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Abstract This paper considers flexible conditional (regression) measures

of market risk. Value-at-Risk modeling is cast in terms of the quantile re-

gression function - the inverse of the conditional distribution function. A
basic specification analysis relates its functional forms to the benchmark

models of returns and asset pricing. We stress important aspects of measur-

ing the extremal and intermediate conditional risk. An empirical application

characterizes the key economic determinants of various levels of conditional

risk.
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1 Introduction and Conclusion

Value-at-Risk (hereafter, VaR) is a most widely used measure of market

risk, employed in the financial industry for both the internal control and

regulatory reporting. We explore various aspects of VaR modeling based on

the median/ quantile regressions ( cf. Hogg (1975), Bassett and Koenker

(1978), Koenker and Bassett (1978)):

— Conditional VaR modeling is cast in terms of the regression quantile

function - the inverse of the conditional distribution function. We re-

late the functional forms of conditional quantiles to the basic statistical

models of returns and the models of asset pricing and arbitrage. The

conditional quantile models are semi-parametric in nature and are con-

siderably more flexible than most commonly used parametric methods

(section 2).

— The key econometric aspects of conditional VaR measurement are dis-

played (section 3). In particular, we address estimation, inference, and

specification analysis of high and intermediate conditional risk. A fun-

damental problem in measuring high conditional risk is the lack of data

on high risk events, which requires the considerations of extreme value

theory (see Chernozhukov (1999a) for a theoretical account).

— An extensive empirical section exposes the methods. We estimate and

analyze the conditional market risk of an oil producer stock price as

a function of the key economic variables. We find that these variables

impact various quantiles of the return distribution in a very differential

and nontrivial manner. The key determinants of the extremal and inter-

mediate conditional risk are characterized. The market index (DJI) is

found to be the only statistically significant determinant of the extremal

risk. The other key variables may also exhibit very large effect. However,

the direction of the effect can not be isolated due to the scarcity of data

on high risk events.

We hope our views are useful to the reader. We also recommend other

works that consider regression quantile modeling in value-at-risk and related

problems in finance: Bassett and Chen (1999), Engle and Manganelli (1999),

Heiler and Abberger (1999), Taylor (1999), among others.

2 Modeling Risk Conditionally

In this section we discuss modeling VaR and related Market Risk measures

(MRMs) via conditional quantiles and other techniques.
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2.1 Preliminaries

The setting we consider is as follows:

— Yt is the price process of the security or portfolio of securities.

— Xt is taken to be a "state process" or "information" vector. In practical

applications, Xt usually consists of prices (or returns) of securities, mar-

ket indexes, interest rates, spreads, yields, and the like. We may allow

Xt to grow with the length of the sampling period. Lagged values of Yt

and functions of such lagged values (e.g. exponentially-weighted sample

volatility) may or may not be included in Xt-
1

The Return of a portfolio with price process Yt over [t, t + h) is

y? = \nYt+h -}nYt .

The Conditional Value at Risk (VaR), Vt(p), is defined as a level of

return y^ over the period of [t,t + h) that is exceeded with probability p

(pe(o,i)): 2

t£(p)=inf{i;:Pt (yt
h <t;)>l-p}.

V

Alternatively, this can be written in terms of the conditional distribution

function of y^:

v?(j?) = F-h1 (l-p\Xt ),
Vt

where F~h (-\Xt ) is an inverse of the cdf F' h(-\Xt )
or the so-called conditional

quantile function. Let us call p and r = 1 — p - the confidence level and the

index of VaR, respectively. The Conditional VaR curve is the conditional

VaR viewed as a function of the confidence level.

Similarly, the Extreme VaR may be defined as the maximum possible loss

over a period of time. In this regard, the extreme VaR may be introduced as

the limit form of the non-extreme VaR for confidence levels p approaching

1:

^(1) = lim F~ l
(l - p\Xt ) = inf {v : Ft (y? < v) > 0}.

Correspondingly, extremal VaR are VaR measures with p close to 1.

1 Using the standard notation, time subscript under the expectation E[], prob-

ability P(), df F(), or density /() denotes conditioning on the information set

Xt .

This definition allows to avoid ambiguity when the distribution of y^ is atomic.

Otherwise, the definition is equivalent to Vf{p) = {v : ft{yt < v) = 1 — p}-
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As noted, the superscript h specifies the length of the time interval. (We

drop the superscript in the sequel to simplify notation.) In the practical ap-

plications, h is typically chosen to be 2 weeks for the regulatory reporting

3 (which typically translates to 10 business days for local applications or

12 business days for around-the-globe trading applications, such as Forex

desks). 1-day intervals are used for the quality assessment of banks' VaR
models by regulators. It is also commonly used for the internal risk man-

agement, although other values of h (up to one month) are hot uncommon.

There are two primary reasons why we are not interested in measuring

market risk for time periods longer than one month: (1) market risk events

typically happen during short intervals, and (2) losses due to market risk

events can be relatively easily restored in short periods of time (reduction

of balance sheet, refreshment of capital, etc.), especially if the market risk

event is not accompanied by the liquidity or systemic risk events. This con-

trasts with the measures of the credit risk, which have to be estimated over

the instruments' lifetime (which could be as long as 10 to 30 years).

2.2 Market Risk Measures and Conditioning

MRMs, as statistical estimators, can be parametric, semi-parametric, and

non-parametric, depending on the strength of identifiability assumptions

made by the methods. 4 The most commonly used parametric MRM is the

variance-covariance method that assumes (conditionally) normal returns

(implemented, for example, in J. P. Morgan's RiskMetrics). The conditional

quantile methods with parametric and non-parametric functional forms fall

into the semi-parametric and the non-parametric classes, respectively.

3 See FedReg (1996) for the review of the 1996 Risk Amendment to the Basle

Capital Accord of 1988.
4 Another fundamentally different method is the stress-testing, in which one

defines "basis of probable events" (such as various parallel shifts of the Trea-

sury yield curve, changes of the yield curve slope, and others used in the DPG
guidelines), "highly unlikely events" (such as a drop by 25% in the S&P500) and

"structurally impossible events" (such as a drop by 25% in the S&P500 accompa-

nied by a large increase in DJI) and examines the behavior of the portfolio under

various such events or shocks. MRMs of the last type may offer valuable insight

about the market-risk properties of a security or a portfolio. The methods are less

statistical and more experimentation-based in their nature, yet they could be use-

fully combined with statistical methods, especially when data is not informative

about the extremal events.
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The type of conditioning is another vital dimension along which MRMs
can be classified. The following two types are not mutually exclusive, yet

the proposed distinction will be useful.

(a) Moving Window Sampling - Regime Conditioning

Many of the historical and parametric MRMs are based on the samples

of certain (often moving) width (e.g. a window of the last 100 returns).

The sample is then weighted or not weighted to compute the parameter

estimates. For example, the "historical volatility" approaches5 use geometric

weighting. In this case, such measures may be seen as GARCH models

that have recursive conditional variances.6 Thus such methods could be

interpreted as the regression measures described next.

Oftentimes, however, no weighting is done and no interpretation of the

above kind is provided. What is achieved by such a form of conditioning?

A primary goal is to robustify the MRM against the structural changes

or regime switches. That is, the whole history may not be an appropriate

sample for measurement/estimation due to structural changes that have

occurred in the past. Indeed, the dynamics of oil prices in the 70s is probably

very different from that now. Therefore, considering the equally weighted

sample of moving width is, most of all, a method for disregarding un- or

dis- informative data. Thus, such procedures could be seen primarily as

methods of conditioning on the environment and as a way to guard against

misspecification w.r.t. a given historical period.

(b) Regression - Conditioning on the information Xt

In addition to considering the informative data, a risk-modeler seeks

to produce a measure of risk conditionally on the set of the key economic

("state") variables Xt- For example, one may wish to characterize volatil-

ity of the oil return as a function of the oil spot price, key exchange rates,

etc. Such a form of conditioning is a regression characterization of risk.

Regression seeks to describe the moments of return (generally, distribu-

tion or quantiles) as functions of Xt . The sample analogues of regression

dependencies are regression estimators. Examples of MRM of this kind in-

clude frequently used parametric methods, such as the normal GARCH,
and the class of quantile regression MRMs treated in this paper. Indeed,

GARCH represents volatility as a function of Xt , the regression quantile

5 Implemented in RiskMetrics.
6 Standard GARCH models also assign geometric weights to the squares of past

innovations, and the "moving window" results from truncating the sum once the

weights are sufficiently small.
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method describes the quantiles of return distribution of Vt\Xt . Note that

most non-parametric or "historical" methods, such as unconditional quan-

tile or moment estimation are not regression methods in that the regression

dependence is simply not modeled. An example of a non-parametric method

that gives a regression measure is a non-parametric estimator of the con-

ditional density function (from which a conditional VaR estimate can be

computed - see Ait-Sahalia and Lo (1998)).
7

2.3 Quantile Regression

QR flexibly allows us to directly model the conditional VaR, utilizing only

the pertinent information that determines quantiles of interest. This is in

sharp contrast with the traditional methods that use information on the

central moments of conditional distribution - mean, variance, kurtosis, etc.

- to construct the VaR estimates. This primary feature of QR is especially

important for modeling intermediate and extremal conditional VaR.

Envisioning the essence of the conditional quantile modeling is quite

easy. Fix any p, a confidence level. Assume some functional dependence of

VaR on the information variables Xt :

vt(p) = F-^rlXt) = mp(Xt ,(3(p))-

For any p (or a set of p's) we could suitably pick one or the other form ofmp

to match the observed historical data sufficiently well through a set of sam-

ple moment restrictions.
8 This matching is implemented through the means

of quantile regression and related methods (see section 4). In this paper we

exclusively confine our attention to the linear (polynomial) analysis.

3 A Basic Specification Analysis

Linear (Polynomial) Models

7 To name a few disadvantages of the fully non-parametric approach: (1) com-

putational, and (2) due to model complexity, it often entails a significant loss

of predictive ability in moderate-sized samples and cases of many conditioning

variables.

8
In fact, the choice of mp could be arbitrarily flexible - non-parametric. For

example, mp can be modeled through a composition of basis functions of a pre-

determined class.
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A fundamental model is the linear model of conditional quantile function

(VaR):

vt (P )
= F-^rlXt) = X[ /?(p), (3.1)

where Xt is a d-dimensional vector representing any desired transforms

(powers, etc.) of Xt , including a constant. We next discuss both the plausi-

bility and restrictiveness of such model.

(a) Location-Scale Models

Linear model (3.1) naturally arises, for example, from an AR formula-

tion of the return dynamics. Indeed, consider a simple linear location-scale

model:

yt
= X'

t
a + X'

t
\ut ,

Ut is independent of Xt , P (u t < 0) = 1/2.

Model (3.2) is a location-scale model, where both location X'
t
a and scale

X[\ > are parameterized as linear functions. Furthermore, location X[a

is the conditional median function. We should also impose scale restrictions

to identify A, e.g. E\u t \

= 1 or, alternatively, ||A|| =1. Since models like (3.2)

are not used in sequel, we omit any further discussion of identification.

We can define the "shock" term ut in a (perhaps) more familiar way:

yt = X'
t
a + X[\ut ,

u t is independent of Xt , E (ut ) = 0, E (uj ) = 1.

In this case, location X[a is the conditional mean function, and X[X >

is the scale ((X'
t
X) 2

is the conditional variance). Note that models such as

(3.3) are directly justifiable from the standard APT and other factor models

(see Campbell, MacKinlay, and Lo (1997)).

It is very plausible that either model generates a linear conditional

quantile model. Denote by Fu the distribution function of ut . Then clearly

vt (p) = X[a + X'
t
XFu -\r) = X'

t(3{p).

(b) Non-Location-Scale Models

While a linear location-scale model implies a linear VaR/quantile func-

tion, the converse may not be true. Indeed, it is easy to see that the location-

scale model necessarily involves monotone coefficients /3(p) in the quantile

index p, whereas (3.1) imposes no such assumption. In either model (3.2)

or (3.3), it is assumed that Ut is independent of Xt- In general u t will be

not independent of Xt , and all such cases form the class of non-location-

scale models. It is not difficult to see how these cases can generate the

linear/polynomial forms.
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Polynomial Models as Approximations of Non-linear Models

More generally, the linear/polynomial specifications can be considered as

approximations of nonlinear models of the form yt = /-i(Xt)+o-(Xt )u t . Since

it is clear how this approximation works, we omit any further discussion.

Recursive Specifications

Models that we have considered so far represent VaR as a function of

only a few key economic variables and their transforms, Xt . It may be

desirable to consider models that reflect the whole past information Xt-

Nonlinear dynamic models allow for a wide variety of such specifications. For

example, let Xt be the subset of information variables (or their transforms)

that become available in the r.-th period and Xt-\ be variables {Xj}^Z.q, so

that Xt = {Xt , Xt-i). A general recursive specification can then be obtained

as follows:

vt {jp) = X'
t
a{p) + b{jp)h{Xt ,p)

fl {xu p) = c{p)fl {xt-uP) + h{Xtid{p))

Linear forms in (3.4) can be replaced by nonlinear forms. Restrictions, guar-

anteeing stability of the model, must be imposed on a,b,c,fi,f2- Models

of this sort were considered in Weiss (1991), Koenker and Zhao (1996),

Engle and Manganelli (1999). Models like (3.4) are useful as parsimonious

regressions that represent value-at-risk/quantiles as a function of all past in-

formation. In contrast, the simpler markovian specifications posit that most

of relevant information is contained in a few past lags of the key variables.

The model (3.4) can typically be solved recursively to eliminate /i ,
yield-

ing nonlinear dynamic functional forms, which can be used in a usual non-

linear estimation. One example involves the model

f1 (Xu p) = a(Yt -fH \Xt ), (3.5)

where o-
2
(yt

— Ht\Xt) is the conditional variance of the de-meaned return.

It can, for example, take the form of a GARCH model (see Koenker and

Zhao (1996) for discussion). In practice, a simple strategy to accommo-

date a model like (3.4) -(3.5) into a linear framework is to first estimate

a(yt
— fJ-t\Xt ) via a GARCH model and use it as a regressor in the earlier

linear model: Xt
= {X'

t , a(yt
- Ht\Xt

))'
' Of course, that the regressor is esti-

mated can be accommodated in the inference analysis or, alternatively, can

be ignored for all practical purposes. In the empirical section we will not

make use of the recursivity, since we are more interested in the economic

determinants of risk, but most of techniques discussed next apply both to

the linear and nonlinear specifications.
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In summary, it is important to stress that the conditional quantile model

imposes no strong assumptions about the distribution function of the un-

derlying error term. This underscores the semi-parametric, flexible nature

of the conditional quantile models, which could be valuable to model the

market risk.

4 Estimation/Inference

This section reviews some recent results on estimation and inference. Sec-

tion 4.1 reviews regular asymptotic estimation and inference in the quantile

regression literature. Section 4.2 reviews results of Chernozhukov (1999a)

on estimating high and low (extremal) regression quantiles.

4-1 Estimation and Inference

The Conditional VaR function, vt (p), is parameterized as m(Xt,/3(r),T),

which, in our empirical setting, takes the linear-quadratic form X^P(t).

Hence we will discuss this case only (to keep notation simple). The nonlinear

case is similar -just replace Xt by the derivative dm{Xt ,P,T)/d(3\j}^, and

Xtfbym(Xt ,(3,T).

The sample analogue of moment conditions that define the quantile func-

tion, integrated with respect to (3(t) yields the quantile regression objective

function Qt (Koenker and Bassett, 1978). /3(t) is denned as the argmin of

Qr-

P(t) = argmin
fi [qt (P, t) =£ pT {vt ~ Xt /3)]

,

(4.6)

t

where pT (x) = tx~ + (1 — t)x+ . For a given r, \/T((3(t) — /3(r)) is asymp-

totically normal under general dependence and heterogeneity,9 and, further-

more, the regression VaR coefficients converge to a Gaussian process G(-),

10 as functions of r 11

JT{K-) -W) =>G(-). (4.7)

9
See e.g. Portnoy (1991), Fitzenberger (1998), Weiss (1991) (nonlinear cases),

Koenker and Zhao (1996).
10

See Portnoy (1991) and also the results in Chernozhukov (1999b) that allow

for non-linear specifications and various forms of dependent data.
11 Here => denotes weak convergence in £°° - see e.g. van der Vaart and Well-

ner (1996). G(-) = J" :
(l - -)GPf{W, ), f(W,r) = (1(7 < X'/3{t)) - t) X, and

W = (X,Y). Gp(f(W,r)) is zero-mean random Gaussian function of r (= 1 — p),
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Inference is facilitated by estimating appropriate variance-covariance matri-

ces by a moving-block bootstrap (Politis and Romano (1994), Fitzenberger

(1998)).

Test Processes and their Functionals

Testing is discussed in detail in e.g. Koenker and Portnoy (1999) and

Weiss (1991). Koenker and Machado (1999) and also Chernozhukov (1999b)

study several forms of tests and test processes (test statistics viewed as func-

tions of t). These test processes are variants of Wald, Score, quasi-LR, and

specification test statistics, viewed as functions of r in an interval V (e.g.

V = [.1,.9]). The quasi-LR, Wald, and rank-score test processes are in-

troduced and studied in Koenker and Machado (1999) in the context of

independent data and linear functional forms. These test processes, as well

as some of their alternatives, are studied in Chernozhukov (1999b), un-

der conditions of dependence and nonlinearities. Test processes are shown

to be asymptotically distributed as quadratic forms of Gaussian processes

(P-Bessel Processes), and each coordinate of the test statistics is asymp-

totically distributed as chi-squared. Bootstrap inference is also discussed

there. The specification test process is introduced Chernozhukov (1999b).

The coordinates Sc{t) of the specification test process Sc(-) are defined as

quadratic forms of the usual specification test statistic ( such as gmm-like

overidentification statistics or statistics like those in Bierens and Ginther

(1999)). A simple, practical version defines Sc(t) as a quadratic form of

t Stli [Wvt — X't f}{r)) - r)Zt], where Z*'s are functions of Xt or other

information variables (other than Xt). The specification test process con-

verges weakly to a generalized P-Bessel process. By selecting various forms

of Zt one can check:

— conditionality - ability to incorporate all relevant past information (with

Zt equal to past information variables)

— functional form validity (with Zt equal to various transforms of Xt).

exactly a P-Brownian Bridge -cf. van der Vaart and Wellner (1996), whose dis-

tribution is defined by the finite-dimensional normal distributions and the co-

variance kernel CV(f(W,n),f(W, r,)) = limr-»<x> £ £f=i E(/ {Wt ,n) f (Wt ,r,)')

+ ZLiHfCWt+k^fiWt,^)' +f(Wt ,Ti)f(Wt+k ,Tj y] ; and finally, J(t)

is a fixed non-stochastic invertible matrix J(r) = limT-Kx> ^ 2t=i E

[fyt {F~t
l {T\Xt)\Xt)XtX't ]. Note that (4.7) is very succinct statement, conve-

niently characterizing the distribution. For example, (v
/T(/3(tj) —f3{Ti), j = 1, ...I)

converges in distribution to N(0,A), where ij-th block Aij = A'ji of matrix A is

given by J-^T^CVifiW,^), f(W, Tj )) J"
1 ^)'.
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Various functionals of these processes form test statistics that enable si-

multaneous tests on all t € V. For example, supTg .p Sc(t) forms a global

specification test of the Kolmogorov-Smirnov type. It examines validity of

the functional form of the conditional quantile function for all r in V simul-

taneously. 12

Simpler versions of the (pointwise) conditionality tests (that disregard

that P(t) is an estimated quantity) can be constructed by regressing (l(yt <

X[(3{t)) — t) on the lagged values of itself and other information variables,

and then checking if the regression coefficients are zero. These and other

tests are suggested, to evaluate VaR models, by Lopez (1998), Christoffersen

(1998), Crnkovic and Drachman (1996), Diebold, Gunther, and Tay (1998),

Engle and Manganelli (1999), among others. Such procedures offer a good

simple way to quickly check if a given VaR model is more or less plausible.

Lopez (1998) offers a valuable detailed discussion on the criteria with which

VaR models can be evaluated.

Definitions of the Test Processes for the Empirical Section

In the empirical section we compute Wald, integrated Wald, and quasi-

Score test processes at a sequence of values of p in order to test the hypoth-

esis:

H :Pi(t) = 0,

where f3 = (Po(t),Pi (t)')'» and A)(T ) is tne intercept parameter. Hypothesis

H states that the coefficients on all conditioning variables are zero. If H
is true, it means that conditioning is statistically irrelevant.

To define these tests denote the constrained quantile regression coeffi-

cient as J3
r (t) = arginf/3 Qt(P,t) s.t. /3i(t) = 0. Then define the Wald

Given the stochastic equicontinuity of the test processes, their distribution

can be approximated via finite subnets of the processes evaluated at the grid of

equi-distant quantile indices {n,i £ 1, ...K} for K sufficiently large. This means

that only a finite number of evaluations should be considered to approximate well,

e.g. supT6 .p Sc(t) via sup
Ti

Sc(n). If the approximation error is to vanish, we need

K —> oo as T —> oo.
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and Score test processes 13
:

w(-) = t0r
(.) - p(-)yn1T (-)0

R
(-) - /?()),

S(-) = Tv QT R
(-),.)'n2T (.)v QT R

(-), ).

The specification test process, as a function of r, is defined as:

1
T

Sc(-) = MO'rtsHOM-), where /xr (r) = —= £(l(yt < X[(3{r)) - r)Zt

v -* t=i

The specification test, as stated earlier, checks the validity of the given

functional form, as well as the conditioning ability.
14

4-2 Near-Extreme Regression Quantiles (VaR)

While the regular asymptotics is certainly useful in a large sample for non-

extremal regression quantiles, a more cautious approach is needed to dis-

tinguish a separate kind of inference for near-extreme (extremal) regression

quantiles, as developed in Chernozhukov (1999a). What follows summarizes

some of these results. Intuitively, the sample quantile regression is a method

of generalizing the notion of order statistics to the regression settings. Cor-

respondingly, for any given sample size T, the r-th regression quantile fit

can be seen as the rT-th conditional order (or rank) statistic. Depending

on this rank, asymptotic approximations reflect the extremal or rare data

considerations. Indeed, consider a simple example with no covariates. A .01-

th quantile estimator in the sample of 100 is the first order statistics, and

13
(a) How to choose Oit, &2T, and Qzt ? Each of the tests processes is of the

form wt{t)'f2T{r)wT{r). For any r, Qt(t) is chosen to be an inverse of a con-

sistent estimator of the asymptotic variance of wt{t). One can either exploit the

analytical expressions for these variances (as discussed in Chernozhukov (1999b))

or, as employed in the empirical section, use a moving-block bootstrap to esti-

mate them. The procedure is quite simple: using such form of bootstrap, compute

statistics u)6t(t~) (for b = \,...B denoting the bootstrap replications, setting B
large). Then compute the variance matrix of the "sample" {wbT{i~),b — 1,...B}.

(This procedure is consistent under the local alternatives, since then only the

asymptotic mean of wt{t) is shifted and variance is unaffected.) (b) V/sQr means

^ Et6y PAYt - Xi${T)), / = {« : Yi # X'J(r)}.
14

In the empirical section we give the specification test process for the linear

model with Zt selected to be the polynomial forms of Xt That is, we have devoted

our attention to the first problem. However, one can check the conditionality by

selecting the appropriate Zt's, as discussed.
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hence one would expect that regular asymptotic approximation does not

apply here, but some other asymptotic theory does. Similar considerations

apply to regression setting. Indeed, data scarcity is amplified by the presence

of covariates. To that end, the concept of effective rank is useful. Effective

rank, r, is the ratio of rank k = tT ( if t < 1/2, and (1 - t)T if t > 1/2 ) to

the number of regressors, k/d. To motivate such a notion, consider the "re-

gression" quantile problem in a sample of 1000 observations and 10 dummy

regressors, in which the target is the .01 — th conditional quantile function.

The constructed estimates of slopes will be the 1-st lowest order statistics

in each of 10 subsamples corresponding to the dummy variables. Hence an

extremal situation still applies here.

Let us now distinguish two formal asymptotic considerations/statistical

experiments that account for the data scarcity illustrated above. (In the

sequel, we always assume r < 1/2. Replace t by (1 — r) if r > 1/2):

(i) t —> 0, tT —> oo (intermediate rank behavior, or r is relatively low as

compared to the sample size),

(ii) t —» 0, tT —> k (extreme rank behavior, or t is very low as compared

to the sample size).

Both (i) and (ii) intend to asymptotically capture forms of data scarcity

arising in the tails of distribution. Both can be applied for any given quantile

index of interest in a fixed dataset, and these notions give rise to alternative

inference techniques that can be applied when dealing with the extremal re-

gression quantiles (VaR). Intuitively, these alternative inference approaches

should perform better for the near-extreme regression quantiles than for the

central ones. In the empirical section, these alternative techniques are used

to construct the confidence intervals of the regression quantile coefficients.

A "rule-of-thumb" choice of the (more) appropriate approximation theory

for inference purposes is as follows: if r < 10, one may select method (ii) (as

illustrated in the example above), if r € (10, 25) - method (i), and if r > 25

- the regular or central asymptotic approximations (previous subsection).

A brief description of the asymptotics under (i) and (ii) follows next.

Assume that the conditional distribution function of yt
— X[(3{q) (q =

1/2 or 0) is tail-equivalent to some function K(x)Fu (-),
15 where Fu is a

distribution function with the extremal tail types.

We say that cdf F\ is tail-equivalent to cdf F2 at (say the lower) end-point x,

if as z \ x, F\{z) JFi(z) —> 1.



14 Victor Chernozhukov, Len Umantsev

In the case (i), the asymptotic distributions are normal, but the covari-

ance matrix depends on the tail index: (for any m > 0,m ^ 1)

where Q™ = limT £ Ef=i EXt X[, Qn = limr j, £ t

T
=1 EXtX[/U{Xt ), Z is

the tail index of Fu , 7i(x) is some function of x that depends on the tail

type of Fu ,
and \ix = hmr ^ Z!t=i EXt . Furthermore, /j.'x (/3(m,T) - /?(t))

can be replaced by X (/3(mr) - /3(r)), without affecting the validity of the

result. We do not state the explicit forms here since the result is used only

indirectly to justify the resampling techniques (that will be used to construct

the confidence intervals in the empirical section - see the next section).

In the case (ii), the asymptotic distributions are defined by a random

variable that solves a stochastic optimization problem, where the objective

function is an integral w.r.t. a Poisson point process:

aT (/? (r) - (3 (r)) A c(k) + arginf
[
- k x̂ z + J (j - x'z)-<IN(j, x)

where N is a certain Poisson Point Process. The mean intensity function

of N, constants c(k), and scaling ar depend on the underlying tail type

of Fu and on the tail heterogeneity function K(x). Again, we do not state

the explicit forms here since the result is used only indirectly to justify

the resampling techniques (that will be used to construct the confidence

intervals in the empirical section - see the next section).

Furthermore, Chernozhukov (1999a) defines and studies inference pro-

cesses analogous to those in the previous section 16 and shows how to conduct

inference by asymptotic or resampling methods. In particular, estimates of

tail index £,
17

tail heterogeneity function K(x), and scaling constants ax

16 Construction of quantile and inference processes is done by introducing an

index I in a set [Zi, Z2], so that process or 1(3 (t-) — (3 (r) I is a function of I, etc.

17 A simple rule-of-thumb estimator for the empirical section is deduced from

the following relationship ^ j T*l7 - 1

»

/m~
^
—> *' as T^ —> oo,t \ ( but

more sophisticated estimators can be constructed - see (Chernozhukov, 1999a)).

So that

£l \ 1
X0(mr)-p(r)) „

£(m, t) = — In ——^— — i—^i— [nm
X(P{t) - (?(rm-'))'

In practice m should not be set too far away from 1. E.g. in the empirical section,

we used m = .75, m = 1.25, and various values of t s.t. r, the effective rank, is

between 10 and 20. We then took the median of {£(mi,Tj)} over all such values

of mi and Tj to obtain the final estimate £.
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are offered, and the validity of subsampling is established. Alternative re-

gression quantile estimators emerge from these results. For example, a re-

gression quantile extrapolation estimator 18
is constructed as follows (for re

close to zero and r not close), and any positive constant m ^ 1:

M/.uJTeA)-{ -l
Fy-^Telx) x'0{rnr) - P{t)) + x'$(t

m-« - 1

This also implicitly defines the extrapolation quantile estimates for (3{re ) .

5 Empirical Analysis

This section considers estimating the VaR of the Occidental Petroleum

(NYSE:OXY) security returns. The dataset consists of 2527 daily obser-

vations19 on

— ?/4, the one-day returns,

— Xt, a vector of returns (or prices, yields, etc.) of other securities that

affect distribution of Yt and/or lagged values of yt itself: a constant,

lagged one-day return of Dow Jones Industrials (DJI), the lagged return

on the spot price of oil (NCL, front-month contract on crude oil on

NYMEX), and the lagged return yt .

Generally, to estimate the VaR of a stock return, Xt may contain such

variables as a market index of corresponding capitalization and type (for

instance, the S&P500 Value for a large-cap value stock), the industry index,

a price of commodity or some other traded risk that the firm is exposed to,

and lagged values of its stock price. It is also conceivable to include some

unobserved factors, such as Size, Value, Momentum, or Liquidity premiums,

whose effect on stock returns and risk has been a subject of numerous stud-

ies. However, we chose not to include estimated variables in the information

set for the sake of simplicity.

Functional Forms of Conditional Quantile Functions

Two functional forms of conditional VaR were estimated:

• Linear Model : v£(p) = X[ 6(p),

• Quadratic Model: w
t

h
(p) = X'

t8{p) + XtB{p)X't .

18 This is a direct regression analogue of the estimator of Dekkers and de Haan

(1989) that was suggested for non-regression cases.
19 Prom September 1986 to November 1998



16 Victor Chernozhukov, Len Umantsev

Conditional Risk Surfaces

Figure 1 presents surfaces of the regression VaR functions plotted in the

time-probability level coordinates, (t,p). Recall that p is called the proba-

bility level of VaR, and r = 1 — p is the quantile index. We report VaR
for all values of p £ [.01, .99]. The conventional VaR reporting typically

involves the probability levels of p = .99 and p = .95. Clearly, the whole

VaR surface formed by varying p in [.01,.99] represents a more complete

depiction of conditional risk. Note also that since one can be either long or

short the security, estimation of VaR in both tails of the return distribution

is of interest.

The dynamics depicted in figure 1 unambiguously indicate certain dates

on which market risk tends to be much higher than its usual level. This by

itself underscores the importance of conditional modeling. We also stress

that the driving force behind the dynamics is the behavior of Xt .

Model Comparison

Figure 1 also compares the dynamic evolution of the linear and the

quadratic VaR surfaces. Notably, the quadratic model predicts higher risk

magnitudes than the linear model. Indeed, the fluctuations of the quadratic

VaR surface are significantly larger. The linear model thus predicts a more

"smoothed out" VaR surface.

Conditional Quantile and Quantile Coefficient Functions

The next series of figures presents the statistical aspects of the analysis.

For brevity, we chose to present the results in a graphical form. 20

Let us set the date at t = 2500 to analyze the VaR. Figure 2 depicts the

estimated VaR2soo{p) for values of p in the interval [.01, .99].
21 This figure

also shows the 95% confidence intervals (c.i.) obtained by the following pro-

cedures: 22
(1) regular inference, based on the asymptotic normal approxima-

tion (labeled as "asymptotic"), (2) resampling inference, by the stationary

bootstrap, that is valid under regular and intermediate rank asymptotics,

and (3) and (4): subsampling inference with different scaling schemes, de-

noted as "Subsampling I" and "Subsampling II," suited for dependent data,

and valid under the extreme rank asymptotics. Method (1) is intended to

20 We have not presented here the formal statistical analysis of the quadratic

model for brevity. Umantsev and Chernozhukov (1999) offer a detailed analysis of

the quadratic model.
21 We computed VaR(-) and coefficients for values of p lying on a grid with cell

size .01 and interpolated in between. This is a justifiable interpolation since VaR(-)

and coefficient processes are stochastically equicontinuous.

22
All methods are in a form that is suitable for dependent data.
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give the confidence intervals that are best for the central values p £ [.1,-9],

method (2) - for the intermediate (near-extreme) values, p € [.04, .96], and

methods (3) and (4) - for the extreme values p <E (0, .04] and [.96, l).
24

As can be seen from figure 2, the c.i. by methods (2), (3), and (4) tend

to be roughly 1.5, 2, and 2.5 times wider than the standard c.i., respectively.

Hence additional significant estimation uncertainty is present in the tails,

and it is important to properly account for it. Accounting for it means that,

within the c.i. by methods (2)- (4), near-extreme VaR may actually be as

much as two times higher than the point estimates suggest.

Figures 4-5 present the same analysis for the coefficient functions 6(-)

of the linear model. The methods and the results employed are like those

we have just discussed. We will give an economic meaning to the coefficient

shapes later.

Specification Analysis

Figure 6 presents the pointwise values of Wald and quasi-Score test

statistics for testing the hypothesis:

— Is the conventional (unconditional historical) VaR model statistically not

different from the conditional VaR model?

The answer is conclusive: the hypothesis is rejected pointwise. Note that

the 'p-values' 25 for this case are all smaller than 0.01. That is, the regression

conditioning matters. This can also be seen in figure 4, where the confidence

intervals of slope coefficients are plotted throughout the interesting range

of p - these confidence intervals exclude 0s.

Figure 6 (right) also depicts the specification test process (see earlier

section). Results of the specification testing are clearly in favor of the linear

model: the critical value (pointwise) for 10% level is 6.25, which is above

Based on Monte-Carlo with the sample size of 1000 and the considerations of

the previous section.

In this application, for transparency and clarity, the subsampling methods

were operationalized by assuming the tails are exactly algebraic, so that the rate

of convergence or divergence is ar = T~*. £ was estimated to be approximately

.25 by the method described in the previous section. Hence ar = T~'25
defined

a scaling for the subsampling procedure. As suggested in Chernozhukov (1999a),

the centering constant was taken to be J3T {k/b). The subsample size b was set

to be 1/10 of the whole sample T. The resulting confidence intervals are labeled

"Subsampling II." For comparison, rate aT = T 01 was also used, and the resulting

confidence intervals were labeled as "Subsampling I."
25 Not to be confused with p in VaR(p).
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any of the values depicted. Obviously, since the critical value for the test

statistic supT6[001j 99 j
5c(t) should be above 6.25, the linear model passes

this stronger Kolmogorov-type test, too !

The Determinants of Risk

We now provide both a statistical and an economic interpretation of

the coefficient functions #;(•). Let us fix time period t = 2500 and suppose

for a moment that 9i(p) > for some i > 0,p 6 (0,1). As VaRt (p) =
vt(p) = 0o(p) + J2i9i(p)Xt,i, a positive coefficient in front of Xt ,i implies

that higher values of Xtj i correspond to higher values of VaRt (p), given

that other elements of Xt are unchanged. Stated differently, if 6i(p) > 0,

then increases (decreases) of Xt
t
i are associated with upward (downward)

shifts of VaRt {-) at point p. Note that VaRt (-) is the "reversed" inverse of

the cdioiyt \Xt , i.e. F'^l - -\Xt ) [Take figure 3 (middle) and rotate it 90°

clockwise to get the conditional cdf.]. Thus positive shocks in Xt ,i shift the

cdf Fyt (-\Xt ) to the right.

Similarly, if 9i(p) is negative, effects of positive and negative shocks in

the i
th information variable are reversed: positive shocks move VaRt {p)

down and cdf of yt\Xt to the left and negative shocks move VaRt (p) up and

cdf of yt\Xt to the right.

The effects described above are local, in the sense that they affect VaRt (•)

and Fyt (-\Xt ) only locally, around points p and F'^l —p\Xt ), respectively.

Transformations of these functions at other points caused by such shocks

depend on the sign and magnitude of 9i{p) at other probability levels p.

Suppose next that 9 is positive and decreasing in the right tail of dis-

tribution of yt\Xt (e.g. #i(-) on (0, .2), see figure 4). A positive shock in

Xi will now shift the entire right tail of cdf of yt\Xt to the right, and the

effect will be greater for extreme points (those close to p = 0), at which

9i(p) is higher. The effect on the density of yt \Xt is schematically depicted

in figure 7. Thus, this particular shape of 6>i(-) implies that positive shocks

of the corresponding information variable result in the right tail of density

of yt\Xt being stretched further to the right (more positive skewness in the

right tail). A similar shape is observed for the coefficient function ^(p) for

almost all values of p.

Thus, the shapes of 0j(-) such as #i(-) or ^(-) in figure 4 translate positive

shocks of the corresponding information variables into the longer right tails

(favorable for holding long positions in Y). On the other hand, shapes of

9i(-) similar to those of 6>3(-) in figure 4 translate such shocks into shorter

right-tails (averse effect for long holders of Y). (see figure 7).
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Finally, we provide the economic interpretation of the slope coefficient

functions #i(-), #2(')i ^3( -

)> corresponding to the lagged returns on oil spot

price, Xi, equity index, X2, and price of the security in question, X3.

— 9\(-) is significantly positive and decreasing in the right tail of the dis-

tribution of yt\Xt (figures 4 and 5, p < 1/4). It is insignificantly positive

in the middle part (for p € (.25, .95)) and then it is increasing in the

far left tail (p > .96), although values Q\(p), p > .96, are not as high

as those for p < 1/4. This suggests that the Spot price of Oil and the

return on our stock are positively related, with the right tail of equity

return being much more sensitive to Oil price shocks, than the left tail.

This effect can be explained by, for example, real optionality intrinsic to

the operation of the firm, or by a non-linear hedging policy (e.g., long

positions in put options instead of swaps or futures, whose payoff is lin-

ear in the underlying price movements). The overall effect of a positive

shock in the spot oil price X\ is presented in figure 7.

—
#2(-)> m contrast, is significantly positive for all values of p with the

possible exception of the far right tail of yt\Xt , (p € (0,0.04)). We also

notice a moderate increase in the right tail and a sharp increase in the left

tail (p close to 1). Thus, in addition to the strong positive relation between

the stock return on the individual stock and the market return (DJI)

(dictated by the fact that #2(-) > on (0,1)) there is also additional

sensitivity of the left tail of the security return to the market movements

(steep increase on (.94, 1)), which is strongly consistent with the notion

of highly correlated equity returns in market drops. For high positive

returns, in contrast, market return has a much weaker effect (low values

on (0,0.04)). The effect of positive shock in the market return (X2) is

depicted in figure 7.

— #3(), in contrast, is significantly negative, except for values of p close to

0. This may be clearly interpreted as a "mean reversion" effect in the

central part of the distribution. However, X3, the lagged return, does

not appear to significantly shift the quantile function in the tails. Thus

X3 is more important for the determination of intermediate risks (values

of p in [.15, .85]). The effect of a positive shock in X3 is schematically

portrayed in figure 7. Figures 4 and 7 also capture the asymmetry of

response to the negative and positive return shocks- a positive shock leads

to mean reversion and intermediate risk contraction, whereas a negative

shock leads to mean reversion and intermediate risk amplification.
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Note that the estimates of near-extreme VaR should be interpreted care-

fully, since the point estimates provided by regression quantiles are highly

biased in the tails. Some correction can be achieved by using alternative

estimators that use the regular variation properties of tails in order to con-

struct regression-like estimates of the near-extreme VaR (see previous sec-

tion). For example, as depicted in Figure 3, the regression extrapolation es-

timator introduces a significant correction, but within the confidence bands

constructed by method (4). Further conclusions are stated in section 1.
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Fig. 1 VaR,(p) for Linear (upper) and Qudratic (lower) Models ( VaR t {p) is on

the vertical axis, and (p, i) are on the horisontal axes.)
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Fig. 4 Estimates and 95% (Pointwise) Confidence Intervals for 6> (-),

0.2 0.3
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