2017, Vol. 90 of Leib-
niz International Proceedings in Informatics (LIPIcs), pp. 21:1–21:18, doi: 10.4230/

LIPIcs.TIME.2017.21.

Vidal, T., & Fargier, H. (1997). Contingent Durations in Temporal CSPs: From Consistency
to Controllabilities. In Proc. 4th Int. Work. Temporal Represent. Reason. (TIME ’97).

Vidal, T., & Fargier, H. (1999). Handling contingency in temporal constraint networks: from
consistency to controllabilities. J. Exp. Theor. Artif. Intell., 11 (1), 23–45, doi: 10.

1080/095281399146607.

Vidal, T., & Ghallab, M. (1996). Dealing with uncertain durations in temporal constraint
networks dedicated to planning. In European Conference on Artificial Intelligence
(ECAI), pp. 48–54. PITMAN.

Watahiki, K., Ishikawa, F., & Hiraishi, K. (2011). Formal verification of business processes
with temporal and resource constraints. In 2011 IEEE International Conference on
Systems, Man, and Cybernetics, pp. 1173–1180, doi: 10.1109/ICSMC.2011.6083857.

Yu, P., Fang, C., & Williams, B. C. (2014). Resolving uncontrollable conditional tempo-
ral problems using continuous relaxations. In Proceedings of the 24th International
Conference on Automated Planning and Scheduling, ICAPS 2014.

984

https://doi.org/10.1007/3-540-59042-0_76
https://doi.org/10.1007/978-3-319-98648-7_7
https://doi.org/10.1016/j.knosys.2017.06.036
https://doi.org/10.1016/S0004-3702(00)00019-9
https://doi.org/10.1023/A:1025894003623
https://doi.org/10.1023/A:1025894003623
https://doi.org/10.4230/LIPIcs.TIME.2017.21
https://doi.org/10.4230/LIPIcs.TIME.2017.21
https://doi.org/10.1080/095281399146607
https://doi.org/10.1080/095281399146607
https://doi.org/10.1109/ICSMC.2011.6083857

Conditional Simple Temporal Networks with Uncertainty and Resources

Yu, P., & Williams, B. C. (2013). Continuously relaxing over-constrained conditional tem-
poral problems through generalized conflict learning and resolution. In Proceedings
of the 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013, pp.
2429–2436.

Zavatteri, M. (2017). Conditional simple temporal networks with uncertainty and decisions.
In 24th International Symposium on Temporal Representation and Reasoning, TIME
2017, Vol. 90 of LIPIcs, pp. 23:1–23:17, doi: 10.4230/LIPIcs.TIME.2017.23.

Zavatteri, M. (2019). Example of a CSTNUR encoded as TGA. http://regis.di.univr.

it/FlightExample.tar.bz2.

Zavatteri, M., Combi, C., Posenato, R., & Viganò, L. (2017). Weak, strong and dy-
namic controllability of access-controlled workflows under conditional uncertainty. In
Business Process Management (BPM 2017), pp. 235–251. Springer, doi: 10.1007/

978-3-319-65000-5_14.

Zavatteri, M., & Viganò, L. (2018a). Conditional simple temporal networks with uncertainty
and decisions. Theor. Comput. Sci., (In press), , doi: 10.1016/j.tcs.2018.09.023.

Zavatteri, M., & Viganò, L. (2018b). Constraint networks under conditional uncertainty. In
Proceedings of the 10th International Conference on Agents and Artificial Intelligence,
ICAART 2018, pp. 41–52. INSTICC, SciTePress, doi: 10.5220/0006553400410052.

Zavatteri, M., & Viganò, L. (2019). Conditional uncertainty in constraint networks. In
Agents and Artificial Intelligence (ICAART 2018), pp. 130–160. Springer, doi: 10.

1007/978-3-030-05453-3_7.

985

https://doi.org/10.4230/LIPIcs.TIME.2017.23
http://regis.di.univr.it/FlightExample.tar.bz2
http://regis.di.univr.it/FlightExample.tar.bz2
https://doi.org/10.1007/978-3-319-65000-5_14
https://doi.org/10.1007/978-3-319-65000-5_14
https://doi.org/10.1016/j.tcs.2018.09.023
https://doi.org/10.5220/0006553400410052
https://doi.org/10.1007/978-3-030-05453-3_7
https://doi.org/10.1007/978-3-030-05453-3_7

	Introduction
	Contributions
	Organization

	Motivating Example
	Background
	Conditional Simple Temporal Networks with Uncertainty (CSTNUs) and the Dynamic Controllability Checking
	Dynamic Controllability of CSTNUs via Timed Game Automata

	CSTNUs with Resources (CSTNURs)
	Syntax of CSTNURs
	Execution Semantics of CSTNURs

	Encoding CSTNURs into TGAs
	Encoding Committable Resources into Dedicated Clocks
	Encoding Resource Commitments into Circular Paths
	Encoding RRCs containing (a conjunction of) TEs of Type 1
	Encoding an RRC containing a TE of Type 2

	Encoding Contingent Time Points into Contingent Circular Paths

	Complexity and Correctness of the Encoding
	Related Work
	Managing Decisions and Conditions
	Managing Conditional and Temporal Uncertainty
	Encoding CSTNURs into CDTNUs

	Managing Access Control Policies under Uncertainty

	Conclusions
	A possible implementation with Uppaal-TIGA
	References

