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CONDITIONAL U-STATISTICS

By WINFRIED STUTE

University of Giessen

We introduce a class of so-called conditional U-statistics, which general-
ize the Nadaraya—Watson estimate of a regression function in the same
way as Hoeffding’s classical U-statistic is a generalization of the sample
mean. Asymptotic normality and weak and strong consistency are proved.

1. Introduction. In this paper we introduce a class of so-called condi-
tional U-statistics, which may be viewed as a generalization of the
Nadaraya—Watson estimate of a regression function. This extension is similar
to Hoeffding’s (1948) generalization of sample means to what we now call
U-statistics.

To be precise, assume that (X;,Y;), 1 <i < n, are i.i.d. random vectors in
some Euclidean space. For notational convenience, we shall restrict ourselves
to real X'’s, though our results may be generalized to the multivariate case
without difficulties. Let & be any function of & variates (the U kernel), & < n,
such that A(Y,...,Y,) is integrable. We are interested in the estimation of

m(x]_,...,xk) = [E[h(Yl,...,Yk)le =x1,...,Xk =xk].
When %k = 1 and h = Id, then clearly
m(xy) = [E[Y1|X1 =x,],

the regression of Y; given X; = x,. Examples for £ > 2 will be discussed in
“greater detail in Section 4.

For estimation of m(x,), Nadaraya (1964) and Watson (1964) independently
proposed

m (%) = Z?=1YI:K[(x1 _Xi)/an]
m Z:7=1K[(~’C1 _Xi)/an] .

Here K is a so-called smoothing kernel and (a,), is a sequence of bandwidths
tending to zero at appropriate rates. For K, at least integrability w.r.t.
Lebesgue measure with nonvanishing integral [K(«) du # 0 is assumed. Since,
unlike the case of density estimation, m, has ratio structure, [K(u)du = 1 is
not required, but is usually assumed for the sake of convenience. Often K is
chosen so as to satisfy further smoothness and tail conditions, which, for
example, guarantee smoothness of m,. For an arbitrary %, we shall consider
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statistics of the form

Teh(Y,. .., Y;Sk)l_[ﬁlK[(xj - XBJ)/an]

U (X) =u, (%g,...,%,) =
Here summation extends over all permutations 8 = (B,..., B,) of length &,
that is, over all pairwise distinct By, ..., B; taken from 1,...,n. In Section 2,

we shall derive the limit distribution of u,(x) when properly standardized
(Theorem 1). In Section 3, weak and strong consistency are proved (Theorems
2 and 3). Examples are discussed in Section 4.

There are two remarks in order about the choice of 2 and K. In classical
U-statistics theory, one may assume w.l.o.g. that & is symmetric. Since the
nominator of u ,(x) is a U-statistic with kernel AITK, such a symmetrization
would also involve the factor ITK. Since the role of A differs from that of [TK
it turns out, after a moment of thought, that little if nothing would be gained
from a symmetrization. So, in this paper, no symmetry of 4 will be imposed.
In several places, we shall make use of the variance formula for not necessarily
symmetric U-statistics. For the ease of reference, this is included in the
Appendix.

Together with the variance formula, we shall frequently apply a version of
the differentiation theorem. For the rectangular kernel, Theorem 10.49 in
Wheeden and Zygmund (1977) is appropriate, if one is interested in limit
results which hold almost everywhere without any continuity assumption on
the function to be smoothed. Greblicki, KrzyZak and Pawlak (1984) present an
extension to a slightly larger class of (nonproduct) kernels. Theorem 2 on page
63 of Stein (1970) is widely applicable if the underlying measure is Lebesgue-
continuous.

In Section 2 of this paper we preferred to state our results under the
assumption that x is a point of continuity for the function of interest. This
allows for consideration of arbitrary measures u as well as for a large class of
kernels K. It will be easy to restate the main results so that one of the above
mentioned differentiation results may be applied. This is exemplified for the
consistency results proved in Section 3. Note, however, that for Theorem 1, it
will be essential to have a product kernel.

Needless to say, that for d-dimensional X’s, K will be a kernel on R?.

2. Asymptotic normality. Let x = (x,,...,x;) be fixed throughout. In
this section, & will be assumed square-integrable. Set

Uy(h,x)=U
(n-k)

Zh(Yﬁl, )HK /HEK

Hence

u,(x) = Uy(h,x)/U,(1,x).
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Note that U,(h,x), for each n >k, is a classical U-statistic with a kernel
depending on n. The expectation of U, equals
X j - Xl
a, |

with u denoting the distribution of X;. The Hajek projection l}n of U,
satisfies

— 2. k
’]p.(dzl) e uaz) [T EK[

k x
0n=fm(zl,...,zk)l—[K[ .
Jj=1 n
U, - L (X Yo
where
k
(x y) = Z [Rni(2,5) = 6,]
and h,; is defined by

hoj(2,9) =N [R(Yy,.. . Y 0,9, Yns e, V)

k x, —X X, — X
x]"[K[ : ]K[ . ]dIP.

r=1 a,

r#j

a,

For brevity’s sake we have set

k x;, — X
N=]_[[EK[ J 1]
Jj=1 an

and P = underlying probability measure. By independence,

nE(U, - 0,)" = ER%(X,Y) = Z 5 E[h, (X, Y) = 6,][hu(X,Y) - 6,].
j=11l=1

In the following (X, Y), (X;,Y;); .; .o, are assumed to be i.i.d. Then
[Ehnj(X’ Y)hnl(XaY)

= N2 [h(Yy,.., Y, ¥, Y, V)
><h’(Yk+1’ AR Yk+l—1’ Y, Yk+l+1’ R Y2k)

]I_IK[ s Xk+s]K[xl—X]K[xla—X]dP'

n an n

e

r+j
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Set, when x; = x;,
m;(x) = E[h(Yy,...,Y;_4,Y,Y,,4,..., 7))
Xh(Yiirs oo Y1 Y, Ypgins o, Yo )IX, =
forr #j, X, =x, fors # l and X = x; =xl],_
and zero when x; # x;. Now, if K has compact support,

e

a, ap,

whenever x; # x; and n is sufficiently large. Thus
Eh,;(X,Y)h, (X,Y) =0 when x; +x,.
When x; = x; and x is a point of continuity for m ;;, then
E*K [(x; — X,)/a,]
IEK2[(xj - Xl)/an]

by an obvious differentiation argument. Now, when X, admits a density f
with f(x;) = f(x;) > 0, then (provided f is continuous at x; = x,)

!EzK[(xj - Xl)/a,,] . f(x;)
IEKZ[(xj —Xl)/an] aanz(u)du’

(2.1) E[2, (X, Y)h (X, Y)] » my(x),

that is,
@[ j(X,Y)hyy(X,Y)] - mjz(X)sz(u)du/f(xj)-

Furthermore, when m is bounded in a neighborhood of x, then 6,, n > 1, is
bounded so that @, 62 — 0. We may conclude that

(2.2) lim na,E[U, - 6,]" = 02 = c%(h),
where
k k
(2.3) AORPUPIENIIIC) [EX(u) du/f(x)).
j=11=

In the following lemma we shall state some conditions under which Ijn is
asymptotically normal. For this we need also consider the functions

Mjim(Z1s s Zjo15 85y 23 Bhg1se oo Bai=10 25 - o o 5 Zaks
Zoh+1r 3 Z2htm—1>Zs -+ > Z3k)
= E[Ih(Yl, o Y Y LY )R (Y Yo Y, Yay)
Xh(Yops1s++s Yopame1sYse-os Yol IX; =2, forl<i< 3k,
i#j,k+1,2k+m, X=2z|.
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LEmMMmaA 2.1. Assume that

@ a, - 0 and na, — »,
(i) K is bounded and has compact support,
(iii) x is a point of continuity for each m ,
(iv) fis continuous at each x;, 1 <j < k, with f(x;) > 0,
(v) m is bounded in a neighborhood of X,
(vi) mj;,(+; ;) is bounded in a neighborhood of (x,x,x) for all 1 <
Jl,m<k.

Then
(nan)l/z[ﬁn - Gn] - A#(0,0%) indistribution,
where o2 is given by (2.3).

Proor. We verify Ljapunov’s condition for third moments. It is easy to see
that this amounts to showing

(2.4) n~Y2a3/2Eh (X, Y)I? - 0.
Since
la — BI* < 3(lal® + lal®bl + lallb® + B/%),

it turns out that an upper bound for the absolute third moment of % ,(X,Y) is
dominated by sums of the form

Elh, (X, Y)h, (X, Y)h, (X, V)l
Similar to before, we may restrict ourselves to triples (j, !, m) such that

x; = %; = x,,. Under (vi), the last integral is easily seen to be of the order a .
Since na, — , this proves (2.4). O

To show that U, has the same asymptotic distribution as I}n, we want to
bound the variance of U, — U,. In this context, we shall have to deal with
integrals [cf. (A1)] of the form

I(A, A,) = E[g(Z;,,...,2,)8(Z;, -, Z,)]»
where A; and A, are positions of some length 1 <r <k, and the i’s in
position A; coincide with the j’s in position A,, and are pairwise distinct
otherwise. Rather than I(A,, A,), to bound the variances, we consider
My, afX1Xg) = E[|A(Ys. ., G )R(Gs o, ) (X5 X)) = X4
CANNS AREAL

In addition to the assumptions of Lemma 2.1, we shall assume that
(vii) m, ,, is bounded in a neighborhood of (x, x).

1"
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LEmMa 2.2.  Under the assumptions of Lemma 2.1 and (vii),
(na,)"?[U, - 6,1 > #(0,02) in distribution.
Proor. In view of 2.1, it suffices to show
(nan)1/2[Un - I}n] -0 in L%
For this, we need the variance formula for a (centered) U-statistic

_(n—k)! 5> h(Zg,...,2,)
S T N

based on a not necessarily symmetric U kernel A [cf. (AD)]:
-DIPE (-1 I(AlaAZ)

Var(V,) = [(
Here

I(A, Ay) = [A(21- s 2) R(31, -, 30) F(d2y) -+ F(d2g_,)

and the y’s in position A, coincide with the 2’s in position A; and are taken
from z,,1,..., Z9;_, otherwise. Furthermore, © " denotes summation over all
positions A,, A, with cardinality r and F is the common d.f. of the Z’s. When
applied to V, = U, — U, upon recalling » from Serfling [(1980), page 188] (in
the symmetric case), we get

E(I)I(Al, Az) = 0.
Furthermore, by (vii),
N72I(A,,A,) =0O(a,”) foreach2 <r <k.

In summary,
vt =0 -0l [ H[2 e
=0 r‘éz(nan)l"] = 0[(na,) ™| = o(1).

This completes the proof. O

In the following, we shall investigate the asymptotic behavior of the two-
.dimensional vector

(Un(h1,%) = 0,(h1), Up(hy,x) = 0,(hsy)),

where h; and h, are two U kernels satisfying the smoothness assumptions of
2.2. We would like to apply the Cramér-Wold device. So, let c,, c, denote any
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two real numbers. Clearly,
cUn(hy1,X) + cU,(hy, X) = Uy(crhy + c3hy,X) = Uy (h, %),
so that Lemma 2.2 applies. Specification of o2(h) immediately leads to:
LemMa 2.3. Under the stated assumptions, |
(na,)"*[Up(h1,%) = 0,(hy), Up(hg,X) = 0,(hy)] — #(0,3)
in distribution, with
_|o¥hy, hy)  oP(hy, k)
0?(hy, hy)  02(hy, hy)

and where for two functions g and h,

k k
o(&h) = B T Lgmaymff () JE2(w) du/f(x))
j=11l=1

and
mflh(x) =Eg(Yy- Y, ... Y )A(Veips--n Yoo, Y0 000 ],

with Y entering in the jth and lth positions.

From the preceding lemma it is now easy to deduce the limit distribution of
u (%)

THEOREM 1. Under the assumptions of Lemma 2.2, with

(V) m is continuous at X
rather than (v), we have
(na,)*[u,(x) — EU,(h,x)] = #(0,p%) in distribution,

where
k k
(25) p?= Zl lZl Loy M (%) — m2(x)] [K?(u) du/f(x;)).
S1is

It is instructive to compare the values of p? for the two cases x; = x, and
X, # X5, when k = 2, say. Irrespective of different values of m” and f, the
case x; # x, only gives rise to two summands, while the other two vanish. The
tendency toward a larger variance in the case x; = x, is due to the fact that
only data from a (single) neighborhood (of x,) are used, while for x; # x, data
from two eventually disjoint sets are incorporated.

Proor. We have
u,(x) = U,(h,x)/U,(1,%x).
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Define
Then
g dg -1 -2
D= gg,a] = [x2 y —X1Xg ]

Since, by continuity of m at x,
EU,(h,x) —» m(x)
and
EU,(1,x) =1,

we may infer from Lemma 2.3
(na,)"*[u,(x) = EU(h,x)] = #(0, %),
where
1
o= (1m0 |
It is easy to see that p? is of the form (2.5). O

Under appropriate smoothness assumptions on the marginal density f and
the function m, Theorem 1 immediately yields asymptotic normality of
u ,(x) — m(x). Let m admit an expansion

(26)  m(y+A)=m(y) + {m'(y)}'A+ FA{m"(y)}A + o(AD)

as A — 0, for all y in a neighborhood of x.
Also assume that

(2.7 f is twice differentiable in neighborhoods of x;, 1 <j < &,

and
(2.8) K is symmetric at zero.
Then

k
a7 [EU,(h,x) - m(x)] = [ J TIEGy (" ()y dy/f(x)

. .
-~ [TTE )y {F'@)y dy m(x)/f(x)| +o(1),
where

k
r(x) =m(x) f(x), f(x)= ll:IIf(xi)-
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COROLLARY 2.4. Ifin addition to Theorem 1, (2.6)—(2.8) hold, then
(na,)?[u(x) — m(x)] » #(0,p%) in distribution
provided that na® — 0.
Under squared loss the optimal a, satisfies na® — c, some finite ¢ depend-

ing on m and f. In this case the conclusion of Corollary 2.4 also holds, but
with .#1(0, p2) replaced by .#(a, p2) for some a # 0.

3. Consistency. Our first result states that u ,(x) is a weakly consistent
estimator of m(x). I decided to formulate it for kernels satisfying the assump-
tions in Greblicki, KrzyZzak and Pawlak (1984).

THEOREM 2. Assume that

@ a, — 0 and na, — «,
() K(x) = cly, ., for somec,r >0,
(iii) ¢;H(lx|) < K(x) < ¢, H(|x]) for some positive constants c,, c, and some
decreasing function H (defined on the positive half-line) satisfying tH(t) — 0
ast — o, Then, for p ® -+ ® u almost all x,

u,(x) - m(x) in probability.
Proor. The method of proof is similar to the regression case, with some
modifications due to the U-statistic structure. Set
A(x) = fm(z1’°'°’zk)l_[;=1K[(xj - zj)/an]#(dzl) o p(dz,,)
* fHJI?=1K[(xj - zj)/an]:u'(dzl) o p(dzy) ’

which for a given x, equals 6, from the last section. From Lemma 1 in
Greblicki, Krzyzak and Pawlak (1984), almost surely

(3.1) A, (x) » m(x).
For each B = (By,..., By), write

VE = h(Y,,..., Y, )1‘[1{ /1‘[ Ek| Y _Xl]

n

k x: — X, x: — X
wy=TI1K —’ & EK| 2L
np jl-=]:1 [ a, /Jl:'[l a,
and
Vg =V —EVE, W, = Wi — EWX,

Fi;ally, set

Bn1 = (n——k)_'_z VnB

!
n: B
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and
(n—k)!
Bn2 = —| Z Wnﬂ'
n!
B
It follows that
A, + B,

“D=T11E,
So, in view of (3.1), it remains to show
B,;,»0 and B,, —» 0 in probability.

Since B, is a special case of B,; (put 2 = 1), we have only to deal with B,
Decompose h into

h = Wy + by,
where
Wy =hly<my and Aoy =hly .
and M is a prescribed constant which typically will be chosen large. Let B,

and B, be defined as B,;, but with & replaced by A, respectively, A,. It
suffices to prove that

B!,; = 0 in probability,

and that B/, can be made small with large probability by choosing M large.
To show this, apply Chebyshev’s inequality and (Al) to get

P(IB},| > ¢)

_2 (n—k)! k (n—r)!
[ n! Z ,(n—2k +r1)!

k
(r) x'_Xl
£ 1, a0 | Mew| 2|
J= n

where of course I(A;, A,) is computed for the U kernel A'y,. Since A, is
bounded, so are the functions m, ,, from Lemma 2.2. Hence, as in the

previous section, we obtain [use (A3)]
k
P(B,, =€) = 0[ “zy (nan)_r] =o(1).
r=1

Finally, again by Lemma 1 of Greblicki, Krzyiak and Pawlak (1984),

/]_[[EK

26 E[IRy (Yy, ..., Y ) IX, = o X, =2,

almost surely as n — ». The last term may be made arbitrarily small by
letting M 1. The proof is complete. O

Pu(Yi,-- . 1) n K

IP’(IB"II > 3) <27 1E
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Theorem 3 presents strong convergence of u,(x), under a finite third
moment assumption on #.

THEOREM 3. In addition to (1)-(iii) from Theorem 2, assume that
(iv) ER(Yy,..., V)P <,

(v) Y n732,2% < .

Then, for almost all x,

u,(x) > m(x) with probability 1.

REMARK 3.1. (v) is satisfied for the optimal choice a, = cn™'/® (cf. Corol-
lary 2.4) and for all slightly suboptimal a, satisfying na5 — 0.

Proor oF THEOREM 3. It remains to show that
B,; — 0 with probability 1.
Recall from the proof of Lemma 2.2 that

E(U, - T,) = 0((na,)7?).

In fact, in Lemma 2.2, condition (vii) was needed to yield the above bound for a
given x. If the kernel satisfies the assumptions of Greblicki, KrzyZak and
Pawlak (1984), their Lemma 1 may be used alternatively to bound the inte-
_ grals I(A;, A,) almost surely.

Since B,; equals U, after centering we may conclude from (v) and
Borel-Cantelli that it suffices to show

A

(3.2) U, — 6, » 0 with probability 1.

For (3.2) we need to prove, for each 1 <j < k&,
S,=n"'Y [h,;(X,,Y;) —6,] » 0 with probability 1.
i=1

By application of the Marcinkiewicz-Zygmund inequality [cf., e.g, Chow and
Teicher (1978), page 356] we have for some universal constant C,

ElS,I* < Cn=3%E|h,,;( X, Y)2.

As in the proof of Lemma 2.1, but using Lemma 1 from Greblicki, Krzyzak and
Pawlak (1984) rather than boundedness of the functions mj,,, the last
expectation is shown to be O(a;?), because of K(x) = cly, ., and
(A3), at least for u ® -+ ® u almost all x. Apply (v) and Borel-Cantelli to
complete the proof. O
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4. Examples. Generally speaking, we may take for 2 any function which
has been found interesting in the unconditional setup; cf. Serfling (1980).

As mentioned before, the case £ = 1 leads to the Nadaraya—Watson estima-
tor if we set h =id; h = 1_, , yields the conditional d.f. evaluated at ¢; cf.
Stute (1986). We now discuss several examples for 2 = 2.

ExampLE 4.1. Put A(y;,y,) = y.1Ys; then
m(xy, %5) = E[[Y,Y,lX; = x;, X, = x,]
= E[Y11X; = x,|E[ V5|X, = x,] (by independence)
=m(x,)m(x3),
with m denoting the regression of Y on X. When x, = x,, the variance
formula (2.5) yields
p? = 4Var(Y,|X, = x,)72(x,) f K2(u) du/f(x,),

while for x, # x,, we get
p? = [Var(Y11X; = x,)m%(x,) /f (1)

+Var(Y,|X, = xz)mz(xl)/f(xz)]sz(u) du.

The above 4 is a simple example of a U-statistic where one is interested in
functions of 7. More generally, by way of forming linear combinations and
incorporating higher order U-statistics, the prescribed method yields estimates
for polynomial functions of m.

ExampLE 4.2. For

h(y1,52) = 3(31 = ¥2)*
we obtain
m(xq,%,) = Var(Y,|X; = x,).
In this case,

p? = {E[(Y - Y)X(¥ - Y5)1X = X, = X, = x,] — 4m®(x;,3,) )
X [K2(u) du/f(x,)
~ {E[(¥ = (%)X = 2] — Var®(VIX = x;)} [K2(w) du/f(x,).
Compare p? with ¢; in Serfling (1980), page 182.
ExampLE 4.3. For h(y;,y,) =1, ,,,>0p We obtain a conditional U-statis-

tic which may be viewed as a conditional version of the Wilcoxon one-sample
statistic. It may be used for testing the hypothesis that the conditional
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distribution at x, is symmetric at zero. Obviously,
=4{P[Y+Y,>0,Y+Y,>0X =X, =X, =x,] - m%x,)}

X [K2(u) du/f(x,),
with
m(xl) = P(Yl + Y2 > 0|X1 = xl = Xz).
ExampLE 4.4. For h(y;,y5) = 15, _
m(xl, x2) = P(Yl < Y2IX1 = xl, X2 = xz), xl +* x2

equals the probability that the output pertaining to x, is less than or equal to
the one pertaining to x,.

We close this section with one example where the Y’s are bivariate.

ExampLE 4.5. Assume Y; = (Y, Y;,)’, and define % by

y11 y21
y12 y22 = 3(¥11Y12 + Y21Y22 — Y11Y22 — Y12Y21)>

that is, 2 = 2, and
m(xy,%3) = 3 [E(Y1,Y3alX; = 21) + E(Y5, Yol X, = 5)
—E(Y, Yool Xy = %1, Xy = x3) — E(Y1oYoulX; = 2y, X, = xz)]
In particular,
m(xy,%;) = E(Y,YpolX; = 2;) — E(Y31X; = 21)E(YelX; = xy),

the conditional covariance of Y, given X, = x,.

APPENDIX
We quote two things which are used in several places. First, let
(n—k)!
V, = — % g(Zs,,--»2g,)

be any zero mean U-statistic of degree k, with square-integrable g, the Z’s
being i.i.d. Then

(n—r)!

()
L (n =2k +71)! A, |Z I(Ay; A2),

r=|4,|

(A1) Var(V,) = Z

[(n—k)'

where £ denotes summation over all positions A,, A, of length r,

I(Ay, Ay) = E[8(Z,s. -, Z,)8(Z) -+, 23]

and the i’s in position A, coincide with the j’s in position A,. All i’s and j’s
are pairwise distinct otherwise.
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(A1) reduces to (*) in Lemma A, page 183, in Serfling (1980) when g is
symmetric.

Another result, which is especially used in Section 3, is Corollary (10.50)
from Wheeden and Zygmund (1977). It states that, if @ (%) denotes a cube
with center x and length h and edges parallel to the coordinate axes and if vy
and v are two Borel measures on R*, then

. v1(Q@x(R))

A2 lim ———

42 A u(@u(R))

where f is the Radon-Nikodym derivative of the v continuous part of v,.
When v, is Lebesgue measure, (A2) may be restated to give

(A3) ’iin}) h~*v(Q.(k)) exists v almost everywhere,

= f(%), v almost everywhere,

and is positive, possibly infinite. Together with
K(x) = cljy <y

(A3) allows for bounding the integral
k X; — &
N = fI—[lK[ ]M(dzl) o p(dzy),
1= n

from below, for v = 4 ® -+ ® u almost all x = (x,,..., x;).
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