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Abstract

Conformal predictors are set predictors that are automatically valid in the sense
of having coverage probability equal to or exceeding a given confidence level.
Inductive conformal predictors are a computationally efficient version of con-
formal predictors satisfying the same property of validity. However, inductive
conformal predictors have been only known to control unconditional coverage
probability. This paper explores various versions of conditional validity and
various ways to achieve them using inductive conformal predictors and their
modifications. In particular, it discusses a convenient expression of one of the
modifications in terms of ROC curves.
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1 Introduction

This paper continues study of the method of conformal prediction, introduced
in Vovk et al. (1999) and Saunders et al. (1999) and further developed in Vovk
et al. (2005). An advantage of the method is that its predictions (which are
set rather than point predictions) automatically satisfy a finite-sample property
of validity. Its disadvantage is its relative computational inefficiency in many
situations. A modification of conformal predictors, called inductive conformal
predictors was proposed in Papadopoulos et al. (2002a,b) with the purpose of
improving on the computational efficiency of conformal predictors. For further
information on conformal predictors and inductive conformal predictors see,
e.g., Balasubramanian et al. (2013) and Papadopoulos et al. (2013).

Most of the literature on conformal prediction studies the behaviour of set
predictors in the online mode of prediction, perhaps because the property of
validity can be stated in an especially strong form in the on-line mode (as first
shown in Vovk 2002). The online mode, however, is much less popular in applica-
tions of machine learning than the batch mode of prediction. This paper follows
the recent papers by Lei et al. (2013) and Lei and Wasserman (2013) studying
properties of conformal prediction in the batch mode; we, however, concentrate
on inductive conformal prediction. The performance of inductive conformal pre-
dictors in the batch mode is illustrated using the well-known Spambase data set;
for earlier empirical studies of conformal prediction in the batch mode see, e.g.,
Vanderlooy et al. (2007). The conference version of this paper is published as
Vovk (2012).

We will usually be making the assumption of randomness, which is stan-
dard in machine learning and nonparametric statistics: the available data is a
sequence of examples generated independently from the same probability dis-
tribution Q. (In some cases we will make the weaker assumption of exchange-
ability; for some of our results even weaker assumptions, such as conditional
randomness or exchangeability, would have been sufficient.) Each example con-
sists of two components: an object and a label. We are given a training set
of examples and a new object, and our goal is to predict the label of the new
object. (If we have a whole test set of new objects, we can apply the procedure
for predicting one new label to each of the objects in the test set.)

The two desiderata for inductive conformal predictors are their validity and
efficiency: validity requires that the coverage probability of the prediction sets
should be at least equal to a preset confidence level, and efficiency requires that
the prediction sets should be as small as possible. However, there is a wide
variety of notions of validity, since the “coverage probability” is, in general,
conditional probability. The simplest case is where we condition on the trivial
σ-algebra, i.e., the probability is in fact unconditional probability, but several
other notions of conditional validity are depicted in Figure 1, where T refers to
conditioning on the training set, O to conditioning on the test object, and L
to conditioning on the test label. The arrows in Figure 1 lead from stronger to
weaker notions of conditional validity; U is the sink and TOL is the source (the
latter is not shown).
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Figure 1: Eight notions of conditional validity. The visible vertices of the cube
are U (unconditional), T (training conditional), O (object conditional), L (label
conditional), OL (example conditional), TL (training and label conditional), TO
(training and object conditional). The invisible vertex is TOL (and corresponds
to conditioning on everything).

Inductive conformal predictors (slightly generalized as compared with the
standard version) will be defined in Section 2. They are automatically valid, in
the sense of unconditional validity. It should be said that, in general, the un-
conditional error probability is easier to deal with than conditional error proba-
bilities; e.g., the standard statistical methods of cross-validation and bootstrap
provide decent estimates of the unconditional error probability but poor esti-
mates for the training conditional error probability: see Hastie et al. (2009),
Section 7.12.

In Section 3 we explore training conditional validity of inductive conformal
predictors. Our simple results (Theorem 1 and Corollaries 1 and 2) are of the
PAC type, involving two parameters: the target training conditional coverage
probability 1 − ε and the probability 1 − δ with which 1 − ε is attained. They
show that inductive conformal predictors achieve training conditional validity
automatically (whereas for other notions of conditional validity the method has
to be modified). We give a self-contained proof of Theorem 1, but Appendix A
explains how its significant part can be deduced from classical results about
tolerance regions.

In the following section, Section 4, we introduce a conditional version of
inductive conformal predictors and explain, in particular, how it achieves label
conditional validity. Label conditional validity is important as it allows the
learner to control the set-prediction analogues of false positive and false negative
rates. Section 5 is about object conditional validity and its main result (a
version of a lemma in Lei and Wasserman 2013) is negative: precise object
conditional validity cannot be achieved in a useful way unless the test object has
a positive probability. Whereas precise object conditional validity is usually not
achievable, we should aim for approximate and asymptotic object conditional
validity when given enough data (cf. Lei and Wasserman 2013).

Section 6 reports on the results of empirical studies for the standard
Spambase data set (see, e.g., Hastie et al. 2009, Chapter 1, Example 1, and
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Section 9.1.2). Section 7 discusses close connections between an important class
of label conditional ICPs and ROC curves. Section 8 concludes the main part of
the paper, and two appendixes are devoted to related approaches to set predic-
tion. Appendix A discusses connections with the classical theory of tolerance
regions (in particular, it explains how part of Theorem 1 can be deduced from
classical results about the training conditional validity of tolerance regions).
Appendix B discusses training conditional validity of conformal predictors.

2 Inductive conformal predictors

The example space will be denoted Z; it is the Cartesian product X×Y of two
measurable spaces, the object space X and the label space Y. In other words,
each example z ∈ Z consists of two components: z = (x, y), where x ∈ X is
its object and y ∈ Y is its label. Two important special cases are the problem
of classification, where Y is a finite set (equipped with the discrete σ-algebra),
and the problem of regression, where Y is the real line R.

Various predictors defined and discussed in this paper are randomized: they
depend, in addition to the data, on an element ω ∈ Ω̄ of a measurable space
Ω̄ equipped with a probability distribution R (the “coin-tossing” distribution).
This is important to cover various predictors based on the MART procedure,
which is randomized and used in our computational experiments in Section 6.

Let (z1, . . . , zl) be the training set, zi = (xi, yi) ∈ Z. We split it into two
parts, the proper training set (z1, . . . , zm) of size m < l and the calibration set
of size n := l−m. An inductive conformity m-measure is a measurable function
A : Zm×Z× Ω̄→ R; the idea behind the conformity score A((z1, . . . , zm), z, ω)
is that it should measure how well z conforms to the proper training set. We
omit “m-” when it is clear from the context. A standard choice of an inductive
conformity measure is

A((z1, . . . , zm), (x, y), ω) := ∆(y, f(x)), (1)

where f : X → Y′ is a prediction rule found (perhaps using a randomized
procedure) from (z1, . . . , zm) as the training set and ∆ : Y × Y′ → R is a
measure of similarity between a label and a prediction. Allowing Y′ to be
different from Y (often Y′ ⊃ Y) may be useful when the underlying prediction
method gives additional information to the predicted label; e.g., the MART
procedure used in Section 6 gives the logit of the predicted probability that the
label is 1.

Remark. The idea behind the term “calibration set” is that this set allows us
to calibrate the conformity scores of test examples by translating them into a
probability-type scale.

The inductive conformal predictor (ICP) corresponding to A is defined as
the set predictor

Γε(z1, . . . , zl, x, ω) := {y | py > ε}, (2)
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where ε ∈ (0, 1) is the chosen significance level (1− ε is known as the confidence
level), the p-values py, y ∈ Y, are defined by

py :=
|{i = m+ 1, . . . , l | αi ≤ αy}|+ 1

l −m+ 1
, (3)

and

αi := A((z1, . . . , zm), zi, ω), i = m+ 1, . . . , l,

αy := A((z1, . . . , zm), (x, y), ω) (4)

are the conformity scores. Given the training set and a new object x the ICP
predicts its label y; it makes an error if y /∈ Γε(z1, . . . , zl, x, ω). All predictors
considered in this paper are randomized, and so we omit the word “randomized”.

We consider a canonical probability space ∆ whose elements are all pos-
sible sequences zi = (xi, yi), i = 1, . . . , l + 1, of l + 1 examples and which is
equipped with a probability distribution P . Random variables Zi = (Xi, Yi),
i = 1, . . . , l+ 1, are projections of this probability space onto its ith coordinate:
Zi(z1, . . . , zl+1) := zi, Xi(z1, . . . , zl+1) := xi, and Yi(z1, . . . , zl+1) := yi. We
often let xi, yi, and zi stand for realizations of the random variables Xi, Yi, and
Zi, respectively. Our overall probability space is ∆×Ω̄×[0, 1], and it is equipped
with the product measure P × R × U , where R is the coin-tossing distribution
mentioned above and U is the uniform probability distribution on [0, 1] (we will
need U in the definition of “smoothed” ICP below). The generic element of
∆ × Ω̄ × [0, 1] will usually be denoted (z1, . . . , zl+1, ω, θ), and the projections
onto the last two components will be denoted Ω(z1, . . . , zl+1, ω, θ) := ω and
Θ(z1, . . . , zl+1, ω, θ) := θ; Zi will also be regarded as random variables on the
overall probability space that ignore the last two coordinates. In cases where θ
is irrelevant we will also consider the probability space ∆× Ω̄ equipped with the
probability distribution P × R. It will always be clear from the context which
of the three probability spaces we are talking about.

Smoothed inductive conformal predictors are defined as ICPs except that (3)
is replaced by

py :=
|{i = m+ 1, . . . , l | αi < αy}|+ θ (|{i = m+ 1, . . . , l | αi = αy}|+ 1)

l −m+ 1
;

(5)
therefore, Γε now depends on θ as well (remember that θ stands for values taken
by the random variable Θ distributed uniformly on [0, 1]).

Remark. The smoothed inductive conformal predictors defined in this section
are more general than the corresponding smoothed predictors considered in Vovk
et al. (2005): the former involve not only the tie-breaking random variable
Θ but also randomized conformity measures. However, this generalization is
straightforward: we get it essentially for free.

Proposition 1 (Vovk et al., 2005, Proposition 4.1). Let random exam-
ples Zm+1, . . . , Zl, Zl+1 = (Xl+1, Yl+1) be exchangeable (i.e., their dis-
tribution P is invariant under permutations). The probability of error
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Yl+1 /∈ Γε(Z1, . . . , Zl, Xl+1,Ω) does not exceed ε for any ε and any inductive
conformal predictor Γ. The probability of error Yl+1 /∈ Γε(Z1, . . . , Zl, Xl+1,Ω,Θ)
is equal to ε for any ε and any smoothed inductive conformal predictor Γ.

This simple proposition of validity is proved in Vovk et al. (2005) for induc-
tive conformal predictors based on deterministic inductive conformity measures,
but integration over Ω̄ immediately yields Proposition 1. In practice the prob-
ability of error is usually close to ε even for unsmoothed ICPs (as we will see in
Section 6 and Appendix B).

In conclusion of this section, let me give two specific examples of ICPs. Since
an ICP is determined by its inductive conformity measure, it suffices to specify
the latter.

• In the case of regression, Y = R, we can define the inductive conformity
measure by (1) where ∆(y, f(x)) := −|y − f(x)| and f is the prediction
rule found by using ridge regression from (z1, . . . , zm) as the training set.
This ICP is the inductive counterpart of the Ridge Regression Confidence
Machine (Vovk et al. 2005, Section 2.3).

• An example not covered by the scheme (1) is the 1-Nearest Neighbour
ICP, whose inductive conformity measure is

A((z1, . . . , zm), (x, y), ω) :=
mini=1,...,m:yi 6=y d(x, xi)

mini=1,...,m:yi=y d(x, xi)
, (6)

where d is a distance on X. Intuitively, an example conforms to the proper
training set if it is closer to the examples labelled in the same way than
to those labelled differently. In the case of classification, this ICP will be
called the 1-Nearest Neighbour ICP.

Another example, based on boosting, will be given in Section 6. For numerous
other examples, see Vovk et al. (2005), Section 4.2.

3 Training conditional validity

As discussed in Section 1, the standard property of validity of inductive confor-
mal predictors is unconditional. The property of training conditional validity
can be formalized using a PAC-type 2-parameter definition. It will be convenient
to represent the ICP (2) in a slightly different form downplaying the structure
(xi, yi) of zi. Define Γε(z1, . . . , zl, ω) := {(x, y) | py > ε}, where py is defined, as
before, by (3) and (4) (therefore, py depends implicitly on x). In this notation
the first part of Proposition 1 can be restated by saying that the probability
of error Zl+1 /∈ Γε(Z1, . . . , Zl,Ω) does not exceed ε provided Z1, . . . , Zl+1 are
exchangeable. We will also use similar conventions in the smoothed case.

A set predictor Γ (outputting a subset of Z given l examples and measurable
in the sense of the set {Zl+1 ∈ Γ(Z1, . . . , Zl,Ω,Θ)} being measurable) is (ε, δ)-
valid with respect to a probability distribution Q on Z if

(Ql+1 ×R× U) (Q(Γ(Z1, . . . , Zl,Ω,Θ)) ≥ 1− ε) ≥ 1− δ
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(we will apply this definition to both smoothed and unsmoothed ICPs, even
though the latter in fact do not depend on θ). We say that Γ is (ε, δ)-valid if
it is (ε, δ)-valid with respect to any probability distribution Q on Z. Our next
result (Theorem 1 below) says that ICPs satisfy this property for suitable ε and
δ; we will see, however, that this is not true for smoothed ICPs in general. Some
conditions in the statement of Theorem 1 are not straightforward to interpret;
for more explicit conditions, see Corollaries 1 and 2.

Let Z be the random variable Z(z) := z on the measurable space Z (equipped
with a probability distribution usually denotedQ). We will say that an inductive
conformity measure is continuous under a probability distribution Q on Z if, for
Qm-almost all (z1, . . . , zm) ∈ Zm and R-almost all ω ∈ Ω̄, the random variable
A((z1, . . . , zm), Z, ω) on the probability space (Z, Q) is continuous.

Theorem 1. Let binn,E be the cumulative binomial distribution function with
n trials and probability of success E; set binn,E(−1) := 0.

(a) Let Γ be an inductive conformal predictor. Suppose that ε, δ, E ∈ (0, 1)
satisfy

δ ≥ binn,E (bε(n+ 1)− 1c) , (7)

where n := l −m is the size of the calibration set. The set predictor Γε is
then (E, δ)-valid. Moreover, for any probability distribution Q on Z, any
proper training set (z1, . . . , zm) ∈ Zm, and any ω ∈ Ω̄,

Ql+1 (Q(Γε(z1, . . . , zm, Zm+1, . . . , Zl, ω)) ≥ 1− E) ≥ 1− δ. (8)

If Γ is based on an inductive conformity measure that is continuous under
Q, Γε is (E, δ)-valid with respect to Q if and only if (7) holds.

(b) Let Q be a probability distribution on Z and Γ be a smoothed inductive
conformal predictor based on an inductive conformity measure continuous
under Q. Suppose ε, δ, E ∈ (0, 1) satisfy

δ ≥ binn,E (bε(n+ 1)c) . (9)

The set predictor Γε is (E, δ)-valid with respect to Q. Moreover, for Qm-
almost all proper training sets (z1, . . . , zm) ∈ Zm, R-almost all ω, and all
θ ∈ [0, 1],

Ql+1 (Q(Γε(z1, . . . , zm, Zm+1, . . . , Zl, ω, θ)) ≥ 1− E) ≥ 1− δ. (10)

The set predictor Γε is not (E, δ)-valid with respect to Q unless ε, δ, E
satisfy (7).

In the case of smoothed ICPs there is a gap between the sufficient con-
dition (9) and the necessary condition (7), but it does not appear excessive.
More worrying is the requirement that the inductive conformity measure be
continuous under the unknown data-generating distribution Q. Unfortunately,
without this or similar requirement there are no meaningful guarantees of train-
ing conditional validity. Indeed, consider the trivial smoothed ICP based on the
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inductive conformity measure identically equal to 0. At significance level ε, it
has coverage probability 1 with probability 1−ε and coverage probability 0 with
probability ε. Therefore, it cannot be (E, δ)-valid for E < 1 unless δ ≥ ε. This
contrasts with the case of unsmoothed ICPs where very small δ are achievable:
see, e.g., Figure 8 below. Another natural way to define smoothed ICPs is to
use different random variables Θ when computing py for different labels y ∈ Y;
however, this version also encounters similar problems with training conditional
validity when the inductive conformity measure is not required to be continuous
under Q.

Proof of Theorem 1. We start from part (a), namely, from proving (8). By (2)
and (3), the set predictor Γε makes an error, zl+1 /∈ Γε(z1, . . . , zl, ω), if and only
if the number of i = m + 1, . . . , l such that αi ≤ αy is at most bε(n + 1) − 1c;
in other words, if and only if αy < α(k), where α(k) is the kth smallest αi and
k := bε(n + 1) − 1c + 1. (Formally, α(k) is defined by the requirement that∣∣{i |αi < α(k)

}∣∣ < k ≤
∣∣{i |αi ≤ α(k)

}∣∣; in other words, α(k) is the kth order
statistic.) Therefore, the Q-probability of the complement of Γε(z1, . . . , zl, ω) is
Q(A((z1, . . . , zm), Z, ω) < α(k)), where A is the inductive conformity measure.
Set

α∗ := inf{α | Q(A((z1, . . . , zm), Z, ω) < α) > E}
= inf{α | Q(A((z1, . . . , zm), Z, ω) ≤ α) > E}

E′ := Q(A((z1, . . . , zm), Z, ω) < α∗)

E′′ := Q(A((z1, . . . , zm), Z, ω) ≤ α∗).

The σ-additivity of measures implies that E′ ≤ E ≤ E′′, and E′ = E = E′′

unless α∗ is an atom of the distribution of A((z1, . . . , zm), Z, ω). Both when
E′ = E and when E′ < E, the probability of error will exceed E if an only if
α(k) > α∗. In other words, if only if we have at most k − 1 of the αi below or
equal to α∗. The probability that at most k−1 = bε(n+1)−1c values of the αi
are below or equal to α∗ equals P(B′′n ≤ bε(n+1)−1c) ≤ P(Bn ≤ bε(n+1)−1c),
where B′′n ∼ binn,E′′ , Bn ∼ binn,E , and binn,p is also allowed to stand for the
binomial distribution with parameters (n, p). (For the inequality, see Lemma 1
below.) This completes the proof of (8) and, therefore, the first two statements
of part (a). And the last statement of part (a) follows from the fact that E′′ = E
unless α∗ is an atom of the distribution of A((z1, . . . , zm), Z, ω).

Let us now prove part (b), starting from (10). We will assume that the
distribution of A((z1, . . . , zm), Z, ω) is continuous (we can do so since (10) is
required to hold only for almost all proper training sets and ω). By (5), the
set predictor Γε can make an error only if the number of i = m + 1, . . . , l such
that αi < αy is at most bε(n + 1)c (set θ := 0 in (5) and combine this with
py ≤ ε); in other words, only if αy ≤ α(k), where α(k) is the kth smallest αi
and k := bε(n + 1)c + 1. Therefore, the Q-probability of the complement of
Γε(z1, . . . , zl, ω, θ) is at most Q(A((z1, . . . , zm), Z, ω) ≤ α(k)). Define α∗, E′, E′′

as before; now we know that E′ = E = E′′. The probability of error can exceed
E only if α(k) > α∗. In other words, only if we have at most k − 1 of the αi
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below or at α∗. The probability that at most k − 1 = bε(n + 1)c values of the
αi are below or at α∗ equals P(Bn ≤ bε(n + 1)c), where Bn ∼ binn,E . This
proves (10).

The last statement of part (b) follows immediately from what we have al-
ready proved.

In the proof of Theorem 1 we used the first statement of the following lemma.

Lemma 1. Fix the number of trials n. The distribution function binn,p(K) of
the binomial distribution is decreasing in the probability of success p for a fixed
K ∈ {0, . . . , n}. It is strictly decreasing unless K = n.

Proof. For the first statement of the lemma, it suffices to check that

dbinn,p(K)

dp
=

d

dp

K∑
k=0

(
n

k

)
pk(1− p)n−k =

K∑
k=0

k − np
p(1− p)

(
n

k

)
pk(1− p)n−k

is nonpositive for p ∈ (0, 1). The last sum has the same sign as the mean of
the function f(k) := k − np over the set k ∈ {0, . . . ,K} with respect to the
binomial distribution, and so it remains to notice that the overall mean of f is
0 and that the function f is increasing. This proves the first statement, and the
second statement is now obvious.

The following corollary makes (7) and (9) in Theorem 1 less precise but more
explicit using Hoeffding’s inequality.

Corollary 1. Let ε, δ, E ∈ (0, 1).

(a) If Γ is an inductive conformal predictor, the set predictor Γε is (E, δ)-valid
provided

E ≥ ε+

√
− ln δ

2n
. (11)

(b) If Γ is a smoothed inductive conformal predictor based on an inductive
conformity measure continuous under Q, the set predictor Γε is (E, δ)-
valid with respect to Q provided

E ≥
(

1 +
1

n

)
ε+

√
− ln δ

2n
. (12)

This corollary gives the following recipe for constructing (ε, δ)-valid set pre-
dictors. The recipe only works if the training set is sufficiently large; in partic-
ular, its size l should significantly exceed N := (− ln δ)/(2ε2). Choose an ICP
Γ with the size n of the calibration set exceeding N . Then the set predictor

Γε−
√

(− ln δ)/(2n) will be (ε, δ)-valid.

8



Proof of Corollary 1. Suppose E > ε. Combining (7) with Hoeffding’s inequal-
ity (see, e.g., Vovk et al. 2005, p. 287), we can see that the probability of error
Q(Z \ Γε(Z1, . . . , Zl,Ω)) for an ICP will exceed E with probability at most

P(Bn ≤ bε(n+ 1)− 1c) ≤ P(Bn ≤ εn) ≤ e−2(E−ε)
2n,

where Bn ∼ binn,E and ε is the significance level. Solving e−2(E−ε)
2n = δ we

obtain that Γε is (E, δ)-valid whenever (11) is satisfied.
Analogously, in the case of a smoothed ICP and (9) we have

P(Bn ≤ bε(n+ 1)c) ≤ P(Bn ≤ (1 + 1/n)εn) ≤ e−2(E−(1+1/n)ε)2n,

and solving e−2(E−(1+1/n)ε)2n = δ leads to (12).

Remark. The training conditional guarantees discussed in this section are very
similar to those for the hold-out estimate of the probability of error of a classifier:
compare, e.g., Theorem 1(a) above and Theorem 3.3 in Langford (2005). The
former says that Γε is (E, δ)-valid for

E := binn,δ (bε(n+ 1)− 1c) ≤ binn,δ (εn) (13)

where bin is the inverse function to bin:

binn,δ(k) := max{p | binn,p(k) ≥ δ} (14)

(unless k = n, we can also say that binn,δ(k) is the only value of p such that
binn,p(k) = δ: cf. Lemma 1 above). And the latter says that a point predictor’s
error probability (over the test example) does not exceed

binn,δ (k) (15)

with probability at least 1− δ (over the training set), where k is the number of
errors on a held-out set of size n. The main difference between (13) and (15)
is that whereas one inequality contains the approximate expected number of
errors εn for n new examples the other contains the actual number of errors
k on n examples. Several researchers have found that the hold-out estimate
is surprisingly difficult to beat; however, like the ICP of this section, it is not
example conditional at all.

In conclusion of this section we give a statement intermediate between The-
orem 1 and Corollary 1.

Corollary 2. Let ε, δ, E ∈ (0, 1).

(a) If Γ is an inductive conformal predictor, the set predictor Γε is (E, δ)-valid
provided

E ≥ ε+

√
−2ε ln δ

n
− 2 ln δ

n
.
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(b) If Γ is a smoothed inductive conformal predictor based on an inductive
conformity measure continuous under Q, the set predictor Γε is (E, δ)-
valid with respect to Q provided

E ≥ (1 + 1/n)ε+

√
−2(1 + 1/n)ε ln δ

n
− 2 ln δ

n
.

Proof. Inequality (7) can be rewritten as

E ≥ binn,δ (bε(n+ 1)− 1c)

(using the notation (14)). In combination with inequality 2. in Langford (2005),
p. 278, this leads to the first statement. The second statement follows by re-
placing ε with (1 + 1/n)ε.

4 Conditional inductive conformal predictors

The motivation behind conditional inductive conformal predictors is that
ICPs do not always achieve the required probability ε of error Yl+1 /∈
Γε(Z1, . . . , Zl, Xl+1,Ω) conditional on (Xl+1, Yl+1) ∈ E for important sets
E ⊆ Z. This is often undesirable. If, e.g., our set predictor is valid at the
significance level 5% but makes an error with probability 10% for men and 0%
for women, both men and women can be unhappy with calling 5% the probabil-
ity of error. Moreover, in many problems we might want different significance
levels for different regions of the example space: e.g., in the problem of spam
detection (considered in Sections 6 and 7) classifying spam as email usually
makes much less harm than classifying email as spam.

An inductive m-taxonomy is a measurable function K : Zm×Z→ K, where
K is a measurable space. Usually the category K((z1, . . . , zm), z) of an example
z is a kind of classification of z, which may depend on the proper training set
(z1, . . . , zm).

The conditional inductive conformal predictor (conditional ICP) correspond-
ing to K and an inductive conformity measure A is defined as the set predictor
(2), where the p-values py are now defined by

py :=
|{i = m+ 1, . . . , l | κi = κy & αi ≤ αy}|+ 1

|{i = m+ 1, . . . , l | κi = κy}|+ 1
, (16)

the categories κ are defined by

κi := K((z1, . . . , zm), zi), i = m+ 1, . . . , l, κy := K((z1, . . . , zm), (x, y)),

and the conformity scores α are defined as before by (4). A label conditional
ICP is a conditional ICP with the inductive m-taxonomy K(·, (x, y)) := y; this
notion is useful only in classification problems.

The following proposition is the conditional analogue of the first part of
Proposition 1; in particular, it shows that in classification problems label con-
ditional ICPs achieve label conditional validity.

10



Proposition 2. If random examples Zm+1, . . . , Zl, Zl+1 = (Xl+1, Yl+1) are
exchangeable, the probability of error Yl+1 /∈ Γε(Z1, . . . , Zl, Xl+1,Ω) given the
category K((Z1, . . . , Zm), Zl+1) of Zl+1 does not exceed ε for any ε and any
conditional inductive conformal predictor Γ corresponding to K.

We refrain from giving the definition of smoothed conditional ICPs, which
is straightforward. The categories can also be made dependent on ω ∈ Ω̄.

5 Object conditional validity

In this section we prove a negative result (a version of Lemma 1 in Lei and
Wasserman 2013) which says that the requirement of precise object conditional
validity cannot be satisfied in a non-trivial way for rich object spaces (such as
R). If Q is a probability distribution on Z, we let QX stand for its marginal
distribution on X: QX(A) := Q(A ×Y). In this section we consider only set
predictors that do not depend on θ, but the case of set predictors depending on
θ (such as smoothed ICPs) is also covered by redefining ω := (ω, θ).

Let us say that a set predictor Γ has 1− ε object conditional validity, where
ε ∈ (0, 1), if, for all probability distributions Q on Z and QX-almost all x ∈ X,

(Ql+1 ×R) (Yl+1 ∈ Γ(Z1, . . . , Zl, Xl+1,Ω) | Xl+1 = x) ≥ 1− ε.

If P is a probability distribution on X, we say that a property F of elements of
X holds for P -almost all elements of a measurable set E ⊆ X if P (E \F ) = 0; a
P -non-atom is an element x ∈ X such that P ({x}) = 0. The Lebesgue measure
on R will be denoted Λ, and the convex hull of E ⊆ R will be denoted coE.

Theorem 2. Suppose X is a separable metric space equipped with the Borel σ-
algebra. Let ε ∈ (0, 1). Suppose that a set predictor Γ has 1−ε object conditional
validity. In the case of regression, we have, for all probability distributions Q
on Z and for QX-almost all QX-non-atoms x ∈ X,

(Ql+1 ×R) (Λ(Γ(Z1, . . . , Zl, x,Ω)) =∞) ≥ 1− ε (17)

and
(Ql+1 ×R) (co Γ(Z1, . . . , Zl, x,Ω) = R) ≥ 1− 2ε. (18)

In the case of classification, we have, for all Q, all y ∈ Y, and QX-almost all
QX-non-atoms x,

(Ql+1 ×R) (y ∈ Γ(Z1, . . . , Zl, x,Ω)) ≥ 1− ε. (19)

The constant ε in each of (17), (18), and (19) is optimal, in the sense that it
cannot be replaced by a smaller constant.

We are mainly interested in the case of a small ε (corresponding to high
confidence), and in this case (17) implies that, in the case of regression, the
prediction interval (i.e., the convex hull of the prediction set) can be expected

11



to be infinitely long unless the test object is an atom. Even an infinitely long
prediction interval can be somewhat informative providing a one-sided bound
on the label of the test example; (18) says that, with probability at least 1− 2ε,
the prediction interval is completely uninformative unless the test object is an
atom. In the case of classification, (19) says that each particular y ∈ Y is likely
to be included in the prediction set, and so the prediction set is likely to be
large. In particular, (19) implies that the expected size of the prediction set is
a least (1− ε) |Y|.

Of course, the condition that the test object x be a non-atom is essential: if
QX({x}) > 0, an inductive conformal predictor that ignores all examples with
objects different from the current test object can have 1− ε object conditional
validity and still produce a small prediction set for a test object x if the training
set is big enough to contain many examples with x as their object.

Remark. Nontrivial set predictors having 1− ε object conditional validity are
constructed by McCullagh et al. (2009) assuming the Gauss linear model.

Proof of Theorem 2. The proof will be based on the ideas of Lei and Wasserman
(2013, the proof of Lemma 1).

We start from showing that the ε in (17), (18), and (19) cannot be replaced
by a smaller constant. For (17) and (19) this follows from the fact that the
trivial set predictor predicting Y with probability 1− ε and ∅ with probability
ε has 1 − ε object conditional validity. In the case of (18) the bound 1 − 2ε is
attained by the set predictor predicting R with probability 1 − 2ε, [0,∞) with
probability ε, and (−∞, 0] with probability ε (this assumes ε < 1/2; the case
ε ≥ 1/2 is trivial). This predictor’s conditional probability of error given all l+1
examples is at most ε (0 if yl+1 = 0 and ε otherwise); therefore, the conditional
probability of error will be at most ε given the test object.

Next we prove the first statement about regression. Suppose (17) does not
hold on a measurable set E of QX-non-atoms x ∈ X such that QX(E) > 0.
Shrink E in such a way that QX(E) > 0 still holds but there exist δ > 0 and
C > 0 such that, for each x ∈ E,

(Ql+1 ×R) (Λ(Γ(Z1, . . . , Zl, x,Ω)) ≤ C) ≥ ε+ δ. (20)

Let V be the total variation distance between probability measures, V (P,Q) :=
supA |P (A)−Q(A)|; we then have

V (P l, Ql) ≤
√

2
√

1− (1− V (P,Q))l

(this follows from the connection of V with the Hellinger distance: see, e.g.,
Tsybakov 2010, Section 2.4). Shrink E further so that QX(E) > 0 still holds
but √

2
√

1− (1−QX(E))l ≤ δ/2. (21)

(This can be done under our assumption that X is a separable metric space:
see Lemma 2 below.) Define another probability distribution P on Z by the

12



requirements that P (A × B) = Q(A × B) for all measurable A ⊆ (X \ E),
B ⊆ R and that P (A×B) = QX(A)×U(B) for all measurable A ⊆ E, B ⊆ R,
where U is the uniform probability distribution on the interval [−DC,DC] and
D > 0 will be chosen below. Since V (P,Q) ≤ QX(E), we have V (P l, Ql) ≤ δ/2,
which implies V (P l ×R,Ql ×R) ≤ δ/2; therefore, by (20),

(P l+1 ×R) (Λ(Γ(Z1, . . . , Zl, x,Ω)) ≤ C) ≥ ε+ δ/2

for each x ∈ E. The last inequality implies, by Fubini’s theorem,

(P l+1 ×R) (Λ(Γ(Z1, . . . , Zl, Xl+1,Ω)) ≤ C & Xl+1 ∈ E) ≥ (ε+ δ/2)PX(E),

where PX(E) = QX(E) > 0 is the marginal P -probability of E. When D
(depending on δPX(E)) is sufficiently large this in turn implies

(P l+1 ×R) (Yl+1 /∈ Γ(Z1, . . . , Zl, Xl+1,Ω) & Xl+1 ∈ E) ≥ (ε+ δ/4)PX(E).

However, the last inequality contradicts

(P l+1 ×R) (Yl+1 /∈ Γ(Z1, . . . , Zl, Xl+1,Ω) & Xl+1 ∈ E)

PX(E)
≤ ε, (22)

which follows from Γ having 1− ε object conditional validity and the definition
of conditional probability.

For the second statement about regression, suppose (18) does not hold on
a measurable set E of QX-non-atoms x ∈ X such that QX(E) > 0. In other
words, for all x ∈ E,

(Ql+1 ×R) (sup Γ(Z1, . . . , Zl, x,Ω) <∞ or inf Γ(Z1, . . . , Zl, x,Ω) > −∞) > 2ε.

For each x ∈ E we have either

(Ql+1 ×R) (sup Γ(Z1, . . . , Zl, x,Ω) <∞) > ε (23)

or
(Ql+1 ×R) (inf Γ(Z1, . . . , Zl, x,Ω) > −∞) > ε. (24)

Therefore, either (23) or (24) holds on a subset of E of a positive QX-probability.
Suppose, for concreteness, that (23) does. Shrink E in such a way that QX(E) >
0 still holds and (23) holds for all x ∈ E. Shrink E further in such a way that
QX(E) > 0 still holds but there exist δ > 0 and C > 0 such that, for each
x ∈ E,

(Ql+1 ×R) (sup Γ(Z1, . . . , Zl, x,Ω) ≤ C) ≥ ε+ δ. (25)

Shrink E further so that both QX(E) > 0 and (21) hold. Define a probability
distribution P on Z by the requirements that P (A × B) = Q(A × B) for all
measurable A ⊆ (X \E) and B ⊆ R and that P (A× {C + 1}) = QX(A) for all
measurable A ⊆ E (i.e., modify Q setting the conditional distribution of Y given
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X ∈ E to the unit mass concentrated at C+1). Since V (P l×R,Ql×R) ≤ δ/2,
(25) implies

(P l+1 ×R) (sup Γ(Z1, . . . , Zl, x,Ω) ≤ C) ≥ ε+ δ/2

for all x ∈ E, which in turn implies

(P l+1 ×R) (sup Γ(Z1, . . . , Zl, Xl+1,Ω) ≤ C & Xl+1 ∈ E) ≥ (ε+ δ/2)PX(E),

which in turn implies

(P l+1 ×R) (Yl+1 /∈ Γ(Z1, . . . , Zl, Xl+1,Ω) & Xl+1 ∈ E) ≥ (ε+ δ/2)PX(E),

which contradicts (22).
It remains to prove the statement about classification. Suppose (19) does

not hold on a measurable set E of QX-non-atoms x ∈ X such that QX(E) > 0.
Shrink E in such a way that QX(E) > 0 still holds but there exists δ > 0 such
that, for each x ∈ E,

(Ql+1 ×R) (y ∈ Γ(Z1, . . . , Zl, x,Ω)) ≤ 1− ε− δ.

Without loss of generality we further assume that (21) also holds. Define a
probability distribution P on Z by the requirements that P (A×B) = Q(A×B)
for all measurable A ⊆ (X \ E) and all B ⊆ Y and that P (A× {y}) = QX(A)
for all measurable A ⊆ E (i.e., modify Q setting the conditional distribution of
Y given X ∈ E to the unit mass concentrated at y). Then for each x ∈ E we
have

(P l+1 ×R) (y ∈ Γ(Z1, . . . , Zl, x,Ω)) ≤ 1− ε− δ/2,
which implies

(P l+1 ×R) (Yl+1 ∈ Γ(Z1, . . . , Zl, Xl+1,Ω) & Xl+1 ∈ E) ≤ (1− ε− δ/2)PX(E).

The last inequality contradicts Γ having 1− ε object conditional validity.

In the proof of Theorem 2 we used the following lemma.

Lemma 2. If Q is a probability measure on X, which is assumed to be a sep-
arable metric space, E is a set of Q-non-atoms such that Q(E) > 0, and δ > 0
is an arbitrarily small number, then there is E′ ⊆ E such that 0 < Q(E′) < δ.

Proof. We can take as E′ the intersection of E and an open ball centred at any
element of X for which all such intersections have a positive Q-probability. Let
us prove that such elements exist. Suppose they do not.

Fix a countable dense subset A1 of X. Let A2 be the union of all open balls
B with rational radii centred at points in A1 such that Q(B ∩ E) = 0. On one
hand, the σ-additivity of measures implies Q(A2 ∩E) = 0. On the other hand,
A2 = X: indeed, for each x ∈ X there is an open ball B of some radius ε > 0
centred at x that satisfies Q(B ∩E) = 0; since x belongs to the radius ε/2 open
ball centred at a point in A1 at a distance of less than ε/2 from x, we have
x ∈ A2. This contradicts Q(E) > 0.
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Theorem 2 demonstrates an interesting all-or-nothing phenomenon for set
predictors having 1−ε object conditional validity: each such predictor produces
hopelessly large prediction sets with probability at least 1−ε; on the other hand,
already a trivial predictor of this kind (mentioned in the proof) produces the
smallest possible prediction sets with probability ε.

The theorem does not prevent the existence of efficient set predictors that
are object conditionally valid in an asymptotic sense; indeed, the paper by Lei
and Wasserman (2013) is devoted to constructing asymptotically efficient and
asymptotically object conditionally valid set predictors in the case of regression.

6 Experiments

This section describes some simple experiments on the well-known Spambase

data set contributed by George Forman to the UCI Machine Learning Repository
(Frank and Asuncion, 2010). Its overall size is 4601 examples and it contains
examples of two classes: email (also written as 0) and spam (also written as
1). Hastie et al. (2009) report results of several machine-learning algorithms on
this data set split randomly into a training set of size 3065 and test set of size
1536. The best result is achieved by MART (multiple additive regression tree;
4.5% error rate according to the second edition of Hastie et al. 2009).

All our experiments are for (unsmoothed) ICPs. We randomly permute the
data set and divide it into 2602 examples for the proper training set, 999 for
the calibration set, and 1000 for the test set. Our split between the proper
training, calibration, and test sets, approximately 2:1:1, is inspired by the stan-
dard recommendation for the allocation of data into training, validation, and
test sets (see, e.g., Hastie et al. 2009, Section 7.2). We consider the ICP whose
conformity measure is defined by (1) where f is output by MART and

∆(y, f(x)) :=

{
f(x) if y = 1

−f(x) if y = 0.
(26)

MART’s output f(x) models the log-odds of spam vs email,

f(x) = log
P (1 | x)

P (0 | x)
,

which makes the interpretation of (26) as conformity score very natural.
The R programs used in the experiments described in this and next sections

for producing the tables and figures in the conference version of this paper
(Vovk, 2012) are available from the web site http://alrw.net; the programs
use the gbm package with virtually all parameters set to the default values (given
in the description provided in response to help("gbm")).

The upper left plot in Figure 2 is the scatter plot of the pairs (pemail, pspam)
produced by the ICP for all examples in the test set. Email is shown as (blue)
noughts and spam as (red) crosses (and when the figure is viewed in colour, it is
noticeable that the noughts were drawn after the crosses). The other two plots
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Figure 2: Scatter plots of the pairs (pemail, pspam) for all examples in the test set
(left plots), for email only (middle), and for spam only (right). Email is shown
as (blue) noughts and spam as (red) crosses. The three upper plots are for the
ICP and the three lower ones are for the label conditional ICP.

in the upper row are for email and spam separately. Ideally, email should be
close to the horizontal axis and spam to the vertical axis; we can see that this
is often true, with a few exceptions. The picture for the label conditional ICP
looks almost identical: see the lower row of Figure 2. However, on the log scale
the difference becomes more noticeable: see Figure 3.

Table 1 gives some statistics for the numbers of errors, multiple set predic-
tions {0, 1}, and empty set predictions ∅ in the case of the (unconditional) ICP
Γ5% at significance level 5% (we obtain different numbers not only because of
different splits but also because MART is randomized; the columns of the ta-
ble correspond to the random number generator seeds 0, 1, 2, etc.). The table
demonstrates the validity, (lack of) conditional validity, and efficiency of the
algorithm (the latter is of course inherited from the efficiency of MART). We
give two kinds of conditional figures: the percentages of errors, multiple, and
empty predictions for different labels and for two different kinds of objects. The
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Figure 3: The analogue of Figure 2 on the log scale.

two kinds of objects are obtained by splitting the object space X by the value
of an attribute that we denote $: it shows the percentage of the character $ in
the text of the message. The condition $ < 5.55% was the root of the decision
tree chosen both by Hastie et al. (2009, Section 9.2.5), who use all attributes
in their analysis, and by Maindonald and Braun (2007, Chapter 11), who use 6
attributes chosen by them manually. (Both books use the rpart R package for
decision trees.)

Notice that the numbers of errors, multiple predictions, and empty predic-
tions tend to be greater for spam than for email. Somewhat counter-intuitively,
they also tend to be greater for “email-like” objects containing few $ characters
than for “spam-like” objects. The percentage of multiple and empty predictions
is relatively small since the error rate of the underlying predictor happens to be
close to our significance level of 5%.

In practice, using a fixed significance level (such as the standard 5%) is not
a good idea; we should at least pay attention to what happens at several signifi-
cance levels. However, experimenting with prediction sets at a fixed significance
level facilitates a comparison with theoretical results.
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Table 1: Percentages of errors, multiple predictions, and empty predictions at
significance level 5% on the full test set and separately on email and spam and
on two kinds of objects. The results are given for the first 100 seeds for the R
(pseudo)random number generator (RNG); column “Average” gives the average
percentages for all 100 seeds 0–99, and column “St. dev.” gives usual estimates
of the standard deviations (namely, the square roots of the standard unbiased
estimates of the variances) of the percentages for the 100 seeds.

RNG seed 0 1 2 . . . 99 Average St. dev.

errors overall 4.1% 6.9% 4.6% . . . 4.2% 5.08% 1.00%
for email 2.44% 4.61% 2.26% . . . 2.82% 3.35% 0.92%
for spam 6.77% 10.43% 8.42% . . . 6.30% 7.74% 1.64%
for $ < 5.55% 4.36% 7.91% 5.15% . . . 4.34% 5.76% 1.24%
for $ > 5.55% 3.29% 4.12% 2.69% . . . 3.75% 2.96% 1.02%

multiple overall 2.7% 0% 0.1% . . . 1.2% 0.86% 0.98%
for email 2.11% 0% 0.16% . . . 0.83% 0.60% 0.68%
for spam 3.65% 0% 0% . . . 1.76% 1.26% 1.52%
for $ < 5.55% 3.04% 0% 0.13% . . . 1.18% 0.98% 1.15%
for $ > 5.55% 1.65% 0% 0% . . . 1.25% 0.49% 0.68%

empty overall 0% 2.7% 0% . . . 0% 0.31% 0.63%
for email 0% 1.48% 0% . . . 0% 0.24% 0.47%
for spam 0% 4.58% 0% . . . 0% 0.42% 0.96%
for $ < 5.55% 0% 3.14% 0% . . . 0% 0.36% 0.73%
for $ > 5.55% 0% 1.50% 0% . . . 0% 0.14% 0.40%

Table 2 gives similar statistics in the case of the label conditional ICP. The
error rates are now about equal for email and spam, as expected. We refrain from
giving similar predictable results for “object conditional” ICP with $ < 5.55%
and $ > 5.55% as categories.

We define the calibration plot of an ICP Γ on a test set as the percentage
of errors made by Γε plotted against ε ∈ (0, 1). Figure 4 gives three calibration
plots for the ICP: for the full test set and for email and spam separately. It
shows approximate validity even for email and spam separately, except for the
all-important lower-left corners. The latter are shown separately in Figure 5,
where the lack of conditional validity becomes evident; cf. Figure 6 for the label
conditional ICP.

From the numbers in the “errors overall” row of Table 1 (both given and
hidden in the . . . part) we can extract the corresponding confidence intervals
for the probability of error conditional on the training set and MART’s internal
coin tosses; these are shown in Figure 7. It can be seen that training conditional
validity is not grossly violated. (Notice that the 100 training sets used for
producing this figure are not completely independent. Besides, the assumption
of randomness might not be completely satisfied: permuting the data set ensures
exchangeability but not necessarily randomness.) It is instructive to compare
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Table 2: The analogue of a subset of Table 1 in the case of the label conditional
ICP.

RNG seed 0 1 2 . . . 99 Average St. dev.

errors overall 3.4% 6.0% 3.8% . . . 3.6% 4.92% 0.91%
for email 3.73% 6.92% 3.87% . . . 3.48% 4.97% 1.15%
for spam 2.86% 4.58% 3.68% . . . 3.78% 4.82% 1.33%

multiple overall 4.2% 0% 4.0% . . . 2.6% 1.68% 1.54%
for email 3.90% 0% 5.48% . . . 2.49% 1.94% 1.86%
for spam 4.69% 0% 1.58% . . . 2.77% 1.28% 1.26%

empty overall 0% 1.0% 0% . . . 0% 0.15% 0.45%
for email 0% 1.48% 0% . . . 0% 0.15% 0.47%
for spam 0% 0.25% 0% . . . 0% 0.15% 0.47%
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Figure 4: The calibration plot for the test set overall, the email in the test set,
and the spam in the test set (for the first 8 seeds, 0–7).

Figure 7 with the “theoretical” Figure 8 obtained from Theorem 1(a) (the thick
black line), Corollary 1(a) (the thin solid line, which may be shown in red),
and Corollary 2(a) (the thin dashed line, which may be shown in blue). The
dotted black line corresponds to the significance level 5%. There is no obvious
discrepancy between Figures 7 and 8.

Figure 8 gives bounds on the training conditional error probability as a
function of δ for a fixed size n = 999 of the calibration set. Figure 9, on
the other hand, gives bounds on the training conditional error probability as a
function of the size n of the calibration set for a fixed δ, namely for δ = 1%.

Figure 10 is the analogue of Figure 8 for significance level ε = 1%. Notice
that the thin solid line (corresponding to Corollary 1(a) and perhaps shown in
red) simply shifts down by 4%. However, the quality of the thick black line
(corresponding to Theorem 1(a)) and the thin dashed line (corresponding to

19



0.00 0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

0.
20

Overall calibration plot

significance level

er
ro

r 
ra

te

0.00 0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

0.
20

Calibration plot for email

significance level
er

ro
r 

ra
te

0.00 0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

0.
20

Calibration plot for spam

significance level

er
ro

r 
ra

te

Figure 5: The lower left corners of the plots in Figure 4.
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Figure 6: The analogue of Figure 5 for the label conditional ICP.

Corollary 2(a) and perhaps shown in blue) becomes significantly better that
that.

7 ICPs and ROC curves

This section discusses a close connection between an important class of ICPs
(“scoring-type” label conditional ICPs) and ROC curves. (For a previous study
of connections between conformal prediction and ROC curves, see Vanderlooy
and Sprinkhuizen-Kuyper 2007.) Let us say that an ICP or a label conditional
ICP is scoring-type if its inductive conformity measure is defined by (1) where
f takes values in R and ∆ is defined by (26).

The reader might have noticed that the two leftmost plots in Figure 2 look
similar to a ROC curve. The following proposition will show that this is not
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Figure 7: Confidence intervals for training conditional error probabilities: 95%
shown as thin lines (in black) and 80% shown as thick lines (perhaps in blue).
The 5% significance level is shown as the horizontal dotted black line.

coincidental in the case of the lower left one. However, before we state it, we
need a few definitions. We will now consider a general binary classification
problem and will denote the labels as 0 and 1. For a threshold c ∈ R, the type
I error on the calibration set is

α(c) :=
|{i = m+ 1, . . . , l | f(xi) ≥ c & yi = 0}|

|{i = m+ 1, . . . , l | yi = 0}|
(27)

and the type II error on the calibration set is

β(c) :=
|{i = m+ 1, . . . , l | f(xi) ≤ c & yi = 1}|

|{i = m+ 1, . . . , l | yi = 1}|
(28)

(with 0/0 set, e.g., to 1/2). Intuitively, these are the error rates for the classifier
that predicts 1 when f(x) > c and predicts 0 when f(x) < c (our definition
is conservative in that it counts the prediction as error whenever f(x) = c);
namely, α(c) is the false positive rate and β(c) is the false negative rate. The
empirical ROC curve is the parametric curve

{(α(c), β(c)) | c ∈ R} ⊆ [0, 1]2. (29)

(Our version of ROC curves is the original version reflected in the line y = 1/2; in
deviating from the original version we follow Hastie et al. 2009, whose version is
the original one reflected in the line x = 1/2, and many other books and papers;
see, e.g., Bengio et al. 2005, Figure 1.) Since α(c) and β(c) take only finitely
many values, the empirical ROC curve (along with its modifications introduced
below) is not continuous but consists of discrete points.

Proposition 3. In the case of a scoring-type label conditional ICP, for any
object x ∈ X, the distance between the pair (p0, p1) (see (16)) and the empirical
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Figure 8: The upper bounds on the training conditional probability of error vs
δ given by Theorem 1(a) (the thick black line), Corollary 1(a) (the thin solid
line, perhaps shown in red), and Corollary 2(a) (the thin dashed line, perhaps
shown in blue), where ε = 5% and n = 999.

ROC curve is at most √
1

(n0 + 1)2
+

1

(n1 + 1)2
, (30)

where ny is the number of examples in the calibration set labelled as y.

Proof. Let c := f(x). Then we have

(p0, p1) =

(
n0≥ + 1

n0 + 1
,
n1≤ + 1

n1 + 1

)
(31)

where n0≥ is the number of examples (xi, yi) in the calibration set such that yi =

0 and f(xi) ≥ c and n1≤ is the number of examples in the calibration set such

that yi = 1 and f(xi) ≤ c. It remains to notice that the point
(
n0≥/n

0, n1≤/n
1
)

belongs to the empirical ROC curve: the horizontal (resp. vertical) distance
between this point and (31) does not exceed 1/(n0 + 1) (resp. 1/(n1 + 1)), and
the overall Euclidean distance does not exceed (30).

So far we have discussed the empirical ROC curve: (27) and (28) are the
empirical probabilities of errors of the two types on the calibration set. It
corresponds to the estimate k/n of the parameter of the binomial distribution
based on observing k successes out of n. The minimax estimate is (k+1/2)/(n+
1), and the corresponding ROC curve (29) where α(c) and β(c) are defined
by (27) and (28) with the numerators increased by 1

2 and the denominators
increased by 1 will be called the minimax ROC curve. Notice that for the
minimax ROC curve we can put a coefficient of 1

2 in front of (30). Similarly,
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Figure 9: The upper bounds on the training conditional probability of error vs δ
in the same format as in Figure 8, except that now δ is fixed at 1% and n ranges
between 19 (the smallest value giving non-trivial prediction sets) and 1500; as
before, ε = 5%.

when using the Laplace estimate (k + 1)/(n + 2), we obtain the Laplace ROC
curve. See the left panel of Figure 11 for the lower left corner of the lower left
plot of Figure 2 with different ROC curves added to it.

The non-standard estimate (k+ 1)/(n+ 1) of the parameter of the binomial
distribution leads to a version of ROC curve that is connected to the label
conditional ICP in the most direct way. Let us call this estimate the upper
Venn estimate and the corresponding ROC curve the upper Venn ROC curve
(cf. the discussion of the Venn predictor in Vovk et al. 2005, pp. 159–160). (The
upper Venn estimate is unusual in that the estimate of the probability of an
event plus the estimate of the probability of its complement is different from 1.)
Notice that the upper Venn ROC curve lies Northeast of all three ROC curves
discussed earlier. In the square [0, 0.5] × [0, 0.5] the order of the ROC curves
from Southwest to Northeast is: empirical, minimax, Laplace, and upper Venn;
the last two are very close to each other for large n0 and n1 and small ratios
n0≥/n

0 and n1≤/n
1, as in Figure 11.

The rest of this section is devoted to a discussion of the upper Venn ROC
curve. Remember that it is defined as the parametric curve (29), where now

α(c) :=
|{i = m+ 1, . . . , l | f(xi) ≥ c & yi = 0}|+ 1

|{i = m+ 1, . . . , l | yi = 0}|+ 1

β(c) :=
|{i = m+ 1, . . . , l | f(xi) ≤ c & yi = 1}|+ 1

|{i = m+ 1, . . . , l | yi = 1}|+ 1
.

The pair (p0, p1) of p-values for any test example belongs to the upper Venn
ROC curve; therefore, this curve passes through all test examples in Figure 11.
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The curve can serve as a convenient classification of all possible test objects:
each of them corresponds to a point on the curve.

The label conditional ICP can also be conveniently described in terms of the
upper Venn ROC curve. An example is given as the right panel of Figure 11.
Each test object is represented by a point (p0, p1). Let ε be the significance level;
it is 5% in Figure 11 (but as mentioned earlier, there is no need to have the
same significance level for email and spam). If the point (ε, ε) lies Southwest of
the curve, the label conditional ICP can produce multiple predictions but never
produces empty predictions. If it lies Northeast of the curve, the predictor
can produce empty predictions but never produces multiple predictions. In
particular, it is impossible to produce both multiple and empty predictions for
the same calibration set, which is demonstrated by columns 0–99 of Table 2.
(Lying on the curve is regarded as a special case of lying Northeast of it. Because
of the discreteness of the upper Venn ROC curve it is also possible that (ε, ε)
lies neither Northeast nor Southwest of it; in this case predictions are always
singletons.)

If the test object is in the Northeast region NE with respect to (ε, ε) (i.e.,
p0 > ε and p1 > ε), the prediction set is multiple, {0, 1}. If it is in the region SW
(i.e., p0 ≤ ε and p1 ≤ ε), the prediction set is empty. Otherwise the prediction
set is a singleton: {1} if it is in NW (p0 ≤ ε and p1 > ε) and {0} if it is in SE
(p0 > ε and p1 ≤ ε). This is shown in the right panel of Figure 11.

However, a one-sided approach may be more appropriate in the case of the
Spambase data set. There is a clear asymmetry of the two kinds of error in
spam detection: classifying email as spam is much more harmful than letting
occasional spam in. A reasonable approach is to start from a small number ε > 0,
the maximum tolerable percentage of email classified as spam, and then to try
to minimize the percentage of spam classified as email under this constraint.
For example, we can use the “one-sided label conditional ICP” classifying x as

24



0.02 0.04 0.06 0.08 0.10 0.12

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Three ROC curves

email

sp
am

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●
●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

0.02 0.04 0.06 0.08 0.10 0.12

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Upper Venn ROC curve

email
sp

am

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

{0,1} in NE{1} in NW

{} in SW {0} in SE

Figure 11: Left panel: the lower left corner of the lower left plot of Figure 2
with the empirical (solid), minimax (dashed), and Laplace (dotted) ROC curves.
Right panel: the lower left corner of the lower left plot of Figure 2 with the
upper Venn ROC curve and the partition of the plane corresponding to the
label conditional ICP with significance level 5%.

spam if and only if1 p0 ≤ ε for x; otherwise, x is classified as email. In the case
of ε = 5%, this means classifying a test object as spam if and only if it lands to
the left of (or onto) the vertical dotted line in the right panel of Figure 11.

Both our procedures, two-sided and one-sided, look very similar to the stan-
dard uses of ROC curves. However, the standard justification of these uses
presupposes that we know the true ROC curve. In practice, we only have access
to an estimate of the true ROC curve, and the error of estimation is usually very
significant. The upper Venn ROC curve is defined in terms of the data rather
than the unknown true distribution. Despite this, we still have guarantees of
validity. For example, our one-sided procedure guarantees that the (uncondi-
tional) probability of mistaking email for spam is at most ε (see Proposition 2).

This section of the paper raises a large number of questions. Not all induc-
tive conformity measures are scoring-type; can other types be analyzed using
the notion of ROC curves? Can other kinds of conditional ICPs be analyzed
this way? What about smoothed ICPs? And even in the case of scoring-type
label conditional ICPs we have not proved their property of training conditional
validity (i.e., the version of Theorem 1 for label conditional ICPs).

1In practice, we might want to improve the predictor by adding another step and changing
the classification from spam to email if p1 is also small, in which case x looks neither like spam
nor email. This step can usually be disregarded for scoring-type ICPs unless ε is very lax.
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8 Conclusion

The goal of this paper has been to explore various versions of the requirement
of conditional validity. With a small training set, we have to content ourselves
with unconditional validity (or abandon any formal requirement of validity alto-
gether). For bigger training sets training conditional validity will be approached
by ICPs automatically, and we can approach example conditional validity by
using conditional ICPs but making sure that the size of a typical category does
not become too small (say, less than 100). In problems of binary classification,
we can control false positive and false negative rates by using label conditional
ICPs.

The known property of validity of inductive conformal predictors (Proposi-
tion 1) can be stated in the traditional statistical language (see, e.g., Fraser 1957
and Guttman 1970) by saying that they are 1− ε expectation tolerance regions,
where ε is the significance level. In classical statistics, however, there are two
kinds of tolerance regions: 1−ε expectation tolerance regions and PAC-type 1−δ
tolerance regions for a proportion 1− ε, in the terminology of Fraser (1957). We
have seen (Theorem 1) that inductive conformal predictors are tolerance regions
in the second sense as well (cf. Appendix A).

A disadvantage of inductive conformal predictors is their potential predictive
inefficiency: indeed, the calibration set is wasted as far as the development of the
prediction rule f in (1) is concerned, and the proper training set is wasted as far
as the calibration (3) of conformity scores into p-values is concerned. Conformal
predictors use the full training set for both purposes, and so can be expected
to be significantly more efficient. (There have been reports of comparable and
even better predictive efficiency of ICPs as compared to conformal predictors
but they may be unusual artefacts of the methods used and particular data sets.)
It is an open question whether we can guarantee training conditional validity
under (11) or a similar condition for conformal predictors different from classical
tolerance regions. Perhaps no universal results of this kind exist, and different
families of conformal predictors will require different methods. See Appendix B
for an empirical study of a simple conformal predictor.
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Samy Bengio, Johnny Mariéthoz, and Mikaela Keller. The expected perfor-
mance curve. In Proceedings of the ICML 2005 workshop on ROC Anal-
ysis in Machine Learning, 2005. URL http://users.dsic.upv.es/~flip/

ROCML2005/.

A. Frank and A. Asuncion. UCI machine learning repository, 2010. URL
http://archive.ics.uci.edu/ml.

Donald A. S. Fraser. Nonparametric Methods in Statistics. Wiley, New York,
1957.

Donald A. S. Fraser and R. Wormleighton. Nonparametric estimation IV.
Annals of Mathematical Statistics, 22:294–298, 1951.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of Computer and
System Sciences, 55:119–139, 1997.

Jerome H. Friedman. Greedy function approximation: a gradient boosting
machine. Annals of Statistics, 29:1189–1232, 2001.

Jerome H. Friedman. Stochastic gradient boosting. Computational Statistics
and Data Analysis, 38:367–378, 2002.

Irwin Guttman. Statistical Tolerance Regions: Classical and Bayesian. Griffin,
London, 1970.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. Springer, New
York, second edition, 2009.

John Langford. Tutorial on practical prediction theory for classification. Jour-
nal of Machine Learning Research, 6:273–306, 2005.

Jing Lei and Larry Wasserman. Distribution free prediction bands for non-
parametric regression. Journal of the Royal Statistical Society B, 2013. (to
appear), preliminary version published as Technical Report arXiv:1203.5422
[stat.ME].

Jing Lei, James Robins, and Larry Wasserman. Distribution free prediction
sets. Journal of the American Statistical Association, 108:278–287, 2013. Pre-
liminary version published as Technical Report arXiv:1111.1418 [math.ST].

27



Jon Maindonald and John Braun. Data Analysis and Graphics Using R: An
Example-Based Approach. Cambridge University Press, Cambridge, second
edition, 2007.

Peter McCullagh, Vladimir Vovk, Ilia Nouretdinov, Dmitry Devetyarov, and
Alex Gammerman. Conditional prediction intervals for linear regression. In
Proceedings of the Eighth International Conference on Machine Learning and
Applications (December 13–15, Miami, FL), pages 131–138, 2009. Available
from http://www.stat.uchicago.edu/~pmcc/reports/predict.pdf.

National Institute of Standards and Technology. Digital library of mathemat-
ical functions. 23 March 2012. URL http://dlmf.nist.gov/.

Ilia R. Nouretdinov. Offline Nearest Neighbour transductive Confidence Ma-
chine. In Poster and Workshop Proceedings of the Eighth Industrial Conference
on Data Mining, pages 16–24, 2008.

Harris Papadopoulos, Konstantinos Proedrou, Vladimir Vovk, and Alex Gam-
merman. Inductive Confidence Machines for regression. In Tapio Elomaa,
Heikki Mannila, and Hannu Toivonen, editors, Proceedings of the Thirteenth
European Conference on Machine Learning (August 19–23, 2002, Helsinki),
volume 2430 of Lecture Notes in Computer Science, pages 345–356, Berlin,
2002a. Springer.

Harris Papadopoulos, Vladimir Vovk, and Alex Gammerman. Qualified pre-
dictions for large data sets in the case of pattern recognition. In Proceedings
of the First International Conference on Machine Learning and Applications
(June 24–27, 2002, Las Vegas, NV), pages 159–163, Las Vegas, NV, 2002b.
CSREA Press.

Harris Papadopoulos, Alex Gammerman, and Vladimir Vovk, editors. Special
Issue of the Annals of Mathematics and Artificial Intelligence on Conformal
Prediction and its Applications. Springer, 2013. to appear.

Craig Saunders, Alex Gammerman, and Vladimir Vovk. Transduction with
confidence and credibility. In Thomas Dean, editor, Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence (July 31 – August 6,
1999, Stockholm), volume 2, pages 722–726, San Francisco, CA, 1999. Morgan
Kaufmann.
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A Training conditional validity for classical tol-
erance regions

In this appendix we compare Theorem 1 with the results (see, e.g., Fraser 1957
and Guttman 1970) about classical tolerance regions (which are a special case of
conformal predictors, as explained in Vovk et al. 2005, p. 257). It is well known
that under appropriate continuity assumptions the classical tolerance regions
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that discard ε(n + 1) out of the n + 1 statistically equivalent blocks (in this
appendix we always assume that ε(n + 1) is an integer number) have coverage
probability following the beta distribution with parameters (1 − ε)(n + 1) and
ε(n + 1) (see, e.g., Tukey 1947 or Guttman 1970, Theorems 2.2 and 2.3); in
particular, their expected coverage probability is 1−ε. This immediately implies
the following corollary: if Γ is a classical tolerance predictor with sample size n
and expected coverage probability 1− ε, it is (E, δ)-valid if and only if

δ ≥ Bet(1−ε)(n+1),ε(n+1)(1− E) = 1− Betε(n+1),(1−ε)(n+1)(E), (32)

where Betα,β is the cumulative beta distribution function with parameters α
and β.

The following lemma shows that in fact (32) coincides with the condition
(7) for ICPs (under our assumption ε(n+ 1) ∈ Z). Of course, n means different
things in (7) and (32): the size of the calibration set in the former and the size
of the full training set in the latter.

Lemma 3 (http://dlmf.nist.gov/8.17.E5). For all n ∈ {1, 2, . . .}, all k ∈
{1, . . . , n}, and all E ∈ (0, 1),

binn,E(k − 1) = Betn+1−k,k(1− E) = 1− Betk,n+1−k(E). (33)

Proof. The equality between the last two terms of (33) is obvious. The last
term of (33) is the probability that the kth smallest value in a sample of size n
from the uniform probability distribution U on [0, 1] exceeds E. This event is
equivalent to at most k − 1 of n independent random variables generated from
U belonging to the interval [0, E], and so the probability of this event is given
by the first term of (33).

The assumption of continuity was removed by Tukey (1948) and Fraser and
Wormleighton (1951). We will state this result only for the simplest kind of
classical tolerance regions, essentially those introduced by Wilks (1941) (this
special case was obtained already by Scheffé and Tukey 1945, p. 192). Suppose
the object space X is a one-element set and the label space is Y = R (therefore,
we consider the problem of predicting real numbers without objects). For two
numbers L ≤ U in the set {0, 1, . . . , n+1} consider the set predictor [y(L), y(U)],
where y(i) is the ith order statistics (the ith smallest value in the training set
(y1, . . . , yn), except that y(0) := −∞ and y(n+1) := ∞). This set predictor is
(E, δ)-valid provided we have (32) with (1 − ε)(n + 1) replaced by U − L and
ε(n+ 1) replaced by n+ 1 + L− U .

It is easy to see that Theorem 1(a) can in fact be deduced from Scheffé
and Tukey’s result. This follows from the interpretation of inductive conformal
predictors as a “conditional” version of Wilks’s predictors corresponding to L :=
ε(n+1) and U := n+1. After observing the proper training set we apply Wilks’s
predictors to the conformity scores αi of the calibration examples to predict the
conformity score of a test example; the set prediction of the conformity score
for the test object is then transformed into the prediction set consisting of the
labels leading to a score in the predicted range.
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B Training conditional validity for conformal
predictors

This appendix is a rudimentary empirical study of the training conditional va-
lidity of conformal predictors (see Nouretdinov 2008, Theorem 1, for a prelim-
inary theoretical study). The top right figure in Table 1, 1.00%, estimates the
standard deviation of the random percentage of errors made by the ICP. This
random percentage of errors consists of two components:

• one minus the random coverage probability

• and the random percentage of errors for a given coverage probability.

The variance of the random coverage probability, which is distributed as
Bet(950, 50) according to Appendix A, is

950

1000
× 50

1000
× 1

1001
, (34)

which corresponds to the standard deviation 0.69%. The conditional variance of
the random percentage of errors for a given coverage probability (approximately
95%) is approximately

0.05× 0.95

1000
, (35)

which also corresponds to the standard deviation 0.69%. (Notice how similar
the expressions (34) and (35) are: the only difference is that (34) has 1001 where
(35) has 1000.) Therefore, the total variance of the random percentage of errors
will be close to the sum of (34) and (35), which corresponds to the standard
deviation 0.69%

√
2 ≈ 0.98%. This agrees with Table 1: 1.00% ≈ 0.98%.

This ANOVA-type decomposition of the variance of the error rate for ICPs
suggests looking at the standard deviation of the error rate for conformal predic-
tors as a measure of their training conditional validity. (An even more natural
measure of the training conditional validity would be the square root of the
difference between the variance of the error rate and the variance ε(1 − ε)/n
corresponding to a fixed coverage probability 1 − ε, where ε is the significance
level and n is the size of the test set; however, these two measures are monotonic
functions of each other.) These standard deviations are given in Table 3 (see
below for details). They suggest that ICPs and conformal predictors possess
training conditional validity to a similar degree.

Table 3 describes experiments performed on the standard USPS data set
(available on the Internet) of 9298 hand-written digits. Conformal predictors
are defined in, e.g., Vovk et al. (2005). We test the 1-Nearest Neighbour ICP
and 1-Nearest Neighbour conformal predictor, both based on the (inductive)
conformity measure (6) with d the tangent distance. In the case of the ICP, we
randomly choose three disjoint subsets of the USPS data set: a proper training
set of size 1000, a calibration set of size 999, and a test set of size 1000. And in
the case of the conformal predictor, we randomly choose two disjoint subsets: a
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Table 3: Percentages of errors, multiple predictions, and empty predictions at
significance levels 5% and 1% for the ICP and conformal predictor (CP) on the
USPS data set. The results are given for the first 100 seeds for the MATLAB
random number generator in the same format as in Table 1.

RNG seed 0 1 2 . . . 99 Average St. dev.

errors for ICP at 5% 6.3% 5.1% 5.7% . . . 4.9% 5.18% 0.95%
for CP at 5% 3.0% 4.5% 3.9% . . . 3.2% 4.41% 0.96%
for ICP at 1% 1.2% 1.4% 1.7% . . . 2.2% 1.06% 0.43%
for CP at 1% 0.7% 0.2% 0.7% . . . 0.6% 0.85% 0.42%

multiple for ICP at 5% 0% 0% 0% . . . 0% 0% 0%
for CP at 5% 0% 0% 0% . . . 0% 0% 0%
for ICP at 1% 7.1% 4.1% 4.4% . . . 3.0% 7.40% 2.53%
for CP at 1% 6.0% 11.3% 10.5% . . . 8.1% 8.86% 3.30%

empty for ICP at 5% 5.5% 4.1% 4.1% . . . 3.1% 3.78% 1.14%
for CP at 5% 1.3% 3.7% 2.4% . . . 2.0% 2.82% 1.14%
for ICP at 1% 0% 0% 0% . . . 0% 0% 0%
for CP at 1% 0% 0% 0% . . . 0% 0% 0%

training set of size 999 and a test set of size 1000. For each choice we compute
the percentages of errors, multiple, and empty set predictions. This is repeated
100 times. The experiments are run for two significance levels: 5%, in which
case there are no multiple set predictions, and 1%, in which case there are no
empty set predictions. Using the significance level 1% instead of 5% in (34)
and (35) we obtain the predicted value of 0.44% for the standard deviation of
the percentage of errors, which is close to the experimental results both for the
ICP (0.43%) and for the conformal predictor (0.42%). For 5% the experimental
results (0.95% and 0.96%) are also close to the predicted value (0.98%).

Our discussion so far in this appendix has ignored the fact that the standard
deviations in Tables 1 and 3 are only estimates. The following figures give
an idea of their sensitivity to the choice of the seeds for the random number
generators:

• Using other seeds, instead of the standard deviation 1.00% in Table 1
we obtain: 0.91% (seeds 100–199), 0.87% (seeds 200–299), 1.09% (seeds
300–399), 0.94% (seeds 400–499).

• Instead of the standard deviations 0.95% for the ICP and 0.96% for the
conformal predictor at 5% in Table 3 we obtain:

– 0.93% for the ICP and 1.00% for the conformal predictor (seeds 100–
199)

– 0.93% for the ICP and 0.87% for the conformal predictor (seeds 200–
299)
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– 1.04% for the ICP and 0.88% for the conformal predictor (seeds 300–
399)

– 0.81% for the ICP and 0.95% for the conformal predictor (seeds 400–
499).

• Instead of the standard deviations 0.43% for the ICP and 0.42% for the
conformal predictor at 1% in Table 3 we obtain:

– 0.37% for the ICP and 0.44% for the conformal predictor (seeds 100–
199)

– 0.38% for the ICP and 0.43% for the conformal predictor (seeds 200–
299)

– 0.45% for the ICP and 0.43% for the conformal predictor (seeds 300–
399)

– 0.42% for the ICP and 0.43% for the conformal predictor (seeds 400–
499).

We can see that the variability due to the choice of seeds does not affect our
conclusion that the ICP and conformal predictor have comparable variability of
coverage probability.

In conclusion, we discuss a theoretical result by Nouretdinov (2008, Theo-
rem 1) about the 1-Nearest Neighbour conformal predictor. Nouretdinov’s result
is asymptotic, involving the term o(1). A further complication is that it contains
an error (Nouretdinov, private communication): the proof of Corollary 2 applies
Hoeffding’s inequality in a wrong way (the e−m/ε in the last line of the proof

should be e−2ε
2m). In the case of the 1-Nearest Neighbour conformal predictor,

Nouretdinov’s corrected result replaces (11) by

E ≥ ε+ 61/3
ln2/3 n

(nδ)1/3
, (36)

in our notation and ignoring the o(1) term (i.e., replacing it by 0), where n is
the size of the training set. The dependence on δ is much worse in (36) than in
(11), and the dependence on n is also somewhat worse. Our empirical results
suggest that Nouretdinov’s result can be improved.
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