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34095 cedex 2 Montpellier, France

mathieu.ribatet@math.univ-montp2.fr

SUMMARY

Since many environmental processes are spatial in extent, a single extreme event may affect

several locations, and the spatial dependence must be taken into account in an appropriate way.

This paper proposes a framework for conditional simulation of max-stable processes and gives

closed forms for the regular conditional distributions of Brown–Resnick and Schlather processes.

We test the method on simulated data and present applications to extreme rainfall around Zurich

and extreme temperatures in Switzerland. The proposed framework provides accurate conditional

simulations and can handle problems of realistic size.

Some key words: Conditional simulation; Markov chain Monte Carlo; Max-stable process; Precipitation; Regular

conditional distribution; Temperature.

1. INTRODUCTION

Max-stable processes arise naturally when studying extremes of stochastic processes and

therefore play a major role in the statistical modelling of spatial extremes (Buishand et al., 2008;

Padoan et al., 2010; Davison et al., 2012). Although a different spectral characterization of max-

stable processes exists (de Haan, 1984), for our purposes the most useful representation is

Z(x) = max
i�1

ζi Yi (x), x ∈ R
d (1)

(Schlather, 2002), where {ζi }i�1 are the points of a Poisson process on (0, ∞) with intensity

d�(ζ) = ζ−2 dζ and the Yi are independent replicates of a nonnegative stochastic process Y

such that E{Y (x)} = 1 for all x ∈ R
d . It is well known that Z is a max-stable process on R

d with

unit Fréchet margins (Schlather, 2002; de Haan & Fereira, 2006, p. 307). Although (1) takes the

pointwise maximum over an infinite number of points ζi and processes Yi , it is possible to get

approximate realizations from Z (Schlather, 2002; Oesting et al., 2012).

Based on (1), several parametric max-stable models have been proposed (Brown & Resnick,

1977; Schlather, 2002; Kabluchko et al., 2009; Davison et al., 2012) that share the same

finite-dimensional distribution functions

pr{Z(x1) � z1, . . . , Z(xk) � zk} = exp

[

−E

{

max
j=1,...,k

Y (x j )

z j

}]

,

where k ∈ N, z1, . . . , zk > 0 and x1, . . . , xk ∈ R
d .
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Except in the case of the Smith model (Genton et al., 2011), only the bivariate cumula-

tive distribution functions are explicitly known. To bypass this impediment to inference based

on max-stable processes, de Haan & Pereira (2006) proposed a semiparametric estimator and

Padoan et al. (2010) suggested the use of the maximum pairwise likelihood estimator.

Similar to the variogram in classical geostatistics, the extremal coefficient function

θ(x1 − x2) = −z log pr{Z(x1) � z, Z(x2) � z}

(Schlather & Tawn, 2003; Cooley et al., 2006) is widely used to summarize the spatial depen-

dence of extremes for stationary processes. It takes values in the interval [1, 2]; the lower bound

indicates complete dependence and the upper bound complete independence.

The past decade has seen many advances in the geostatistics of extremes, and software pack-

ages have been developed in R (R Development Core Team, 2012) and made available to prac-

titioners (Wang, 2010; Ribatet, 2011; Schlather, 2012). However, an important tool still missing

is a method for conditional simulation of max-stable processes. In classical geostatistics based

on Gaussian models, conditional simulation is well established (Chilès & Delfiner, 1999) and

provides a framework for assessing the distribution of a Gaussian random field given values

observed at fixed locations; for example, conditional simulations of Gaussian processes have

been used to model land topography (Mandelbrot, 1982).

Conditional simulation of max-stable processes is a long-standing problem (Davis & Resnick,

1989, 1993). Wang & Stoev (2011) provided a first solution, but their framework is limited to

processes having a discrete spectral measure and thus may be too restrictive to appropriately

model spatial dependence in complex situations.

Based on recent developments in understanding the regular conditional distribution of max-

infinitely divisible processes, the aim of this paper is to provide a method for conditional sim-

ulation of max-stable processes with continuous spectral measures. More formally, for a study

region X ⊂ R
d , our goal is to derive an algorithm to sample from the regular conditional distri-

bution of Z | {Z(x1) = z1, . . . , Z(xk) = zk} for some z1, . . . , zk > 0 and k conditioning locations

x1, . . . , xk ∈X .

2. CONDITIONAL SIMULATION OF MAX-STABLE PROCESSES

2·1. General framework

This section reviews some key results from an unpublished paper by the first author, with a

particular emphasis on max-stable processes. Our aim is to give a more practical interpretation

of the results from a simulation perspective. With this in mind, we recall two key results and

propose a procedure for generating conditional realizations of max-stable processes.

Let R
X be the space of real-valued functions on X ⊂ R

d , and let � = {ϕi }i�1 be a Poisson

point process on R
X where ϕi (x) = ζi Yi (x) (i = 1, 2, . . .) with ζi and Yi as in (1). We write

f (x) = { f (x1), . . . , f (xk)} for all random functions f : X → R and x = (x1, . . . , xk) ∈X
k . It

is not difficult to show that for all Borel sets A ⊂ R
k , the Poisson process {ϕi (x)}i�1 defined on

R
k has intensity measure

�x (A) =

∫ ∞

0

pr{ζY (x) ∈ A}ζ−2 dζ.

The point process � is said to be regular if the intensity measure �x has an intensity function

λx , that is, �x (dz) = λx (z) dz for all x ∈X
k .
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Conditional simulation of max-stable processes 113

The first key result asserts that, provided the Poisson process � is regular, the intensity func-

tion λx and the conditional intensity function

λs|x,z(u) =
λ(s,x)(u, z)

λx (z)
, (s, x) ∈X

m+k, u ∈ R
m, z ∈ (0, +∞)k

drive how the conditioning terms {Z(x j ) = z j } ( j = 1, . . . , k) are met; see Steps 1 and 2 in

Theorem 1.

The second key result states that, conditionally on Z(x) = z, the Poisson process � can be

decomposed into two independent point processes, say � = �− ∪ �+, where

�− = {ϕ ∈ � : ϕ(xi ) < zi , i = 1, . . . , k}, �+ =

k
⋃

i=1

{ϕ ∈ � : ϕ(xi ) = zi }.

Before introducing a procedure for obtaining conditional realizations of max-stable pro-

cesses, we define some notation and point out some connections with the pioneering work of

Wang & Stoev (2011).

A function ϕ ∈ �+ such that ϕ(xi ) = zi for some i ∈ {1, . . . , k} is called an extremal function

associated to xi and is denoted by ϕ+
xi

. It is easy to show that there exists almost surely a unique

extremal function associated to xi . Although �+ = {ϕ+
x1

, . . . , ϕ+
xk

} almost surely, it could happen

that a single extremal function contributes to the random vector Z(x) at several locations xi , e.g.,

ϕ+
x1

= ϕ+
x2

. To take such repetitions into account, we define a random partition θ = (θ1, . . . , θℓ)

of the set {x1, . . . , xk} into ℓ = |θ | blocks, and define extremal functions (ϕ+
1 , . . . , ϕ+

ℓ ) such that

�+ = {ϕ+
1 , . . . , ϕ+

ℓ } and ϕ+
j (xi ) = zi if xi ∈ θ j while ϕ+

j (xi ) < zi if xi /∈ θ j (i = 1, . . . , k; j =

1, . . . , ℓ). Wang & Stoev (2011) call the partition θ the hitting scenario. The set of all possible

partitions of {x1, . . . , xk}, denoted by Pk , identifies all possible hitting scenarios.

From a simulation perspective, the fact that �− and �+ are independent given Z(x) = z is

especially convenient and suggests a three-step procedure for sampling from the conditional dis-

tribution of Z given Z(x) = z.

THEOREM 1. Suppose that the point process � is regular and let (x, s) ∈X
k+m . For τ =

(τ1, . . . , τℓ) ∈ Pk and j = 1, . . . , ℓ, define I j = {i : xi ∈ τ j }, xτ j = (xi )i∈I j , zτ j = (zi )i∈I j , xτ c
j
=

(xi )i /∈I j and zτ c
j
= (zi )i /∈I j . Consider the following three-step procedure.

Step 1. Draw a random partition θ ∈ Pk with distribution

πx (z, τ ) = pr{θ = τ | Z(x) = z} =
1

C(x, z)

|τ |
∏

j=1

λxτ j
(zτ j)

∫

{u j <zτc
j
}
λxτc

j
|xτ j

,zτ j
(u j) du j ,

where the normalization constant is

C(x, z) =
∑

τ̃∈Pk

|τ̃ |
∏

j=1

λxτ̃ j
(zθ j )

∫

{u j <zτ̃c
j
}
λxτ̃c

j
|xτ̃ j

,zτ̃ j
(u j ) du j .
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114 C. DOMBRY, F. ÉYI-MINKO AND M. RIBATET

Step 2. Given τ = (τ1, . . . , τℓ), draw ℓ independent random vectors ϕ+
1 (s), . . . , ϕ+

ℓ (s) from

the distribution

pr{ϕ+
j (s) ∈ dv | Z(x) = z, θ = τ } =

1

C j

{
∫

1{u<zτc
j
}λ(s,xτc

j
)|xτ j

,zτ j
(v, u) du

}

dv,

where 1{·} is the indicator function and

C j =

∫

1{u<zτc
j
}λ(s,xτc

j
)|xτ j

,zτ j
(v, u) du dv,

and define the random vector Z+(s) = max j=1,...,ℓ ϕ+
j (s).

Step 3. Independently draw a Poisson point process {ζi }i�1 on (0, ∞) with intensity

ζ−2 dζ and {Yi }i�1 independent copies of Y , and define the random vector Z−(s) =

maxi�1 ζi Yi (s)1{ζi Yi (x)<z}.

Then the random vector Z̃(s) = max{Z+(s), Z−(s)} follows the conditional distribution of

Z(s) given Z(x) = z.

The corresponding conditional cumulative distribution function is

pr{Z(s) � a | Z(x) = z} =

⎧

⎨

⎩

∑

τ∈Pk

πx (z, τ )

|τ |
∏

j=1

Fτ, j (a)

⎫

⎬

⎭

pr{Z(s) � a, Z(x) � z}

pr{Z(x) � z}
, (2)

where

Fτ, j (a) = pr{ϕ+
j (s) � a | Z(x) = z, θ = τ } =

∫

{u<zτc
j
,v<a} λ(s,xτc

j
)|xτ j

,zτ j
(v, u) du dv

∫

{u<zτc
j
} λxτc

j
|xτ j

,zτ j
(u) du

.

The first term on the right-hand side of (2) comes from Steps 1 and 2, while the ratio is a con-

sequence of Step 3. It is clear from (2) that the conditional random field Z | {Z(x) = z} is not

max-stable.

2·2. Distribution of the extremal functions

In this section we derive closed forms for the intensity function λx (z) and the conditional

intensity function λs|x,z(u) for two widely used max-stable processes: the Brown–Resnick

(Brown & Resnick, 1977; Kabluchko et al., 2009) and the Schlather (2002) processes. Details

of the derivations are given in the Appendix.

The Brown–Resnick process corresponds to the case Y (x) = exp{W (x) − γ (x)} (x ∈ R
d)

in (1), where W is a centred Gaussian process with stationary increments and semivariogram

γ , such that W (o) = 0 almost surely, where o denotes the origin of R
d . For x ∈X

k , provided the

covariance matrix �x of the random vector W (x) is positive definite, the intensity function is

λx (z) = Cx exp

(

−
1

2
log zT Qx log z + Lx log z

) k
∏

i=1

z−1
i , z ∈ (0, ∞)k,
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Conditional simulation of max-stable processes 115

with 1k = (1)i=1,...,k , γx = {γ (xi )}i=1,...,k ,

Qx = �−1
x −

�−1
x 1k1T

k �−1
x

1T
k�

−1
x 1k

, Lx =

(

1T
k �−1

x γx − 1

1T
k�

−1
x 1k

1k − γx

)T

�−1
x ,

Cx = (2π)(1−k)/2|�x |
−1/2(1T

k �−1
x 1k)

−1/2 exp

{

1

2

(1T
k �−1

x γx − 1)2

1T
k �−1

x 1k

−
1

2
γ T

x �−1
x γx

}

.

For all (s, x) ∈X
m+k and (u, z) ∈ (0, ∞)m+k , provided the covariance matrix �(s,x) is positive

definite, the conditional intensity function corresponds to a multivariate lognormal probability

density function

λs|x,z(u) = (2π)−m/2|�s|x |
−1/2 exp

{

−
1

2
(log u − µs|x,z)

T �−1
s|x (log u − µs|x,z)

} m
∏

i=1

u−1
i

where µs|x,z ∈ R
m and �s|x are, respectively, the mean and covariance matrix of the underlying

normal distribution, given by

µs|x,z =
{

L(s,x) Jm,k − log zT J̃ T
m,k Q(s,x) Jm,k

}

�s|x , �−1
s|x = J T

m,k Q(s,x) Jm,k

with

Jm,k =

(

Im

0k,m

)

, J̃m,k =

(

0m,k

Ik

)

,

where Ik denotes the k × k identity matrix and 0m,k the m × k null matrix.

The Schlather process considers the case of Y (x) = (2π)1/2 max{0, ε(x)} (x ∈ R
d) in (1),

where ε is a standard Gaussian process with correlation function ρ. The associated point pro-

cess � is not regular, and it is more convenient to consider the equivalent representation where

Y (x) = (2π)1/2ε(x) (x ∈ R
d). For x ∈X

k , provided the covariance matrix �x of the random

vector ε(x) is positive definite, the intensity function is

λx (z) = π−(k−1)/2|�x |
−1/2ax (z)

−(k+1)/2 Ŵ

(

k + 1

2

)

, z ∈ R
k,

where ax (z) = zT �−1
x z.

For (s, x) ∈X
m+k and (u, z) ∈ R

m+k , provided the covariance matrix �(s,x) is positive def-

inite, the conditional intensity function λs|x,z(u) corresponds to the density of a multivariate

Student distribution with k + 1 degrees of freedom, location parameter µ = �s:x�
−1
x z and scale

matrix

�̃ =
ax (z)

k + 1

(

�s − �s:x�
−1
x �x :s

)

, �(s,x) =

(

�s �s:x

�x :s �x

)

.

3. MARKOV CHAIN MONTE CARLO SAMPLER

Section 2 introduced a procedure for obtaining realizations from the regular conditional dis-

tribution of max-stable processes. This sampling scheme amounts to sampling from a discrete

distribution whose state space corresponds to all possible partitions of the set of conditioning

points; see Step 1 in Theorem 1. Hence, even for a moderate number k of conditioning locations,
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116 C. DOMBRY, F. ÉYI-MINKO AND M. RIBATET

the state space Pk will be very large and the distribution πx (z, ·) cannot be computed exactly.

A Gibbs sampler is especially convenient for Monte Carlo sampling from πx (z, ·).

For τ ∈ Pk , let τ− j be the restriction of τ to the set {x1, . . . , xk} \ {x j }. Our goal is to simulate

from the conditional distribution

pr(θ ∈ · | θ− j = τ− j ), (3)

where θ ∈ Pk is a random partition which follows the target distribution πx (z, ·).

Since the number of possible updates is always less than k, a combinatorial explosion is

avoided. Indeed, for τ ∈ Pk of size ℓ, the number of partitions τ ∗ ∈ Pk such that τ ∗
− j = τ− j

for some j ∈ {1, . . . , k} is

b+ =

{

ℓ, {x j } is a partitioning set of τ,

ℓ + 1, {x j } is not a partitioning set of τ,

since the point x j may be re-allocated to any partitioning set of τ− j or to a new one.

As an example, consider the set {x1, x2, x3} and let τ = ({x1, x2}, {x3}). Then the possible

partitions τ ∗ such that τ ∗
−2 = τ−2 are ({x1, x2}, {x3}), ({x1}, {x2}, {x3}) and ({x1}, {x2, x3}), while

there exist only two partitions such that τ ∗
−3 = τ−3, namely ({x1, x2}, {x3}) and ({x1, x2, x3}).

The distribution (3) has nice properties. For all τ ∗ ∈ Pk such that τ ∗
− j = τ− j , we have

pr(θ = τ ∗ | θ− j = τ− j ) =
πx (z, τ

∗)
∑

τ̃∈Pk
πx (z, τ̃ )1{τ̃− j =τ− j }

∝

∏|τ∗|
j=1 wτ∗, j

∏|τ |
j=1 wτ, j

(4)

where

wτ, j = λxτ j
(zτ j )

∫

{u<zτc
j
}
λxτc

j
|xτ j

,zτ j
(u) du.

Since many factors cancel out on the right-hand side of (4), the Gibbs sampler is convenient.

The most computationally demanding part of (4) is the evaluation of the integral

∫

{u<zτc
j
}
λxτc

j
|xτ j

,zτ j
(u) du.

For the Brown–Resnick and Schlather processes, we follow Genz (1992) and compute these

probabilities using a separation-of-variables method which transforms the original integration

problem to the unit hypercube. A quasi-Monte Carlo scheme and antithetic variables are used to

improve efficiency.

Since it may not be obvious how to implement a Gibbs sampler whose target distribution

has support Pk , the remainder of this section gives practical details. For any fixed locations

x1, . . . , xk ∈X , we first describe how each partition of {x1, . . . , xk} is stored. To illustrate this,

consider the set {x1, x2, x3} and the partition ({x1, x2}, {x3}). This partition is defined as (1, 1, 2),

indicating that x1 and x2 belong to the partitioning set labelled 1 and x3 belongs to the partitioning

set labelled 2. There are several equivalent ways of denoting this partition; for instance, one could

write (2, 2, 1) or (1, 1, 3). Since there is a one-to-one mapping between Pk and the set

P
∗
k =

{

(a1, . . . , ak) : i ∈ {2, . . . , k}, 1 = a1 � ai � max
1� j<i

a j + 1, ai ∈ Z

}

,
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Conditional simulation of max-stable processes 117

we shall restrict our attention to the partitions that live in P
∗
k ; going back to our example, we see

that (1, 1, 2) is valid but (2, 2, 1) and (1, 1, 3) are not.

For τ ∈ P
∗
k of size ℓ, let r1 =

∑k
i=1 1{τi =a j } and r2 =

∑k
i=1 1{τi =b}; in other words, r1 and r2

are the numbers of conditioning locations that belong to the partitioning sets a j and b, where

b ∈ {1, . . . , b+} with

b+ =

{

ℓ, r1 = 1,

ℓ + 1, r1 |= 1.

Then the conditional probability distribution (4) satisfies

pr(τ j = b | τi = ai , i |= j) ∝

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1, b = a j , (5a)

wτ∗,b/(wτ,bwτ,a j ), r1 = 1, r2 |= 0, b |= a j , (5b)

wτ∗,bwτ∗,a j /(wτ,bwτ,a j ), r1 |= 1, r2 |= 0, b |= a j , (5c)

wτ∗,bwτ∗,a j /wτ,a j , r1 |= 1, r2 = 0, b |= a j , (5d)

where τ ∗ = (a1, . . . , a j−1, b, a j+1, . . . , ak). Although τ ∗ may not belong to P
∗
k , it corresponds

to a unique partition of Pk and we can use the bijection Pk → P
∗
k to recode τ ∗ into an element

of P
∗
k . The event {r1 = 1, r2 = 0, b |= a j } is missing from (5a)–(5d), because {r1 = 1, r2 = 0}

implies τ ∗ = τ , where the equality has to be understood in terms of elements of Pk , and this

case is already covered by (5a).

Once these conditional weights have been computed, the Gibbs sampler proceeds by updating

each element of τ successively. We use a random scan implementation (Liu et al., 1995). One

iteration selects an element of τ at random, say p = (p1, . . . , pk), according to a given distri-

bution, and then updates this element. Throughout this paper we will use the uniform random

scan Gibbs sampler for which the selection distribution is a discrete uniform distribution, i.e.,

p = (k−1, . . . , k−1).

4. SIMULATION STUDY

This section shows how we checked whether our algorithm is able to produce realistic condi-

tional simulations of Brown–Resnick and Schlather processes. For each model, we consider three

different sample path properties, as summarized in Table 1. These configurations were chosen

so that the spatial dependence structures are similar to those of the applications given in § 5.

In order to check whether our sampling procedure is accurate, given a single conditional event

{Z(x) = z} for each configuration, we generated 1000 conditional realizations with standard

Gumbel margins. Figure 1 shows the pointwise sample quantiles obtained from the 1000 sim-

ulated paths and compares them to unit Gumbel quantiles. As expected, the conditional sam-

ple paths inherit the regularity driven by the shape parameter κ , and there is less variability

in regions close to conditioning locations. Since the Brown–Resnick processes considered are

ergodic (Kabluchko & Schlather, 2010), for regions far away from any conditioning location the

sample quantiles converge to those of a standard Gumbel distribution, indicating that the con-

ditional event has no influence. This is not the case for the nonergodic Schlather process. Most

of the time, the sample paths used to get the conditional events belong to the 95% pointwise

confidence intervals, which confirms that our sampling procedure seems to be accurate.

Table 2 gives timings for conditional simulations of max-stable processes on a 50 × 50 grid

with a varying number of conditioning locations. Due to the combinatorial complexity of the

partition set Pk , computation times increase rapidly with respect to k, the number of conditioning
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118 C. DOMBRY, F. ÉYI-MINKO AND M. RIBATET

Table 1. Sample path properties of the max-stable models. For the Brown–Resnick

model the variogram parameters are set to ensure that the extremal coefficient

function satisfies θ(115) = 1·7, while for the Schlather model the correlation func-

tion parameters are set to ensure that θ(100) = 1·5

Brown–Resnick: γ (h) = (h/λ)κ Schlather: ρ(h) = exp{−(h/λ)κ }

γ1: Very wiggly γ2: Wiggly γ3: Smooth ρ1: Very wiggly ρ2: Wiggly ρ3: Smooth

λ 25 54 69 208 144 128

κ 0·5 1·0 1·5 0·5 1·0 1·5
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Fig. 1. Pointwise sample quantiles estimated from 1000 conditional simulations of max-stable processes
with standard Gumbel margins, where the number of conditioning locations is k = 5, 10 or 15. The top row
shows results for the Brown–Resnick models with semivariograms γ3, γ2 and γ1 from left to right. The
bottom row shows results for the Schlather models with correlation functions ρ3, ρ2 and ρ1 from left to
right. In each panel, the solid black lines represent the pointwise 0·025, 0·5 and 0·975 sample quantiles,
and the dashed grey lines represent the corresponding quantiles of a standard Gumbel distribution. The
squares show the conditioning points {(xi , zi )}i=1,...,k . The solid grey lines show the simulated paths used

to obtain the conditioning events.

Table 2. Timings for conditional simulations of max-stable processes on a 50 × 50 grid

defined on the square [0, 100 × 21/2]2 for a varying number k of conditioning locations

uniformly distributed over the region. The times, in seconds, are mean values over 100

conditional simulations; standard deviations are reported in parentheses

Brown–Resnick: γ (h) = (h/25)0·5 Schlather: ρ(h) = exp{−(h/208)0·50}

Step 1 Step 2 Step 3 Overall Step 1 Step 2 Step 3 Overall

k = 5 0·21 (0·01) 49 (11) 1·4 (0·1) 50 (11) 1·4 (0·02) 1·9 (0·7) 0·9 (0·3) 4·2 (0·8)

k = 10 8 (2) 76 (18) 1·4 (0·1) 85 (19) 12 (4) 2·4 (0·8) 1·0 (0·3) 15 (4)

k = 25 95 (38) 117 (30) 1·4 (0·1) 214 (61) 86 (42) 4 (1) 1·0 (0·3) 90 (43)

k = 50 583 (313) 348 (391) 1·5 (0·1) 931 (535) 367 (222) 62 (113) 1·0 (0·3) 430 (262)

Conditional simulations with k = 5 do not use a Gibbs sampler.
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Fig. 2. (a) Map of Switzerland showing the stations of the 24 rainfall gauges used for the analysis, with an insert
giving the altitude; the station marked with a triangle corresponds to Zurich. (b) Summer maximum rainfall in
Zurich for 1962–2008. (c) Comparison of the pairwise extremal coefficient estimates for the 51 original weather
stations and the extremal coefficient function derived from a fitted Brown–Resnick process having semivariogram
γ (h) = (h/λ)κ ; the grey points are pairwise estimates, the black points are binned estimates, and the curve is the

fitted extremal coefficient function.

points. It is, however, reassuring that the algorithm is tractable when k � 50, as this covers many

practical situations.

5. APPLICATIONS

5·1. Extreme precipitation around Zurich

The data considered here were previously analysed by Davison et al. (2012), who showed that

Brown–Resnick processes are among the best models for these data. The data consist of maxi-

mum summer rainfall measurements for the years 1962–2008 at 51 weather stations in the plateau

region of Switzerland, provided by the national meteorological service, MeteoSuisse. To ensure

strong dependence between the conditioning locations, we took the 24 weather stations located

at most 30 km from Zurich as conditioning locations, and set as the conditional values the rain-

fall amounts recorded in 2000, the year of the largest precipitation event recorded in the region

between 1962 and 2008; see Fig. 2. The greatest distance between conditioning locations was

around 55 km, and the shortest was just over 4 km.

A Brown–Resnick process having semivariogram γ (h) = (h/λ)κ was fitted using the maxi-

mum pairwise likelihood estimator introduced by Padoan et al. (2010) to simultaneously estimate

the marginal parameters and the spatial dependence parameters λ and κ . As in Davison et al.

(2012), the marginal parameters are η(x), σ (x) and ξ(x), respectively the location, scale and

shape parameters of the generalized extreme value distribution, described by η(x) = β0,η +

β1,ηlon(x) + β2,ηlat(x), σ(x) = β0,σ + β1,σ lon(x) + β2,σ lat(x) and ξ(x) = β0,ξ where lon(x)

and lat(x) denote the longitude and latitude of the stations at which the data are observed. The

maximum pairwise likelihood estimates and their standard errors for λ and κ are, respectively,

38 (14) and 0·69 (0·07); these give a practical extremal range, i.e., the distance h+ such that

θ(h+) = 1·7, of around 115 km; see Fig. 2(c).

Table 3 shows the distribution of the partition size estimated from a Markov chain of length

15 000. Around 65% of the time, the summer maxima observed at the 24 conditioning locations

belonged to a single extremal function, i.e., only one storm event, and around 30% of the time

the maxima were associated with two different storms. Since the simulated Markov chain keeps

a trace of all the simulated partitions, we looked at the partitions of size two and saw that around
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Table 3. Distribution of the partition size for the rainfall and temperature data estimated

from simulated Markov chains of lengths 15 000 and 10 000, respectively

Rainfall Temperature

Partition size 1 2 3 4 5 6 7–24 1 2 3 4 5–16

Frequency (%) 66·2 28·0 4·8 0·5 0·2 0·2 < 0·05 2·47 21·55 64·63 10·74 0·61
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(a) (b) (c) (d)

Fig. 3. (a)–(c) Maps on a 50 × 50 grid of the pointwise 0·025, 0·5 and 0·975 sample quantiles for rainfall
(mm) obtained from 10 000 conditional simulations of Brown–Resnick processes having semivariogram γ (h) =
(h/38)0·69. (d) Plot of the ratios of the widths of the pointwise confidence intervals with and without taking esti-

mation uncertainties into account. The squares show the conditioning locations.

65% of the time, at least one of the four northern conditioning locations was impacted by one

extremal function, while the remaining 20 locations were always influenced by another one.

In Fig. 3, panels (a)–(c) show the pointwise 0·025, 0·5 and 0·975 sample quantiles obtained

from 10 000 conditional simulations of our fitted Brown–Resnick process. The conditional

median provides a point estimate for the rainfall at an ungauged location, and the 0·025 and

0·975 conditional quantiles give a 95% pointwise confidence interval. As indicated by Fig. 1,

the shape parameter κ has a major impact on the regularity of paths and on the width of the

confidence interval. The value κ̂ ≈ 0·69 corresponds to very wiggly sample paths and wider

confidence intervals. To assess the effect of parameter uncertainties on conditional simulations,

the ratios of the widths of the confidence intervals with and without parameter uncertainty are

plotted in Fig. 3(d). The uncertainties were taken into account by sampling from the asymp-

totic distribution of the maximum composite likelihood estimator and drawing one conditional

simulation for each realization. These ratios show no clear spatial pattern, and the width of the

confidence interval is increased by at most 10%.

5·2. Extreme temperatures in Switzerland

The data considered here are annual maximum temperatures recorded at 16 sites in Switzer-

land during the period 1961–2005; see Fig. 4. Following Davison & Gholamrezaee (2012), we fit

a Schlather process with an isotropic powered exponential correlation function and trend surfaces

η(x) = β0,η + β1,η alt(x), σ(x) = β0,σ and ξ(x) = β0,ξ + β1,ξ alt(x), where η(x), σ (x) and ξ(x)

are the location, scale and shape parameters of the generalized extreme value distribution at loca-

tion x and alt(x) denotes the altitude above mean sea level in kilometres. The spatial dependence

parameter estimates and their standard errors are λ̂ = 260 (149) and κ̂ = 0·52 (0·12), which yield

a fitted extremal coefficient function similar to our test case ρ3 in § 4.

In 2003, western Europe experienced a heat wave, believed to be the most severe one recorded

since 1540 (Beniston, 2004). Switzerland was seriously affected by this event: the nationwide

record temperature of 41·5◦C was recorded that year in Grono, Graubünden, near Lugano. For
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Locarno−Monti (366)
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Fig. 4. (a) Topographical map of Switzerland showing the sites and altitudes, in metres above sea level, of 16 weather
stations for which annual maximum temperature data were available. (b) Map of temperature anomalies, in degrees
Celsius, i.e., the differences between the pointwise medians obtained from 10 000 conditional simulations and the

unconditional medians estimated from the fitted Schlather process.

our analysis, we condition on the maximum temperatures observed in 2003. Based on the fitted

Schlather model, we simulate a Markov chain of effective length 10 000, with a burn-in period

of length 500 and a thinning lag of 100 iterations. The distribution of the partition size estimated

from these Markov chains is shown in Table 3. Around 90% of the time, the conditional realiza-

tions were a consequence of at most three extremal functions. Since our original observations

were not summer maxima but maximum daily values, a close inspection of the time series in

year 2003 reveals that the hottest temperatures occurred between the 11th and 13th of August,

corroborating to some extent the distribution shown in Table 3.

Figure 4(b) shows the spatial distribution of temperature anomalies, i.e., the differences

between the pointwise conditional medians obtained from 10 000 conditional simulations and

the pointwise unconditional medians estimated from the fitted Schlather model. As expected,

the largest deviations occur in the plateau region of Switzerland, while appreciably smaller val-

ues are found in the Alps. The differences range from 2·5◦C to 4·75◦C and are consistent with

the values reported by climatologists for mean values (Beniston, 2004).
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APPENDIX

Brown–Resnick model

For all x ∈X
k and Borel sets A ⊂ R

k ,

�x (A) =

∫ ∞

0

pr[ζ exp{W (x) − γ (x)} ∈ A]ζ−2 dζ =

∫ ∞

0

∫

Rk

1[ζ exp{y−γ (x)}∈A] fx (y) dy ζ−2 dζ,
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122 C. DOMBRY, F. ÉYI-MINKO AND M. RIBATET

where fx denotes the density of the random vector W (x), i.e., a centred Gaussian random vector with

covariance matrix �x and variance 2γ (x). The change of variables z = ζ exp{y − γ (x)} and r = log ζ

yields

�x (A) =

∫ ∞

−∞

∫

A

fx {log z − r + γ (x)}

k
∏

i=1

z−1
i dz exp(−r) dr =

∫

A

λx (z) dz,

with

λx (z) =

k
∏

i=1

z−1
i

∫ ∞

−∞

fx {log z − r + γ (x)} exp(−r) dr.

Since

fx {log z − r + γ (x)} exp(−r) = (2π)−k/2|�x |
−1/2 exp

{

−
1

2
P(r)

}

with

P(r) = r2 1T

k �−1
x 1k − 2r [1T

k �−1
x {log z + γ (x)} − 1] + {log z + γ (x)}T �−1

x {log z + γ (x)},

standard computations for Gaussian integrals give

λx (z) = Cx exp

(

−
1

2
log zT Qx log z + L x log z

) k
∏

i=1

z−1
i .

The conditional intensity function is

λs|x,z(u) =
C(s,x)

Cx

exp

{

−
1

2
log (u, z)T Q(s,x) log(u, z) + L(s,x) log(u, z)

+
1

2
log zT Qx log z − L x log z

} m
∏

i=1

u−1
i

and, since log(u, z) = Jm,k log u + J̃m,k log z, it is not difficult to show that

λs|x,z(u) =
C(s,x)

Cx

exp

{

−
1

2
(log u − µs|x,z)

T�−1
s|x (log u − µs|x,z)

} m
∏

i=1

u−1
i .

Finally, the relation C(s,x)/Cx = (2π)−m/2|�s|x |
−1/2 is a simple consequence of the normalization

∫

λs|x,z(u) du = 1.

Schlather model

For all x ∈X
k and Borel sets A ⊂ R

k ,

�x (A) =

∫ ∞

0

pr{(2π)1/2ζε(x) ∈ A}ζ−2 dζ =

∫ ∞

0

∫

Rk

1{(2π)1/2ζ y∈A} fx (y) dy ζ−2 dζ,

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

m
e
t/a

rtic
le

-a
b
s
tra

c
t/1

0
0
/1

/1
1
1
/1

9
3
3
5
7
 b

y
 U

S
T

L
 M

o
n
tp

e
llie

r u
s
e
r o

n
 2

9
 M

a
rc

h
 2

0
1
9



Conditional simulation of max-stable processes 123

where fx denotes the density of the random vector ε(x), i.e., a centred Gaussian random vector with

covariance matrix �x . The change of variable z = (2π)1/2ζ y gives

�x (A) = (2π)−k/2

∫ ∞

0

∫

A

fx

{

z

(2π)1/2ζ

}

ζ−(k+2) dz dζ

= (2π)−k |�x |
−1/2

∫ ∞

0

∫

A

exp

(

−
1

4πζ 2
zT �−1

x z

)

ζ−(k+2) dz dζ

= (2π)−k |�x |
−1/2

∫

A

2π

zT �−1
x z

E(X k−1) dz, X ∼ Wei

{

(

4π

zT �−1
x z

)1/2

, 2

}

= (2π)−k |�x |
−1/2

∫

A

2π

zT �−1
x z

(

4π

zT �−1
x z

)(k−1)/2

Ŵ

(

k + 1

2

)

dz

=

∫

A

λx(z) dz,

where λx (z) = π−(k−1)/2|�x |
−1/2ax (z)

−(k+1)/2 Ŵ{(k + 1)/2} and ax (z) = zT�−1
x z.

For all u ∈ R
m , the conditional intensity function is

λs|x,z(u) = π−m/2 |�(s,x)|
−1/2

|�x |−1/2

{

a(s,x)(u, z)

ax (z)

}−(m+k+1)/2

ax (z)
−m/2

Ŵ
(

m+k+1
2

)

Ŵ
(

k+1
2

) .

We start by focusing on the ratio a(s,x)(u, z)/ax (z). Since

(

�s �s:x

�x :s �x

)−1

=

(

(�s − �s:x�
−1
x �x :s)

−1 −(�s − �s:x�
−1
x �x :s)

−1�s:x�
−1
x

−�−1
x �x :s(�s − �s:x�

−1
x �x :s)

−1 �−1
x + �−1

x �x :s(�s − �s:x�
−1
x �x :s)

−1�s:x�
−1
x

)

,

straightforward algebra shows that

a(s,x)(u, z)

ax (z)
= 1 +

(u − µ)T�̃−1(u − µ)

k + 1
, µ = �s:x�

−1
x z, �̃ =

ax (z)

k + 1
(�s − �s:x�

−1
x �x :s).

We now simplify the ratio |�(s,x)|/|�x |. Using the fact that

�(s,x) =

(

�s �s:x

�x :s �x

)

=

(

Im �s:x

0k,m �x

) (

�s − �s:x�
−1
x �x :s 0m,k

�−1
x �x :s Ik

)

together with some more algebra, we obtain

|�(s,x)|

|�x |
= |�s − �s:x�

−1
x �x :s | =

{

k + 1

ax (z)

}m

|�̃|.

Using the previous two results, it is easily found that

λs|x,z(u) = π−m/2(k + 1)−m/2|�̃|−1/2

{

1 +
(u − µ)T�̃−1(u − µ)

k + 1

}−(m+k+1)/2
Ŵ

(

m+k+1
2

)

Ŵ
(

k+1
2

) ,

which corresponds to the density of a multivariate Student distribution with the stated parameters.
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124 C. DOMBRY, F. ÉYI-MINKO AND M. RIBATET
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