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Abstract

Generative topic models such as LDA are lim-
ited by their inability to utilize nontrivial in-
put features to enhance their performance,
and many topic models assume that topic as-
signments of different words are conditionally
independent. Some work exists to address
the second limitation but no work exists to
address both. This paper presents a con-
ditional topic random field (CTRF) model,
which can use arbitrary nonlocal features
about words and documents and incorpo-
rate the Markov dependency between topic
assignments of neighboring words. We de-
velop an efficient variational inference algo-
rithm that scales linearly in terms of topic
numbers, and a maximum likelihood estima-
tion (MLE) procedure for parameter estima-
tion. For the supervised version of CTRF,
we also develop an arguably more discrimina-
tive max-margin learning method. We eval-
uate CTRF on real review rating data and
demonstrate the advantages of CTRF over
generative competitors, and we show the ad-
vantages of max-margin learning over MLE.

1. Introduction

Probabilistic topic models, such as the latent Dirichlet
allocation (LDA) model (Blei et al., 2003), have been
widely used for inferring a low dimensional represen-
tation that captures the latent semantics of textual or
image documents. Such low dimensional representa-
tions can be used for classifying, clustering, or struc-
turally browsing large corpora.

However, most existing topic models share two key
characteristics which could limit their utility. First,
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they are essentially not “feature-based” models due to
the generative nature of the models. More precisely, a
topic model specifies the joint likelihood of all the in-
troduced variables, which prevents flexible incorpora-
tion of nontrivial features in the data, such as non-local
contextual or summary features in an article or image,
because directly modeling such features as random
variables would result in a prohibitively large state
space that makes inference and learning very difficult,
if at all possible. One may find convincing arguments
of instead preferring a feature-based model for various
applications from the celebrated paper on conditional
random fields (CRF) (Lafferty et al., 2001). Second,
with some exceptions (Gruber et al., 2007; Wallach,
2006; Chen et al., 2009), many topic models assume
that the topic assignments of different text or image
words are conditionally independent, and do not de-
pend on the ordering of words. Such oversimplifying
assumptions can be harmful in many critical applica-
tions such as scene classification.

Recently, a number of attempts have been made to ad-
dress the limitation due to conditional-independence.
At the data representation-level, “bag of region pairs”
(Gökalp & Aksoy, 2007) or “doublets” (Sivic et al.,
2005) are used to incorporate important spatial in-
formation in computer vision tasks; a bi-gram lan-
guage model (Wallach, 2006) is used to consider word
ordering information for text mining. At the latent
topic-level, structured topic models with Markov prop-
erties (Gruber et al., 2007; Verbeek & Triggs, 2007;
Wang et al., 2009b) or with latent permutations
(Chen et al., 2009) have been proposed to capture the
correlations between topic assignments of neighboring
words. However, such models are all generative in na-
ture, and cannot flexibly exploit non-trivial features of
the entity in question.

To our knowledge, very little advance has been made in
the direction of enriching feature usage under a topic
model; and no successful attempt exists that considers
enhancing feature usage and alleviating conditional-
independency jointly. Maybe the most relevant work
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along this direction is the Dirichlet-multinomial re-
gression (DMR) model (Mimno & McCallum, 2008),
which can use arbitrary document-level features to re-
fine the Dirichlet parameter priors in LDA models.
However, due to the fully generative nature of the un-
derlying topic models, DMR cannot incorporate word-
level features. Moreover, DMR assumes that the topic
assignments of different words are conditionally inde-
pendent. Thus this model still largely suffers from the
two limitations discussed above.

In this paper, we propose a new model called con-

ditional topic random fields (CTRF), which address
both the feature and independence limitations in a
simple but rich statistical framework; and we present
efficient algorithms for training CTRFs. Underlying
our proposed model is a key reliance on a conditional

scheme, rather than a generative scheme, for defining
the likelihood function of observations, which can be
paralleled to the well-known contrast between a CRF
and an HMM. A conditional model specifies a condi-
tional likelihood of the observed documents, and can
incorporate arbitrary over-lapping input features. (See
(Lafferty et al., 2001) for a discussion on why this is
feasible in a conditional model but not in a conven-
tional generative model.) Our proposed model em-
ploys a general structure of the GLM to define a con-
ditional distribution of latent topic assignments over
words, rather than using a conventional multinomial
model as in LDA. It retains all the remaining structure
of the original topic models while incorporating arbi-
trary input features about words and documents; when
new features are included, there is no need to alter this
general design principle, therefore all the proposed in-
ference and learning algorithms still apply. Moreover,
CTRF directly incorporates the Markov dependency
between the topic assignments of neighboring words,
based on the same GLM principle.

Depending on the nature of training data and appli-
cations, like the LDA, CTRFs can be specialized into
an unsupervised or a supervised version. We present a
maximum likelihood estimation (MLE) algorithm for
unsupervised CTRFs. For supervised CTRFs, which
aim to discover predictive latent topic representations
by incorporating commonly available side information,
while the same MLE method can be still applied,
we also present a max-margin learning algorithm
which is arguably preferred for discriminative tasks.
Finally, we demonstrate the advantages of CTRFs
and max-margin learning on real review rating data.

The paper is structured as: Sec 2 present CTRFs.
Sec 3 presents inference and MLE estimation. Sec 4
presents max-margin learning for supervised CTRFs.
Sec 5 presents empirical results and Sec 6 concludes.
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Figure 1. (a) the word generating model in LDA; (b) a gen-
erative model for a word and features; and (c) a conditional
word generating model with features.

2. Conditional Topic Random Fields

For clarity and self-containedness, we begin with a
brief Recap of the standard LDA and supervised LDA.

2.1. LDA and sLDA

The latent Dirichlet allocation (LDA) model
(Blei et al., 2003) defines the document likelihood
using a hierarchical Bayesian scheme. Specifically, a
topic proportion vector is defined for each document,
which is drawn from a Dirichlet distribution, and doc-
ument words are each sampled from a topic-specific
word distribution specified by a random drawn of
the word-topic-assignment from the topic proportion
vector. A supervised LDA (sLDA) (Blei & McAuliffe,
2007) introduces a response variable to incorporate
commonly available side information (e.g., review
rating scores) for discovering predictive topics. Let
K be the number of topics; N be the number of the
terms in a vocabulary; β be a K × N matrix; and
each βk be a distribution over the N terms. For a
document d, the generating procedure of sLDA is

1. Draw a topic proportion vector θd|α ∼ Dir(α).

2. For each word
(a) draw a topic assignment zdn|θ ∼ Multi(θd).

(b) draw a word wdn|zdn, φ ∼ Multi(φzdn).

3. Draw a response variable: y|z̄d, η, δ
2 ∼ P (y|z̄d, η, δ

2),

where z̄d = 1/N
∑N

n=1
zdn.

Here, Zdn is a K-dimensional indicator variable that
represents the topic assignment of wdn and θd is a mix-
ture proportion over topics of the document d. The
sLDA model can be used for regression by defining a
normal distribution P , or for classification by defining
P as a logistic regression model (Wang et al., 2009a).
To learn an sLDA, both maximum likelihood estima-
tion (Blei & McAuliffe, 2007) and max-margin learn-
ing (Zhu et al., 2009) have been developed.

2.2. Conditional Topic Random Fields

The basic idea of CTRF can be understood from a
simple word generating model. In LDA or sLDA, each
word is represented as a mixture of latent topics Z
as illustrated in Figure 1 (a), where the generating
probability is estimated from a document-word count
matrix. However, using the word and its count fre-
quency as in LDA models is insufficient in resolving
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Figure 2. (Left) supervised conditional topic models;
(Right) supervised linear chain CTRF.

the word’s meaning ambiguity. For example, in a ho-
tel review, the word “good” can be used to describe a
positive aspect, while it can also be used to describe a
negative aspect when used with a denying word, such
as in the sentence “the service is not good”. Therefore,
exploring a rich set of input features (e.g., nonlocal
contextual features) is expected to yield better mod-
els in terms of their discovered latent topics, and their
performance on prediction tasks, such as regression.

To incorporate a rich set of useful features in a word
generating model, a fully generative approach is shown
in Figure 1 (b), where we use a = {a1, · · · , aM} to de-
note a set of local and global features, such as POS
tags. In this generative model, we need to assume that
the features are conditionally independent and define a
conditional distribution p(ai|z) for each feature i, such
as a multinomial distribution for quantized code-words
(Sivic et al., 2005) or a Gaussian distribution for con-
tinuous data (Welling et al., 2004; Xing et al., 2005).
There have been extensive discussions on such models
being difficult to learn, because of the possibly pro-
hibitive parameterization cost of defining p(w, a1:M |z),
the need of large training corpora to reliably estimate
such parameters, and the complexity of unsupervised
training due to induced coupling of all features when
Z is unobserved. More critically, the inherited con-
ditional independent assumptions in such a model is
unrealistic and limits its utility.

An alternative approach to incorporating rich features
in a word generating model is conditional modeling,
which treats the features as conditions and directly de-
fines the word generating distribution as illustrated in
Figure 1(c). The conditional model defines a distribu-
tion p(w|a1:M ) =

∑
z p(z|a1:M )p(w|z), which is just a

mixture of latent topic components, where the mixing
weights are defined via a richer log-linear model rather
than a mere multinomial. As we have discussed, condi-
tional models can incorporate arbitrary input features
without changing the model structure and inference
algorithm when new features are included.

Based on the conditional word generating model as
in Figure 1(c), a conditional topic model (CdTM) can
be defined as illustrated in Figure 2 (Left). Here, we

assume that each document consists of S sentences and
each sentence has N words. The generating procedure
of CdTM is similar to that of LDA. The difference is
that instead of using a multinomial distribution, the
mixing weights over topics in CdTM are defined with
a generalized linear model (GLM)

p(zsn|θ,a) =
exp{θ⊤f(zsn,a)}

∑

z′
sn

exp{θ⊤f(z′sn,a)}
,

where f is a vector of feature functions that are de-
fined on arbitrary features related to words and doc-
uments. As a Bayesian model, the latent parameter
variable θ can have an arbitrary prior. Here, we choose
the independent multivariate normal distribution, i.e.,
p(θ|µ,Σ) =

∏
m p(θm|µm,Σm) =

∏
m N (µm,Σm).

One nice result of this choice is that the CdTM with a
normal prior is a generalization of the correlated topic
model (CTM) (Blei & Lafferty, 2006), which uses only
one trivial feature that equals to one for any word.

Although the CdTM can address the feature limita-
tion, it still suffers from the conditional independence
limitation. In order to address both limitations, we
further propose the conditional topic random fields

(CTRF). The linear chain CTRF is shown in Figure 2
(Right), where the topic assignments of the words in
the same sentence are mutually influenced through a
conditional random field (Lafferty et al., 2001). The
generating procedure of a CTRF is

1. For m ∈ {1, · · · ,M}, sample θm ∼ p(θm|µm,Σm)

2. For s ∈ {1, · · · , S}
(a) sample zs ∼ Pctrf (zs|θ,a)
(b) for n ∈ {1, · · · , N}, sample wsn ∼ Multi(βzsn)

where Pctrf (zs|θ, a) is a conditional topic random field
over the topic assignments of all the words in one sen-
tence. By the random field theory (Lafferty et al.,
2001), Pctrf(zs|θ, a) has a log-linear form

p(zs|θ, a) = exp
(

θ⊤f(a, zs)−As(θ,a)
)

,

where As(θ, a) = log(
∑

zs
exp(θ⊤f(a, zs))) is the

log-partition function. For a linear chain CTRF,
we have both singleton feature functions f(a, zsn)
and pairwise feature functions f(a, zsn, zsn+1), and
f(a, zs) =

∑
n[f(a, zsn) + f(a, zsn, zsn+1)] is the cu-

mulative feature function value on a sentence. For
simplicity, we assume that a pairwise feature function
f(a, zsn, zsn+1) equals to zero if zsn 6= zsn+1. This as-
sumption is true in many applications1, for example,
in text documents we would expect that neighboring
words in the same sentence should be assigned to the
same topic if they have some feature patterns. With
this assumption, each θm is a K-dimensional vector
and each element is associated with a (singleton or

1Gruber et al. (2007) made a more strict assumption
that words in the same sentence are also in the same topic.
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pairwise) topic assignment. We use fm to denote a K-
dimensional column vector of which only one element
is non-zero according to the topic assignment; f is a
MK-dimensional vector by stacking fm; θ is a stack-
ing vector of θm; and I and P are the index sets of
singleton and pairwise features, respectively.

Now, we explain the response variable Y in Figure 2,
which has been ignored on purpose in the above dis-
cussions. As in sLDA (Blei & McAuliffe, 2007), the
variable Y is for incorporating the commonly avail-
able supervised side information, such as rating scores
in hotel reviews or scene categories associated with
images (Wang et al., 2009a). By exploiting supervised
side information, supervised CTRF (sCTRF) are ex-
pected to discover predictive topic representations, as
have been demonstrated in (Blei & McAuliffe, 2007;
Zhu et al., 2009; Wang et al., 2009a). Depending on
the properties of Y , its generating model can be de-
fined accordingly. For continuous Y , as in sLDA,
p(y|z̄, η, δ2) = N (η⊤z̄, δ2), where z̄ = 1

NS

∑
sn zsn;

and for categorical Y , the distribution can be a logis-
tic regression model. Here, we consider the continuous
case. Extension to the discrete case can be similarly
done as in (Zhu et al., 2009; Wang et al., 2009a).

Since the supervised CTRF subsumes the unsuper-
vised CTRF and CdTM, we will stick to the sCTRF
when presenting the posterior inference and parame-
ter estimation algorithms, and highlight the necessary
modifications when applied to other models.

3. Posterior Inference and Estimation

The difficulty of inferring the posterior distribution of
latent variables and estimating the unknown parame-
ters in CTRF arises from two aspects. First, the topic
distributions of different words in the same sentence
are strongly correlated in the topic random fields. Sec-
ond, the conditional distribution p(zs|θ, a) contains a
log-partition function that involves a summation over
an exponential number of latent topic assignments.
Since exact inference is intractable, we develop an ef-
ficient variational inference algorithm to obtain an ap-
proximation of the posterior distribution. Our method
relies on a forward-backward message passing proce-
dure on the linear-chain, which scales linearly with re-
spect to the number of topics. For parameter estima-
tion, we present the standard maximum likelihood es-
timation (MLE) that is applicable for estimating both
supervised and unsupervised CTRF.

3.1. Posterior Inference

An Approximate Bound: By applying the Jensen’s
inequality, we obtain a lower bound of the log-

likelihood of a document under an sCTRF, i.e.,
log p(y,w|µ,Σ, η, δ2, β) ≥ L, where

L ,
∑

m

E[log p(θm|µm,Σm)] +
∑

s

E[log p(zs|θ, a)]

+
∑

sn

E[log p(wsn|zsn, β)] + E[log p(y|z̄, η, δ2)] +H(q),

where H(q) = −E[log q] is the entropy of the varia-
tional distribution q. Here, we make the mean-field
assumption about q and it has the factorized form

q(θ, z|λ, σ2, ψ) =
∏

mk

q(θmk|λmk, σ
2

mk)
∏

sn

q(zsn|ψsn),

where λmk and σ2
mk are the mean and variance of the

univariate normal distribution q(θmk|λmk, σ
2
mk), and

ψsn is the K-dimensional parameter of the topic dis-
tribution of zsn. We will use σ2 to denote the stacking
vector of σmk similar to θ and define Λ , diag(σ2).

With this assumption, all the terms except the second
one can be efficiently calculated, similar as in CTM
(Blei & Lafferty, 2006). We omit the details for saving
space. For the second term, we have

E[log p(zs|θ,a)] = λ⊤
E[f(a, zs)]− E[As(θ,a)],

which cannot be efficiently calculated because of the
expectation of the log-partition function As(θ, a).
Therefore, we need to further relax the lower bound
L. Let hs(q) =

∑
zs
E[exp(θ⊤f(a, zs))], we have2

E[As(θ, a)] ≤
hs(q)

ζs
− 1 + log ζs, (1)

where ζs is a positive variational parameter.

With the assumption of q and a little algebra, we have

E[exp(θ⊤f(a, zs))] = exp{λ⊤
f(a, zs) +

f(a, zs)
⊤Λf(a, zs)

2
}.

For the univariate CdTM, hs(q) can be exactly calcu-
lated. However, for a non-trivial chain-structured ran-
dom field, since the quadratic term f(a, zs)

⊤Λf(a, zs)
couples the topic assignments of all the words in one
sentence, it is intractable to exactly compute hs(q).
Here, we approximate3 this term as

E[exp(θ⊤f(a, zs))] ≈
∏

n

E[exp{θ⊤fn(a, zs)}]

=
∏

n

exp{λ⊤
fn(a, zs) +

fn(a, zs)
⊤Λfn(a, zs)

2
},(2)

where fn(a, zs) = f(a, zsn, zsn+1). Now, we can de-
velop a forward-backward message passing procedure
to compute hs(q). Specifically, we use f2n(a, zs) to
denote the element-wise product fn(a, zs) · fn(a, zs).
Then, we have

hs(q) =
∑

zs

exp
(

∑

n

λ⊤
fn(a, zs) +

∑

n

1

2
(σ2)⊤f2n(a, zs)

)

.

2Due to the inequality log x ≤ a−1x−1+ log a, ∀a > 0.
3By assuming fn(a, Zs) are independent.
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Since both fn and f2n depend only on the cliques (i.e.,
nodes and edges in a linear chain CTRF), hs(q) and
its gradients ∇λhs(q) and ∇σ2hs(q) can be efficiently
computed with a forward-backward massage passing
procedure (Lafferty et al., 2001), which has a complex-
ity O(NK) because the transition matrices are diag-
onal due to the assumption of pairwise feature func-
tions. Our empirical studies show that this simple ap-
proximation method works well. Developing a tighter
approximation is our future work.

Now, substituting the above inequality in Eq. (1) and
the approximation in Eq. (2) into the variational lower
bound L, we can get an approximate bound L, which
is a function of (q, ζ, µ,Σ, η, δ2, β).

Inference: Given the parameters (µ,Σ, η, δ2, β),
the inference can be done with a coordinate ascent
method, iteratively optimizing L with respect to each
variational parameter while holding all the others
fixed. Let qold be the current solution of q, the up-
date rule for ζs is simple, i.e., ζs = hs(q

old). For the
parameters ψsn, we have the update rule

ψsnk ∝ exp
(

log βkwsn
+

∑

m∈I

λ⊤
mfm(a, k) +

∑

i∈Nn

mi→n(k)

+
y

SNδ2
ηk −

2η⊤ψ−sn + ηk
2S2N2δ2

ηk
)

, (3)

where Nn is the set of neighbors of the node n;
mi→n(k) =

∑
j ψsij

∑
m∈P

λ⊤mfm(a, j, k) is the mean
field message from node i; and ψ−sn =

∑
ij ψij − ψsn.

From this update rule, we can explicitly see the ad-
ditive contributions from different parts in the topic
distribution. The first term is from the multinomial
word generating model; the second term considers the
local features; the third term incorporates the mutual
dependency between neighbors; and the last two terms
are from the supervised response model. For unsuper-
vised CTRF, the update rule contains only the first
three terms.

For the parameters λ and σ2, since we cannot get
closed form update rules, we apply gradient descent
methods. The gradients for λ and σ2 are

∇λm
L = γm +

∑

s

E[fm(a, zs)]−
∑

s

ζ−1

s ∇λm
hs(q)

∇σ2

mk

L = −
1

2
Σ−1

kk +
∑

s

ζ−1

s ∇σ2

mk

hs(q) +
1

2σ2

mk

,

where γm = Σ−1
m (λm − µm). Note that the Newton

method as used in (Blei & Lafferty, 2006) optimizes
with respect to each dimension of σ2 in the log-domain.
This coordinate ascent procedure is expensive, espe-
cially when the number of features is large. Here, we
use the much faster L-BFGS method (Liu & Nocedal,
1989) for λ and log σ2 jointly.

3.2. Max-Likelihood Estimation

Given training set D, where each document d is asso-
ciated with a true response yd, parameter learning is
to estimate the topics β, Gaussian parameters (µ,Σ),
and the response model parameters (η, δ2). The most
common method is maximum likelihood estimation
(MLE), which has been used to learn LDA and sLDA.

For MLE, we optimize the approximate bound
∑

d Ld

with a variational EM procedure, which iteratively
performs an E-step and an M-step until the bound
converges. In E-step, we perform variational infer-
ence for each document as discussed above. In M-
step, we maximize

∑
d Ld with respect to the unknown

parameters. This can be performed similarly as in
CTMs (Blei & Lafferty, 2006) for (µ,Σ, β) and sLDAs
(Blei & McAuliffe, 2007) for (η, δ2). We omit the de-
tails due to space limitation.

4. Joint Max-margin & Max-Likelihood

Learning for sCTRF

For supervised CTRFs, our goal is to discover predic-
tive latent topic representations that are suitable for
prediction tasks. Besides MLE, another arguably more
discriminative approach is the max-margin learning,
which has been applied to learn discriminative latent
topic models in MedLDA (Zhu et al., 2009). In this
section, we present an alternative margin-based dis-
criminative approach for learning supervised CTRFs.

With the approximate bound L, we formally define
a joint max-margin and max-likelihood estimator of
sCTRF as the solution to the following problem

min
Θ,q,ξ,ξ⋆

−
∑

d

Ld(Θ, q) +
1

2
γη⊤η +C

D
∑

d=1

(ξd + ξ⋆d)

s.t. ∀d :

{

yd − η⊤E[Z̄d]≤ ǫ+ ξd
−yd + η⊤E[Z̄d]≤ ǫ+ ξ⋆d

where γ and C are regularization constants; ǫ is a pre-
cision parameter; ξ are non-negative slack variables;
and Θ denotes all the parameters (µ,Σ, η, δ2, β).

This constrained optimization problem can be effi-
ciently solved with Lagrangian methods. We introduce
a pair of lagrange multipliers α and α⋆ for the two
constraints associated with each document, and we
perform alternative minimization over the Lagrangian
functional. With the same mean field assumption of q,
we get the same gradients for λ and σ2 in the posterior
inference as above. For ψ, the update rule is similar
to Eq. (3), but with an additional term

ψsnk ∝ exp
(

log βkwsn
+

∑

m∈I

λ⊤
mfm(a, k) +

∑

i∈Nn

mi→n(k)

+
y

SNδ2
ηk −

2η⊤ψ−sn + ηk
2S2N2δ2

ηk +
α− α⋆

SN
ηk

)

,
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where the last term arises from the max-margin con-
straints and it plays a role of regularizing the topic
assignment. Once the model makes a bad prediction
for document d, one of the lagrange multipliers αd and
α⋆
d will be non-zero. Then, the last term in the expo-

nential will bias the topic assignment to favor a better
prediction. This regularization effect will yield a more
predictive topic representation. For µ, Σ, β and δ2,
the update rules are the same as those in MLE. Fi-
nally, the parameter η can be efficiently estimated by
solving a standard SVM regression problem, which is
the same as in MedLDA (Zhu et al., 2009).

5. Experiments

In this section, we report empirical results of the super-
vised CTRF on real review rating data. Our goals are
to demonstrate that sCTRF can discover good topic
representations and can make accurate predictions.

5.1. Data Set

We build a real data set by randomly crawling hotel
reviews from TripAdvisor4, where each review is asso-
ciated with a global rating score and five aspect rating
scores for the aspects–Value, Rooms, Location, Clean-
liness, and Service. This data set is very interesting
and can be used for many data mining tasks, for ex-
ample, extracting the textual mentions of each aspect
(Titov & McDonald, 2008). In these experiments, we
focus on predicting the global rating scores for reviews.

To avoid too short and too long reviews, we only keep
those reviews whose character length is between 1500
and 6000. On TripAdvisor, the global ratings rank
from 1 to 5. We randomly select 1000 reviews for each
rating and the data set consists of 5000 reviews in to-
tal. We uniformly partition it into training and testing
sets. For each review, we use the NLProcessor5 to do
part-of-speech (POS) tagging and noun phrase (NP)
chunking, and extract the following features:

. POS-Tag: We distinguish four types of POS tags,
that is, Adjective, Noun, Adverb, and Verb. Each type
includes all its subcategories, e.g., Adjective includes
“JJ” (Adjective), “JJR” (comparative Adjective), and
“JJS” (superlative Adjective).

. WordNet: WordNet6 is a large lexical database of
English. We navigate it with some seeds of positive
(e.g., good, excellent, etc) and negative (e.g., bad,
painful, etc) words, and identify whether a word is
positive or negative based on the synonym and antonym
relationship. Words without strong relationship with the
seeds are treated as neutral. For a positive or negative
word, we also identify whether a denying word (e.g., not,
no, etc.) appears before it within a word distance of 4.

4http://www.tripadvisor.com/
5http://www.infogistics.com/textanalysis.html
6http://wordnet.princeton.edu/
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Figure 3. The predictive R2 of different models.

. NP-Chunking: We define pairwise feature functions
for those words that are in the same noun or verb phrase,
or the conjunction “and” or “or” appears between them.

By removing a standard list of stopping words and
those terms whose count frequency is less than 5, we
build a dictionary with 12000 terms.

5.2. Prediction Accuracy

Similar as in (Blei & McAuliffe, 2007), we treat the
problem of predicting rating scores as a regression
problem. We take logarithm to make the response
variables approximately normal. We compare sCTRF
with sCdTM, sLDA, MedLDA, and hidden Markov
topic models (HTMM) (Gruber et al., 2007). For the
unsupervised HTMM, we feed the discovered topic
representations to a linear support vector regression
(SVR) (Smola & Schölkopf, 2003) to make it con-
sistent with the regression model as integrated in
MedLDA and sCTRF. For sCTRF, we report two sets
of results achieved with maximum likelihood estima-
tion and max-margin training.

Fig. 3 shows the predictive R2 (Blei & Lafferty, 2006)
scores of different models. First, since supervised topic
models can leverage the side information (e.g., rating
scores) to discover latent topic representations, they
generally outperform the decoupled two-step proce-
dure as adopted in unsupervised topic models. Second,
the feature-based sCdTM (with max-margin training)
outperforms MedLDA, which only uses the word count
feature. Third, sCTRF (max-margin) slightly outper-
forms sCdTM (max-margin) because of the incorpo-
ration of Markov dependency7. Therefore, the rea-
son for the superior performance of sCTRF (MLE or
max-margin) compared to sLDA or MedLDA is be-
cause sCTRF can incorporate both rich input features
and Markov dependency. Finally, the max-margin
based methods (e.g., sCTRF (max-margin)) gener-
ally outperform likelihood-based methods (e.g., sC-
TRF (MLE)) due to a regularization effect introduced
by constraints. For a linear SVR with word count fea-
tures, the predictive R2 is about 0.56, which is compa-
rable to the best performance of MedLDA but worse
than the best performance of max-margin sCTRF.

7Similar conclusions observed for MLE method.
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Figure 4. The average distribution over topics for documents of the same rating score. The top row is for max-margin
sCTRF and the bottom row is for MedLDA. For each model, we use 5 (Left), 10 (Middle), and 15 (Right) topics.
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Figure 5. The weights of five features in max-margin sCTRF with topic number 5 (Left), 10 (Middle), and 15 (Right).

5.3. Characterization of Topic Modeling

In this section, we show some interesting properties of
sCTRF on topic modeling, which provide insights for
the outstanding performance in regression.

5.3.1. Average Topic Distribution

Fig. 4 shows the averagemixture distribution over top-
ics for the two best representatives–max-margin sC-
TRF and MedLDA. The average is taken over testing
documents that have the same rating score. We denote
the rating scores from small to large by R1, · · · , and
R5. We use curves that connect the topic-probability
points to show the trends of probability change. We
can see that the curves of sCTRF show a consistent
smooth change from R1 to R5. For example, when
the topic number is 10 or 15, the lowest rating R1 has
high probabilities on the first several topics while low
probabilities on the last several topics; but the high-
est rating R5 is on the opposite side, i.e., having low
probabilities on the first several topics and high prob-
abilities on the last several topics. In fact, as shown in
Table 1 for a 10 topic sCTRF, topics T1 and T2 are
about the negative side of a hotel, while topics T9 and
T10 are on the positive side. Therefore, reviews with
a low rating score have high probabilities to describe
negative aspects (e.g., T1) but low probabilities to de-
scribe positive aspects (e.g., T10). Overall, for the rat-
ings from R1 to R5, the probability mass is smoothly
changed with more probability distributed on positive
topics and less probability on negative topics. When
topic number is small (e.g., 5), the topics do not show
a regular negative/positive pattern due to the domi-

nating effect of the Default feature, as we shall see.

The smooth change of the probability curves in the
max-margin sCTRF result in a better prediction in a
linear regression model, as shown in Fig. 3. However,
for MedLDA, the probability curves tend to mix to-
gether and do not show a consistently smooth change.
Moreover, the topics discovered by MedLDA do not
show a similar positive/negative pattern8, as detailed
below. Similarly, the likelihood-based sCTRF obtains
a better topic representation than sLDA and a better
predictive R2. Details are deferred to a full version.

5.3.2. Feature Weights and Sample Topics

Fig. 5 shows the weights of the feature functions
that are defined with five features: Default–equal to
one for any word; Pos-JJ–positive adjective; Neg-JJ–
negative adjective; Re-Pos-JJ–positive adjective that
has a denying word before it; and Re-Neg-JJ–negative
adjective that has a denying word before it. Note that
the Default feature is equivalent to the word counts
used in LDA models. Again, we use curves that con-
nect the topic-weight points to show the change trends.
We can see that when the topic number is small, the
default feature dominates; but when the topic number
is large (e.g., 10 or 15), the default feature tends to
discover prominent latent topics that are common for
all the documents, e.g., T3 to T8 in Table 1. In con-
trast, both the positive and negative adjective features
tend to discover topics that are more discriminative for
rating prediction, e.g., T1 and T10.

8All results are automatic, without sorting of the topics.
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Table 1. Top words in different topics by 10 topic max-margin sCTRF and 10 topic MedLDA.
Max-Margin CTRF MedLDA

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
told booked place hotel room room hotel beach beach great hotel place room room beach hotel hotel hotel resort hotel
dirty room hotel food hotel hotel area pool resort good location day day table pool room room pool beach people
room told room bar check parking staff resort pool nice good house hotel bed resort breakfast told food night room
front front days day stay desk pool food ocean lovely guests stay night breakfast room rooms asked good food desk
asked asked time pool night stay breakfast island island beautiful service great stay shower area stay staff beach time front
hotel hotel day time rooms night day kids kids excellent place time desk bathroom view area day bar pool stay
bad back night service bed breakfast view trip good wonderful area trip front night nice good manager night room day
small called people holiday floor bed location service great comfortable staff back told place ocean staff back day great time
worst manager stay room desk floor service day restaurants beach rooms beautiful door coffee great nice reception room service parking
poor left water people door rooms walk staff enjoyed friendly time island rooms small bedroom bathroom rooms holiday good pool

manager stay rooms night time time restaurant restaurants loved fresh restaurant lovely place hotel chairs floor time staff day nice
called work experience restaurant morning day time time trip large stay dinner back tv unit night stay people staff service
rude decided food water back clean food view area amazing pool experience floor water kids small night area water back

reception finally resort drinks stayed staff room area food fantastic experience food time looked island n’t service restaurant people check
broken checked staff rooms day bathroom bit ocean walk perfect site night bed door time bed booked great nice lobby

Table 1 shows the top words for the topics discovered
by 10 topic max-margin sCTRF and MedLDA. We can
see that for sCTRF the topics show a regular positive-
ness/negativeness pattern. For example, the topics T1
and T2 are on the negative aspects of a hotel while T9
and T10 describe positive aspects, and in between, the
topics from T3 to T8 tend to be neutral and describe
the most common aspects, such as room, food, staff,
etc. Overall, from T1 to T10, the positiveness of the
topics increases while the negativeness decreases. This
is consistent with the weight change of the Pos-JJ and
Neg-JJ features over topics as shown in Fig. 5. How-
ever, the topics discovered by MedLDA do not show
a regular pattern on positiveness or negativeness. For
example, the positive words such as “good”, “nice”, or
“great” appear in most of the topics, and within each
topic the words are not so coherent, in terms of POS
tags or meanings. The reason for discovering such un-
purified topics is because MedLDA only uses the De-

fault (i.e., word count) feature, which tends to discover
common aspects of a hotel, as shown in Fig. 5.

6. Conclusions

We have presented the conditional topic random field
(CTRF), a general framework that incorporates ar-
bitrary input features in latent topic models and
the Markov dependency between topic assignments of
neighboring words. We develop efficient inference and
MLE parameter estimation algorithms. For the super-
vised CTRF, we also develop an arguably more dis-
criminative max-margin learning method. On real re-
view rating data, we demonstrate the interesting char-
acterization of CTRF on topic modeling and the ad-
vantages of max-margin training on prediction tasks.
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