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Rüdiger Schultz · Stephan Tiedemann

Conditional Value-at-Risk in Stochastic Programs

with Mixed-Integer Recourse

April 26, 2004

Abstract. In classical two-stage stochastic programming the expected value of the total costs
is minimized. Recently, mean-risk models - studied in mathematical finance for several decades
- have attracted attention in stochastic programming. We consider Conditional Value-at-Risk
as risk measure in the framework of two-stage stochastic integer programming. The paper
addresses structure, stability, and algorithms for this class of models. In particular, we study
continuity properties of the objective function, both with respect to the first-stage decisions
and the integrating probability measure. Further, we present an explicit mixed-integer linear
programming formulation of the problem when the probability distribution is discrete and
finite. Finally, a solution algorithm based on Lagrangean relaxation of nonanticipativity is
proposed.

Key words. Stochastic programming – mean-risk models – mixed-integer optimization –
conditional value-at-risk

1. Introduction

Most real-world problems in operations research involve uncertain data. Thus,
finding optimal decisions turns into selecting a “best” random variable. Then the
question comes up which criteria to use for the selection. Quickly, the matter of
risk aversion becomes an issue. Further, for realistic modeling integer variables
are often helpful and sometimes inevitable. This paper suggests a way of how to
make such decisions by using Conditional Value-at-Risk as risk measure in the
framework of recourse stochastic integer programming.

Throughout the paper, we impose a cost minimization framework. Consider
a family of real random cost variables {Z(x, ω)}x∈X ⊆ Z on a probability space
(Ω,A, IP ). We want to decide on the variable x and so on the corresponding ran-
dom variable by comparing certain scalar characteristics of the random variables,
namely by so-called mean-risk models

min
x∈X

IE{Z(x, ω)} + ρR{Z(x, ω)} (1)
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where IE : Z −→ R denotes the expected value, R : Z −→ R a risk measure, Z
the space of all real random cost variables Z : Ω −→ R satisfying IE{|Z(ω)|} <
∞, and ρ > 0 a suitable weight factor.

This paper deals with a risk measure called Conditional Value-at-Risk applied
to random variables occurring in recourse stochastic integer programming. These
random variables are essentially defined by value functions of mixed-integer lin-
ear programs being discontinuous and nonconvex, such that, in particular, con-
vexity of the objectives in the mean-risk model is not given. Therefore, for the
sake of applicability to real-world problems, it is inevitable to choose a risk mea-
sure such that, despite the poor properties of the random variables, the resulting
stochastic integer programs are structurally sound and amenable to algorithmic
treatment. In the following we will show that Conditional Value-at-Risk is a risk
measure that satisfies these requirements.

The mean-risk model (1) aims at minimizing the weighted sum of two com-
peting objectives. Viewed from a more general perspective, it is a scalarization
of the multiobjective optimization problem

min
x∈X

(

IE{Z(x, ω)},R{Z(x, ω)}
)

. (2)

For an introduction to multiobjective optimization we refer to [7,20]. An ac-
cepted notion of optimality in multiobjective optimization is efficiency. A point
x̄ ∈ X is called efficient for (2) if there is no other point x ∈ X such that
IE{Z(x, ω)} 6 IE{Z(x̄, ω)} and R{Z(x, ω)} 6 R{Z(x̄, ω)}, with at least one
strict inequality. The set of all efficient points is named efficient frontier. Every
optimal solution to the mean-risk model (1) with a weight factor ρ > 0 is an
efficient point, a so-called supported efficient point. Due to the lacking convexity
of our objective functions, not all efficient points are supported, and thus cannot
be computed by solving scalarizations (1). However, solving the mean-risk model
(1) for various values of ρ > 0 has the capability to trace the supported part
of the efficient frontier. In Section 5 a discrete tracing method is described and
carried out for a real-life optimization problem.

The relation of stochastic dominance, one of the fundamental concepts in
decision theory, introduces a partial order in the space of real random variables.
This provides a basis for selecting “best” members from families of random
variables. Ogryczak and Ruszczyński have studied mean-risk models and their
consistency with the multiobjective criteria induced by stochastic dominance, see
[23,24]. Artzner et al., cf. [4], proposed axiomatic properties of risk measures,
calling risk measures fulfilling these properties coherent. Conditional Value-at-
Risk is a coherent risk measure, cf. [2,4,30], and the corresponding mean-risk
model is consistent with the second degree stochastic dominance relation, cf.
[24].

For controlling the variability of the costs, the first risk measure that comes
into mind is the variance, cf. [21]. However, the variance has several drawbacks.
In general, it is neither consistent with the stochastic dominance relation nor
coherent. Further, the square and the mentioned discontinuities may lead to an
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objective which is not even lower semicontinuous, such that (1), with compact
X, may have a finite infimum which is not attained, cf. [33].

In [33] another risk measure, the Excess Probability, see Section 2, has been
analyzed. It is consistent with the first degree stochastic dominance relation.
The present paper shall be seen as a continuation of that research, analyzing a
risk measure with a higher degree of consistency with the stochastic dominance
relation.

Section 2 gives an introduction to Conditional Value-at-Risk. In Section 3
we extend the traditional modeling in two-stage stochastic integer programming
towards risk aversion and formulate a mean-risk model with Conditional Value-
at-Risk. Section 4 analyzes structure and stability of the risk measure on the
space of the special random variables in question, defined essentially by value-
functions of mixed-integer programs with random right-hand sides. An explicit
mixed-integer linear programming formulation of the model when the probability
distribution is discrete and finite is presented in Section 5. Moreover, a solution
algorithm is proposed, and finally, we report on some first numerical experiments.

2. Conditional Value-at-Risk (CVaR)

In this paper we want to minimize risk in the following sense: Minimize

“the expected value of the costs in the (1 − α) · 100% worst cases”, (3)

where α ∈ (0, 1) is a preselected probability.

We call the value described in (3) α-Conditional Value-at-Risk (α-CVaR).
Since we do not want to impose any additional assumptions on the random vari-
ables Z(x, ω) ∈ Z or the probability space (Ω,A, IP ), the precise mathematical
definition requires some care. We follow the paper of Rockafellar and Uryasev
([30]):

Definition 2.1. For Z(x, ω) ∈ Z and a preselected probability α ∈ (0, 1) we
define the following:

(i) The distribution function

Ψ(x, η) := IP ({ω ∈ Ω : Z(x, ω) 6 η}).

(ii) The α-Value-at-Risk (α-VaR)

ηα(x) := min{η : Ψ(x, η) > α}. (4)

(iii) The α-Value-at-Risk+ (α-VaR+)

η+
α (x) := inf{η : Ψ(x, η) > α}.
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(iv) The α-CVaR

φα(x) := mean of the α-tail distribution of Z(x, ω), (5)

where the distribution in question is the one with the distribution function
Ψα(x, η) defined by

Ψα(x, η) :=

{

0 for η < ηα(x),

[Ψ(x, η) − α]/[1 − α] for η > ηα(x).
(6)

We verify that Ψα(x, ·) actually is another distribution function: It is the
α-tail or rather the upper (1 − α)-part of Ψ(x, ·) rescaled onto [0, 1], and there-
fore, it is nondecreasing and right-continuous, with limη→∞ Ψα(x, η) = 1 and
limη→−∞ Ψα(x, η) = 0.

The minimum in (4) is always attained, since the distribution function Ψ(x, ·)
is nondecreasing and right-continuous. It is immediate that always ηα(x) 6

η+
α (x). These values are equal unless Ψ(x, ·) is constant at α over a certain

interval. When Ψ(x, ·) is continuous and strictly increasing, ηα(x) = η+
α (x) is

simply the unique η satisfying Ψ(x, η) = α. Otherwise, it is possible that this
equation has no solution or a whole range of solutions. In the former situation
Ψ(x, ·) has a probability atom at ηα(x), while in the latter, the graph of Ψ(x, ·)
has a constant segment at Ψ(x, η) = α being either the interval [ηα(x), η+

α (x))
or [ηα(x), η+

α (x)], depending on whether or not Ψ(x, ·) has a jump at η+
α (x).

If there is no probability atom at ηα(x) and so Ψ(x, ηα(x)) = α, the α-CVaR
(3) is equal to the conditional expectation

IE{Z(x, ω) | Z(x, ω) > ηα(x)}, (7)

since the α-VaR ηα(x) equals “the minimum potential costs that can occur in
the (1 − α) · 100% worst cases”.

Note, that (7) is the usual definition of α-CVaR for continuous distribution
functions (having no probability atoms at all) as it then coincides with (5) and
so with (3), cf. [25,29,30].

But, if there is no η such that Ψ(x, η) = α and so there is a probability
atom at ηα(x), which in particular may occur for discretely distributed random
variables, (7) does not coincide with (3) such that then the correct definition
of α-CVaR is (5). For a rigorous proof of this, including graphical examples we
refer the reader to [30]. The problem is, when using (7) for the general case, one
is not taking the expectation of the upper (1 − α)-part of the full distribution,
since the probability atom at the α-VaR must be split to do so, but can not be
done by taking any conditional expectation. Thus one has to make the trick as
in (6): taking the correct part of the original distribution function and rescale it
onto [0, 1].

Another correct formalization of (3) for the general case has been worked
out in [1,2], where the α-CVaR is expressed as a difference of an expectation
and a correcting exceeding part if there is a probability atom at the α-VaR.
The authors also discuss the confusion that inheres the current publications
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on this subject due to the latter described problems. In particular the authors
mention that the name Conditional Value-at-Risk stems from the time where
in general the continuity of the distribution function was assumed and thus the
conditional expectation (7) was the correct definition. However, they show that
in the general case there is no way to express (3) as a conditional expectation
and thus decline the term Conditional Value-at-Risk. They suggest the name
α-Expected Shortfall for the gain maximization framework.

In [24] the α-CVaR was defined for general distribution functions by means of
the second quantile function being the convex conjugate function of the distribu-
tion function of order two. The authors call the risk measure Tail Value-at-Risk.
As already mentioned, they also show that the corresponding mean-risk model
is consistent with the second degree stochastic dominance relation.

As we will see in the next Proposition the risk measure η-Expected Excess

QIEη
(x) = IE{max{Z(x, ω) − η, 0}}

is closely related to the α-CVaR, and therefore will also be analyzed intensively in
this paper. The corresponding “partner” of the α-VaR, the η-Excess Probability,

QIP η
(x) = IP ({ω ∈ Ω : Z(x, ω) > η})

has been treated in [33].
Before we come to the next Section and analyze the α-CVaR for our special

random variables we quote for later reference the following fundamental result,
cf. [2,24,25,30].

Proposition 2.2. For Z(x, ω) ∈ Z, the α-CVaR can be expressed by the follow-
ing minimization formula:

φα(x) = min
η∈R

f(α, η, x), (8)

where

f(α, η, x) := η +
1

1 − α
IE{max{Z(x, ω) − η, 0}}.

Further, f is convex in η and finite (hence continuous) and the optimal set of (8)
is the nonempty closed interval [ηα(x), η+

α (x)], reducing to ηα(x) when the graph
of Ψ(x, ·) has no constant segment at Ψ(x, η) = α. In particular, the α-VaR
ηα(x) always is a minimizer, and thus φα(x) ∈ R.

Note, that (8) is sometimes used as the definition of α-CVaR, cf. [2,25].
Rockafellar and Uryasev ([29,30]) have analyzed α-CVaR for random vari-

ables Z(x, ω) ∈ Z that are convex in x, yielding convexity of f jointly in (η, x)
and so the convexity of α-CVaR. In that case the minimization of α-CVaR is a
convex optimization problem and therefore algorithmic treatment is possible by
various techniques from convex analysis.

In the remaining part of the paper we will discuss α-CVaR for the discontin-
uous and nonconvex random variables occurring in two-stage stochastic integer
programs. Then the convexity of α-CVaR is lost. However, we will show that it
still has certain continuity properties both with respect to the first-stage deci-
sions and the integrating probability measure.
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3. Two-Stage Stochastic Integer Programs with CVaR

Consider the following random mixed-integer linear program

min
x,y,y′

{c⊤x+ q⊤y + q′⊤y′ : Tx+Wy +W ′y′ = h(ω),

x ∈ X, y ∈ Zm̄
+ , y

′ ∈ Rm′

+ }. (9)

Assume that all ingredients in (9) have conformable dimensions, that W,W ′ are
rational matrices, and that X ⊆ Rm is a nonempty closed set, possibly with
integer requirements to some components of x. The right-hand side h(ω) ∈ Rs

of the equality constraints is a random vector on a probability space (Ω,A, IP ).
Together with (9) we have the so-called nonanticipativity information constraint,
which forces the variables x to be fixed before observing the outcome of h(ω),
and allows the variables (y, y′) to be fixed afterwards. Therefore, x and (y, y′)
are called first- and second-stage variables, respectively.

The mixed-integer value function

Φ(t) := min{q⊤y + q′⊤y′ : Wy +W ′y′ = t, y ∈ Zm̄
+ , y

′ ∈ Rm′

+ } (10)

is a substantial object in our succeeding stochastic programming models. By
integer programming theory ([22]), this function is real-valued on Rs if W (Zm̄

+ )+

W ′(Rm′

+ ) = Rs and {u ∈ Rs : W⊤u 6 q, W ′⊤u 6 q′} 6= ∅ which, therefore,
will be assumed throughout the paper.

With

QIE(x) := IE{c⊤x+ Φ(h(ω) − Tx)}

the traditional expectation-based stochastic program with recourse is the opti-
mization problem

min{QIE(x) : x ∈ X}. (11)

Introducing the Conditional Value-at-Risk functional

QCV aRα
(x) := min

η∈R

f(α, η, x) (12)

with

f(α, η, x) := η +
1

1 − α
IE{max{c⊤x+ Φ(h(ω) − Tx) − η, 0}},

problem (11) is extended into the mean-risk model

min{QIE(x) + ρQCV aRα
(x) : x ∈ X}. (13)

Here α ∈ (0, 1) denotes some preselected probability and ρ > 0 is a suitable
weight factor.

The principal aim of the above construction is to choose the first-stage de-
cisions x in an optimal way without anticipation of future outcomes of the ran-
dom vector h(ω). More specifically, having decided on x and observed h(ω), the
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remaining decisions (y, y′) have to be taken optimal. This leads to the mixed-
integer linear program determining the function Φ in (10). The costs of the
two-stage sequential process of decision and observation are expressed by the
random variable Z(x, ω) = c⊤x + Φ(h(ω) − Tx). The mean-risk model (13) is
then used to find a “best” first-stage decision x ∈ X, and thus also a “best”
random variable from the indexed family

(

c⊤x+ Φ(h(ω) − Tx)
)

x∈X
.

Note that it is necessary to have IE{|c⊤x + Φ(h(ω) − Tx)|} < ∞ for all
x ∈ X to apply Proposition 2.2 such that then the definition of QCV aRα

in (12)
is justified. This is the case under reasonable assumptions as will be shown in
the next Section.

If no second-stage variables are restricted to be integers, Φ is the value func-
tion of a linear program and thus convex. Then, also the objective in (13) is
convex and therefore allows for application of various analytical and algorith-
mic techniques from convex analysis. With integers in the second stage, Φ is the
value function of a mixed-integer linear program, so in general discontinuous and
nonconvex, and therefore the random variables Z(x, ω) = c⊤x + Φ(h(ω) − Tx)
are discontinuous and nonconvex in x, yielding that the objective function in
(13) is not convex anymore. However, in the next Section we will show that (13)
is still well-posed from formal viewpoint. We will establish structural properties
of the functional QCV aRα

, and finally in Section 5 we will demonstrate that so-
lution methodology from mixed-integer linear programming (the class our initial
random optimization problem (9) belongs to) can be employed for solving (13).

The traditional expectation-based optimization problem (11) is one of the
well-studied objects in stochastic programming, see [3,12,31,32]. Therefore, the
main focus in the following analysis will be on the functional QCV aRα

. We briefly
mention that, under mild conditions, QIE is real-valued and lower semicontinu-
ous and that QIE is continuous if the distribution of h(ω) has a density. Optimal
values and optimal solutions to (11) behave stable under perturbations of the
probability distribution of h(ω). This allows for discrete approximations of the
probability distribution for which (11) can be rewritten equivalently as a block-
structured mixed-integer linear program. The latter is amenable to decomposi-
tion methods splitting (11) into smaller mixed-integer linear programs that are
often solvable by standard software like CPLEX, [15].

4. Structure and Stability

Before we start with the structural analysis of QCV aRα
let us fix our notions of

lower and upper semicontinuity. Consider a space Ξ endowed with some notion
of convergence. Recall that a function G : Ξ → R is called continuous at ξo ∈ Ξ
if for all ε > 0 and all sequences ξn → ξo it holds that −ε 6 G(ξn) − G(ξo) 6 ε
for almost all n ∈ N, meaning for all but finitely many n ∈ N. If only the lower
inequality holds, the function is called lower semicontinuous, and respectively,
upper semicontinuous if only the upper inequality holds.
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As QCV aRα
is the value function of the non-linear parametric program

min
η∈R

f(α, η, x), (14)

we need the following specialized case of standard results from non-linear para-
metric optimization, cf. Section 4.2 in [5].

Lemma 4.1. Consider the problem

(Pλ) inf{F(θ, λ) : θ ∈ Θ}, λ ∈ Λ,

where Λ and Θ are nonempty spaces each endowed with some notion of con-
vergence and F : Θ × Λ → R. Let ϕ(λ) and ψ(λ) denote the infimum and the
optimal set respectively of (Pλ). Then the following holds:

(i) ϕ is lower semicontinuous at λo ∈ Λ if F is lower semicontinuous on
Θ × {λo} and if for each sequence λn → λo there exists a compact subset
K of Θ such that ψ(λn) ∩K 6= ∅ holds for all n ∈ N.

(ii) ϕ is upper semicontinuous at λo if F(θ, ·) is upper semicontinuous at λo

for all θ ∈ Θ.

Proof. We prove (i) by contradiction: Assume ϕ is not lower semicontinuous at
λo. Then there exist a sequence λn → λo and an εo > 0 such that ϕ(λn) <
ϕ(λo) − εo, w.l.o.g., for all n ∈ N. By assumption there exist θn ∈ ψ(λn) ∩
K for all n ∈ N such that F(θn, λn) = ϕ(λn) < ϕ(λo) − εo for all n ∈ N.
Since K is compact, there exists θ̄ ∈ K with, w.l.o.g., θn → θ̄. Using the lower
semicontinuity of F on Θ×{λo} we obtain, F(θ̄, λo) 6 F(θn, λn)+εo < ϕ(λo)−
εo + εo = ϕ(λo), yielding a contradiction to ϕ(λo) = inf{F(θ, λo) : θ ∈ Θ}.
Therefore, ϕ is lower semicontinuous at λo.

For proving (ii) we need to show that for all ε > 0 and all sequences λn → λo

it holds that ϕ(λn) 6 ϕ(λo)+ε for almost all n ∈ N. Since ϕ(λo) = inf{F(θ, λo) :
θ ∈ Θ}, there exists θ̃ ∈ Θ with F(θ̃, λo) 6 ϕ(λo) + ε

2 . By the upper semicon-

tinuity of F(θ̃, ·) at λo, and since ϕ(λn) = inf{F(θ, λn) : θ ∈ Θ}, we obtain
ϕ(λn) 6 F(θ̃, λn) 6 F(θ̃, λo) + ε

2 6 ϕ(λo) + ε for almost all n ∈ N, yielding the
upper semicontinuity of ϕ at λo. ⊓⊔

Verifying the assumptions of Lemma 4.1 for the non-linear program (14) will
be a recurring issue in the present Section.

The mixed-integer value function Φ from (10) is crucial for the structural
understanding of f . From parametric integer optimization ([6,11]) the following
is known about Φ.

Proposition 4.2. Assume that W (Zm̄
+ )+W ′(Rm′

+ ) = Rs and {u ∈ Rs : W⊤u 6

q, W ′⊤u 6 q′} 6= ∅. Then the following holds:

(i) Φ is real-valued and lower semicontinuous on Rs.
(ii) There exists a countable partition Rs = ∪∞

i=1Ti such that the restrictions
of Φ to Ti are piecewise linear and Lipschitz continuous with a uniform
constant not depending on i.
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(iii) Each of the sets Ti has a representation Ti = {ti + K} \ ∪N
j=1{tij + K}

where K denotes the polyhedral cone W ′(Rm′

+ ) and ti, tij are suitable points
from Rs, moreover, N does not depend on i.

(iv) There exist positive constants β, γ such that |Φ(t1)−Φ(t2)| 6 β‖t1− t2‖+γ
whenever t1, t2 ∈ Rs.

For convenience, we denote by µ the image measure IP ◦h−1 on Rs, such that

f(α, η, x) = η +
1

1 − α

∫

Rs

max{c⊤x+ Φ(h− Tx) − η, 0}µ(dh).

To facilitate notation we introduce for all x ∈ Rm,

Md(x) := {h ∈ Rs : Φ is discontinuous at h− Tx},

which is µ−measurable for all x ∈ Rm, cf. [8], p. 225.
The following Lemma shows that in Proposition 2.2 the assumption on the

finiteness of the first moment of the relevant random variables is fulfilled. This
yields that QCV aRα

(x) ∈ R for all x ∈ X, and therefore the definition of QCV aRα

in (12) is justified.

Lemma 4.3. Assume that W (Zm̄
+ ) + W ′(Rm′

+ ) = Rs, {u ∈ Rs : W⊤u 6

q, W ′⊤u 6 q′} 6= ∅ and
∫

Rs ‖h‖µ(dh) <∞. Then IE{|c⊤x+Φ(h(ω)−Tx)|} <∞
for all x ∈ X.

Proof. The function c⊤x+ Φ(h− Tx) is measurable in h, since Φ is measurable
as a lower semicontinuous function, cf. Proposition 4.2(i). The second assump-
tion implies that Φ(0) = 0. Together with Proposition 4.2(iv) this provides the
following estimate

|c⊤x+ Φ(h− Tx)| 6 |c⊤x| + |Φ(h− Tx)|

6 |c⊤x| + β‖h− Tx‖ + γ

6 |c⊤x| + β‖h‖ + β‖Tx‖ + γ.

Thus
∫

Rs

|c⊤x+ Φ(h− Tx)|µ(dh) 6 |c⊤x| + β

∫

Rs

‖h‖µ(dh) + β‖Tx‖ + γ <∞

yielding the assertion. ⊓⊔

As already mentioned the function

QIE : Rm −→ R, QIE(x) =

∫

Rs

(c⊤x+ Φ(h− Tx))µ(dh)

is well-studied. In this section we want to use the results available for QIE to es-
tablish similar results for f . For this purpose we consider the η-Expected Excess,
now also dependent on η,

QIEη
: R × Rm −→ R,

QIEη
(x̃) = QIEη

(η, x) :=

∫

Rs

max{c⊤x+ Φ(h− Tx) − η, 0}µ(dh).
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We will show that it is possible to express QIEη
in the form of QIE with a suitably

adapted second-stage mixed-integer program fulfilling the needed assumptions.
This enables us to use the results already proved for QIE , immediately conclude
the corresponding results for QIEη

and so for f .

Lemma 4.4. The η-Expected Excess QIEη
can be written in the following form

QIEη
(η, x) = QIEη

(x̃) = Q̃IE(x̃) :=

∫

Rs+1

(c̃⊤x̃+ Φ̃(h̃− T̃ x̃)) µ̃(dh̃),

with

Φ̃(t̃) = min{q̃⊤y + q̃′⊤ỹ′ : W̃y + W̃ ′ỹ′ = t̃, y ∈ Zm̄
+ , ỹ

′ ∈ Rm̃′

+ },

h̃(ω) :=

(

h(ω)
0

)

, and µ̃ := IP ◦ h̃−1.

Further, assume that q and q′ are rational vectors, W (Zm̄
+ )+W ′(Rm′

+ ) = Rs, and

{u ∈ Rs : W⊤u 6 q, W ′⊤u 6 q′} 6= ∅. Then it holds that W̃ (Zm̄
+ )+W̃ ′(Rm̃′

+ ) =

Rs+1, {ũ ∈ Rs+1 : W̃⊤ũ 6 q̃, W̃ ′⊤ũ 6 q̃′} 6= ∅, and W̃ , W̃ ′ are rational
matrices.

Proof. For t̃ ∈ Rs+1 let

Φ̃(t̃) := min

{

0⊤y +





0
1
0





⊤



y′

v
w



 :

(

W
q⊤

)

y +

(

W ′ 0 0
q′⊤ −1 1

)





y′

v
w



 = t̃,

y ∈ Zm̄
+ ,





y′

v
w



 ∈ Rm′+2
+

}

= min{v : Wy +W ′y′ = t̃1, v > q⊤y + q′⊤y′ − t̃2,

y ∈ Zm̄
+ , y

′ ∈ Rm′

+ , v ∈ R+},

then it holds

max{c⊤x+ Φ(h− Tx) − η, 0} =

(

0
0

)⊤(

η
x

)

+ Φ̃

(

(

h
0

)

−

(

0 T
−1 c⊤

)(

η
x

)

)

,

such that

QIEη
(η, x) =

∫

Rs

(

(

0
0

)⊤(

η
x

)

+ Φ̃

((

h
0

)

−

(

0 T
−1 c⊤

)(

η
x

))

)

µ(dh)

=

∫

Rs+1

(

(

0
0

)⊤(

η
x

)

+ Φ̃

(

h̃−

(

0 T
−1 c⊤

)(

η
x

))

)

µ̃(dh̃),

by the definition of h̃, µ̃, and by the transformation formula for integrals with
respect to image measures.
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Now, verify W̃ (Zm̄
+ ) + W̃ ′(Rm̃′

+ ) = Rs+1 as follows: Let (t̃1, t̃2)
⊤ ∈ Rs+1. By

the first assumption of the Lemma there exist y ∈ Zm̄
+ and y′ ∈ Rm′

+ such that
Wy+W ′y′ = t̃1 and further there are v, w ∈ R+ such that q⊤y+q′⊤y′−v+w = t̃2.

The next condition also holds, because by the second assumption there exists
u ∈ Rs such that W⊤u 6 q and W ′⊤u 6 q′ and so with ũ := (u,−1)⊤ we have
W̃⊤ũ = W⊤u− q⊤ 6 0 = q̃⊤ and W̃ ′⊤ũ = (W ′⊤u− q′⊤, 1,−1)⊤ 6 (0, 1, 0)⊤ =
q̃′⊤.

Finally, the vectors q and q′ as well as the matrices W and W ′ are assumed
to be rational such that the matrices W̃ and W̃ ′ are rational, which completes
the proof. ⊓⊔

In addition to the rationality assumptions on the matrices W and W ′ we
want to assume for the remaining part of the paper that the vectors q and q′ are
rational, too.

Now, we are ready to derive continuity properties of QIEη
and then proceed

with the objective function f in (14).

Proposition 4.5. Assume that W (Zm̄
+ ) + W ′(Rm′

+ ) = Rs, {u ∈ Rs : W⊤u 6

q, W ′⊤u 6 q′} 6= ∅ and
∫

Rs ‖h‖µ(dh) <∞. Then QIEη
: R×Rm −→ R is a real-

valued lower semicontinuous function. If, in addition, it holds that µ
(

Md(x)
)

=
0, then QIEη

is continuous at (η, x) for all η ∈ R. The latter assumption is
fulfilled for all x ∈ Rm if µ has a density. Then QIEη

is continuous on R × Rm.
Further, it holds that QIEη

(·, x) is convex for all x ∈ Rm.

Proof. Lemma 4.4 allows us to derive these assertions from the known results
for QIE . Let M̃d(x̃) := {h̃ ∈ Rs+1 : Φ̃ is discontinuous at h̃− T̃ x̃}. Since h̃(ω) =
(h(ω), 0)⊤, we obtain h̃−1

[

M̃d(x̃)
]

= h−1
[

℘Rs

(

M̃d(x̃) ∩ {h̃ ∈ Rs+1 : h̃s+1 =

0}
)]

, where ℘Rs is the canonical projection on Rs. Further ℘Rs

(

M̃d(x̃) ∩ {h̃ ∈

Rs+1 : h̃s+1 = 0}
)

⊆Md(x). Indeed, by Φ̃(h̃−T̃ x̃) = max{c⊤x+Φ(h−Tx)−η, 0}

it follows that Φ̃ is discontinuous at h̃ − T̃ x̃ only in the case Φ is discontinu-
ous at h − Tx. Therefore µ̃

(

M̃d(x̃)
)

= IP
(

h̃−1
[

M̃d(x̃)
])

6 IP
(

h−1
[

Md(x)
])

=

µ
(

Md(x)
)

. So, µ
(

Md(x)
)

= 0 implies µ̃
(

M̃d(η, x)
)

= 0 for all η ∈ R. Further,
∫

Rs ‖h‖µ(dh) <∞ yields
∫

Rs+1 ‖h̃‖ µ̃(dh) <∞ by the definition of µ̃. Altogether
the assumptions for the known results (cf. Proposition 3.1 and 3.2 in [31]) are
verified, applying these to QIEη

(η, x) = Q̃IE(x̃) yields the desired properties.
In view of Proposition 4.2(ii),(iii), for given x ∈ Rm, Md(x) is contained in

a countable union of hyperplanes, i.e., in a set of Lebesgue measure zero. If µ
has a density, it is absolutely continuous with respect to the Lebesgue measure,
hence µ

(

Md(x)
)

= 0.
The convexity of QIEη

(·, x) for all x ∈ Rm holds, because the maximum of two
convex functions is convex and by the linearity of the integral. This completes
the proof. ⊓⊔

Proposition 4.6. Assume that W (Zm̄
+ ) + W ′(Rm′

+ ) = Rs, {u ∈ Rs : W⊤u 6

q, W ′⊤u 6 q′} 6= ∅ and
∫

Rs ‖h‖µ(dh) < ∞. Then f : (0, 1) × R × Rm −→
R is a real-valued lower semicontinuous function. If, in addition, it holds that
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µ
(

Md(x)
)

= 0, then f is continuous at (α, η, x) for all (α, η) ∈ (0, 1) × R.
The latter assumption is fulfilled for all x ∈ Rm if µ has a density. Then f is
continuous on (0, 1) × R × Rm. Further, it holds that f(α, ·, x) is convex for all
(α, x) ∈ (0, 1) × Rm.

Proof. It holds that f(α, η, x) = η+ 1
1−α

∫

Rs max{c⊤x+Φ(h−Tx)−η, 0}µ(dh) =

η+ 1
1−α

QIEη
(η, x). Further α ∈ (0, 1) and so 0 < 1

1−α
<∞, such that the results

follow immediately from Proposition 4.5. ⊓⊔

We also want to extend our results to continuity results jointly with the mea-
sure µ. If indicated the functions in question are, thus, also functions dependent
on the measure µ.

Let P(Rs) denote the set of all Borel probability measures on Rs. We say that

a sequence {µn} in P(Rs) converges weakly to µ ∈ P(Rs), written µn
w

−→ µ, if
for any bounded continuous function g : Rs → R it holds

∫

Rs

g(h)µn(dh) →

∫

Rs

g(h)µ(dh) as n→ ∞.

Fix arbitrary p > 1 and C > 0, and denote ∆p,C(Rs) := {ν ∈ P(Rs) :
∫

Rs ‖h‖
p ν(dh) 6 C}.

Proposition 4.7. Assume that W (Zm̄
+ ) + W ′(Rm′

+ ) = Rs, {u ∈ Rs : W⊤u 6

q, W ′⊤u 6 q′} 6= ∅ and let µ ∈ ∆p,C(Rs) such that µ
(

Md(x)
)

= 0. Then
QIEη

: R × Rm ×∆p,C(Rs) −→ R is continuous at (η, x, µ) for all η ∈ R.

Proof. Using the known result for QIE , cf. Proposition 3.8 in [31], it remains to
show that µ ∈ ∆p,C(Rs) implies µ̃ ∈ ∆p,C(Rs+1), which is straightforward by

the definition of the entities, and that µ
(

Md(x)
)

= 0 implies µ̃
(

M̃d(x̃)
)

= 0,
which has already been shown in the proof of Proposition 4.5. ⊓⊔

Proposition 4.8. Assume that W (Zm̄
+ ) + W ′(Rm′

+ ) = Rs, {u ∈ Rs : W⊤u 6

q, W ′⊤u 6 q′} 6= ∅ and let µ ∈ ∆p,C(Rs) such that µ
(

Md(x)
)

= 0. Then
f : (0, 1)×R×Rm×∆p,C(Rs) −→ R is continuous at (α, η, x, µ) for all (α, η) ∈
(0, 1) × R.

Proof. Since α ∈ (0, 1) and so 0 < 1
1−α

< ∞, the results follow immediately
from Proposition 4.7. ⊓⊔

The next Lemma verifies the remaining assumption of Lemma 4.1.

Lemma 4.9. Assume that W (Zm̄
+ ) + W ′(Rm′

+ ) = Rs and {u ∈ Rs : W⊤u 6

q, W ′⊤u 6 q′} 6= ∅. Let (αn, xn, µn) → (αo, xo, µo) with {αn, xn, µn}n∈N ⊆
(0, 1) × Rm × P(Rs). Then there exists a compact subset K of R such that
ηµn

αn
(xn) := min{η : µn

(

{h ∈ Rs : c⊤xn + Φ(h − Txn) 6 η}
)

> αn} ∈ K for
all n ∈ N.
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Proof. For every such sequence there exist α′, α′′ ∈ (0, 1), and a real number
r := maxn∈N ‖xn‖ such that (αn, xn) ∈ [α′, α′′] × Br(0) for all n ∈ N, where
Br(0) := {x ∈ Rm : ‖x‖ 6 r}.

The second assumption implies that Φ(0) = 0. Together with Proposition
4.2(iv) this provides the following estimate for x ∈ Br(0), h ∈ Rs,

|c⊤x+ Φ(h− Tx)| 6 |c⊤x| + |Φ(h− Tx)| 6 |c⊤x| + β‖h− Tx‖ + γ

6 r‖c‖ + β‖h‖ + βr‖T‖ + γ

6 β‖h‖ + r̄,

where β, γ > 0 and r̄ := r‖c‖ + βr‖T‖ + γ > 0.
Using the above estimate, we obtain for (α, x) ∈ [α′, α′′] × Br(0) and µ ∈ ∆ :=
{µn}n∈N,

ηµ
α(x) = min{η : µ

(

{h ∈ Rs : c⊤x+ Φ(h− Tx) 6 η}
)

> α}

6 min{η : µ
(

{h ∈ Rs : c⊤x+ Φ(h− Tx) 6 η}
)

> α′′}

6 min{η : µ
(

{h ∈ Rs : β‖h‖ + r̄ 6 η}
)

> α′′}

= min{η : µ
(

{h ∈ Rs : ‖h‖ 6 β−1(η − r̄)}
)

> α′′}

= β · min{η : µ
(

{h ∈ Rs : ‖h‖ 6 η}
)

> α′′} + r̄,

with the substitution η := β−1(η − r̄), and

ηµ
α(x) = min{η : µ

(

{h ∈ Rs : c⊤x+ Φ(h− Tx) 6 η}
)

> α}

> min{η : µ
(

{h ∈ Rs : c⊤x+ Φ(h− Tx) 6 η}
)

> α′}

> min{η : µ
(

{h ∈ Rs : −β‖h‖ − r̄ 6 η}
)

> α′}

= min{η : µ
(

{h ∈ Rs : β‖h‖ > −(η + r̄)}
)

> α′}

= min{η : µ
(

{h ∈ Rs : ‖h‖ > −β−1(η + r̄)}
)

> α′}

= β · min{η : µ
(

{h ∈ Rs : ‖h‖ > −η}
)

> α′} − r̄,

where η := β−1(η + r̄).
We complete the proof by finding an upper bound for

η̄µ
α′′ := min{η : µ

(

{h ∈ Rs : ‖h‖ 6 η}
)

> α′′},

and a lower bound for

η̃µ
α′ := min{η : µ

(

{h ∈ Rs : ‖h‖ > −η}
)

> α′}

= −max{η : µ
(

{h ∈ Rs : ‖h‖ < η}
)

6 1 − α′},

both independent of µ ∈ ∆.
Since the elements of ∆ form a weakly convergent sequence, Prohorov’s The-

orem, cf. [8], Theorem 6.2, tells us that ∆ is uniformly tight: There exists, for
each ε > 0, a compact set C ⊆ Rs such that µ(C) > 1 − ε for all µ ∈ ∆. This
yields the desired bounds as follows: First, let ε := 1−α′′ > 0. Then there exists
a compact set C such that µ(C) > α′′ for all µ ∈ ∆, yielding the existence of
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b ∈ R such that η̄µ
α′′ 6 b. Secondly, let ε := α′ > 0. Then there exists a compact

set C such that µ(C) > 1 − α′ for all µ ∈ ∆. Hence there is a constant −a ∈ R
such that max{η : µ

(

{h ∈ Rs : ‖h‖ < η}
)

6 1 − α′} 6 −a, and thus η̃µ
α′ > a.

Summing up, we obtain that for all n ∈ N it holds

ηµn
αn

(xn) ∈ [βa− r̄, βb+ r̄] := K.

⊓⊔

Now, we are ready to apply Lemma 4.1 to (14). First, for fixed measure µ, we
study QCV aRα

as a function jointly in (α, x), tacitly assuming proper extension
of the notation in (12).

Proposition 4.10. Assume that W (Zm̄
+ ) +W ′(Rm′

+ ) = Rs, {u ∈ Rs : W⊤u 6

q, W ′⊤u 6 q′} 6= ∅ and
∫

Rs ‖h‖µ(dh) < ∞. Then QCV aRα
: (0, 1) × Rm −→

R is a real-valued lower semicontinuous function. If, in addition, it holds that
µ
(

Md(x)
)

= 0, then QCV aRα
is continuous at (α, x) for all α ∈ (0, 1). The

latter assumption is fulfilled for all x ∈ Rm if µ has a density. Then QCV aRα
is

continuous on (0, 1) × Rm.

Proof. Follows immediately from Proposition 2.2, Lemma 4.3 and Lemma 4.1
together with Proposition 4.6 and Lemma 4.9. ⊓⊔

Finally, we obtain the joint continuity of QCV aRα
in (α, x, µ).

Proposition 4.11. Assume that W (Zm̄
+ ) +W ′(Rm′

+ ) = Rs, {u ∈ Rs : W⊤u 6

q, W ′⊤u 6 q′} 6= ∅ and let µ ∈ ∆p,C(Rs) such that µ
(

Md(x)
)

= 0. Then
QCV aRα

: (0, 1) × Rm ×∆p,C(Rs) −→ R is continuous at (α, x, µ) for all α ∈
(0, 1).

Proof. Follows immediately from Proposition 2.2, Lemma 4.3 and Lemma 4.1
together with Proposition 4.8 and Lemma 4.9. ⊓⊔

Proposition 4.10 states the basic analytical properties of QCV aRα
as a func-

tion in (α, x). As a particular conclusion of the lower semicontinuity in x es-
tablished there we obtain that the mean-risk model (13) always has an optimal
solution, provided X is nonempty and compact. Joint-continuity results like
Proposition 4.11 are instrumental when studying the stability of stochastic pro-
grams with respect to perturbations of the underlying probability measures. For
an illustration let us consider the problem

(Pµ) min{QCV aRα
(x, µ) : x ∈ X}

where µ ∈ P(Rs) enters as a parameter, and α ∈ (0, 1) is preselected and fixed.
Again we focus on the pure risk model and remark that in combination with
results from, e.g., [31] the findings below readily extend into stability results for
mean-risk models of the type (13).

There are two main issues motivating stability analysis of stochastic pro-
grams: numerical accessibility and incompleteness of information. The definition
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of QCV aRα
(x, µ) involves multivariate integration which is hard to accomplish

if the dimension is substantial and the integrating measure continuous. Ap-
proximation by discrete measures then is a proven remedy. Moreover, in most
practical modeling situations of stochastic programming the underlying proba-
bility measure results from subjective considerations and, therefore, is available
in an approximate sense only. In both cases, stability then arises as a natural
requirement: One wants to be sure that “small” perturbations of the underlying
measure imply only “small” perturbations of the solutions. For putting pertur-
bation of probability measures into mathematical terms weak convergence of
probability measures is very useful. It covers modes of perturbation that are
particularly important in stochastic programming. As examples we mention dis-
cretization of continuous probability measures via conditional expectations [10,
16], almost surely converging densities (Scheffé’s Theorem [8]), and estimation
using empirical measures (Glivenko-Cantelli almost sure uniform convergence
[26]).

QCV aRα
(x, µ) being nonconvex in x in general, local solutions to (Pµ) that

are not necessarily global become relevant, and it is convenient to consider the
following localized optimal values and solution sets

ϕV (µ) := inf{QCV aRα
(x, µ) : x ∈ X ∩ clV },

ψV (µ) := {x ∈ X ∩ clV : QCV aRα
(x, µ) = ϕV (µ)},

where V ⊆ Rm. Given µ ∈ P(Rs), a nonempty set Z ⊆ Rm is called a complete
local minimizing set (CLM set, [28]) of (Pµ) with respect to V if V is open and
Z = ψV (µ) ⊆ V . A set of local minimizers thus has the CLM property if it
contains all local minimizers “nearby”. Without this property pathologies may
occur. Think, for example, of some real-valued function on Rm that is constant
on some ball Br with radius r. Any ball B r

2
around the same point but with

radius r
2 then is a set of local minimizers (lacking the CLM property, of course).

“Tilting” the function by adding a suitable linear function with arbitrarily small
norm then creates instability since none of the points “in and near” B r

2
remains

locally optimal. It thus makes sense to impose the CLM property when studying
stability of local solutions. Isolated local minimizers and the set of global mini-
mizers are examples for CLM sets, while strict local minimizers not necessarily
have the CLM property, cf. [28] for further details.

Proposition 4.12. Assume that W (Zm̄
+ ) +W ′(Rm′

+ ) = Rs, {u ∈ Rs : W⊤u 6

q, W ′⊤u 6 q′} 6= ∅ and let µ ∈ ∆p,C(Rs) with µ(Md(x)) = 0 for all x ∈ X.
Further, suppose that there exists a subset Z ⊆ Rm which is a CLM set for (Pµ)
with respect to some bounded open set V ⊆ Rm. Then the following holds:

(i) The function ϕV : ∆p,C(Rs) −→ R is continuous at µ.
(ii) The multifunction ψV : ∆p,C(Rs) −→ 2R

m

is Berge upper semicontinu-
ous at µ; i.e., for any open set O ⊆ Rm with ψV (µ) ⊆ O there exists a
neighborhood N of µ in ∆p,C(Rs) such that ψV (ν) ⊆ O for all ν ∈ N .

(iii) There exists a neighborhood N ′ of µ in ∆p,C(Rs) such that for all ν ∈ N ′

the set ψV (ν) is a CLM set for (Pν) with respect to V . In particular, this
implies that ψV (ν) is a nonempty set of local minimizers whenever ν ∈ N ′.



16 Rüdiger Schultz, Stephan Tiedemann

Proof. (i) By Proposition 4.10, QCV aRα
(·, ν) is lower semicontinuous on the

compact set K := X ∩ clV for all ν ∈ ∆p,C(Rs) and therefore ψV (ν) ∩K 6= ∅
for all ν ∈ ∆p,C(Rs). Further, with Proposition 4.11 the function QCV aRα

:
Rm ×∆p,C(Rs) −→ R is continuous on K × {µ}. Applying Lemma 4.1, now to
the setting of (Pµ), yields the first assertion.

(ii) It holds ψV (ν) = {x ∈ K : g(x, ν) 6 0} for all ν ∈ ∆p,C(Rs), with
g(x, ν) := QCV aRα

(x, ν) − ϕV (ν) being lower semicontinuous on K × {µ}. We
complete the proof by contradiction: Assume ψV is not Berge upper semicontin-
uous at µ. Then there exists an open set O ⊆ Rm with ψV (µ) ⊆ O and for all
neighborhoods N of µ there is a ν ∈ N such that ψV (ν) * O. This is equivalent
to the existence of an open set O ⊆ Rm with ψV (µ) ⊆ O and two sequences

νn
w

−→ µ and xn ∈ ψV (νn) \O ⊆ K \O. By the compactness of K \O there is a
convergent subsequence xnk

→ xo ∈ K \ O. However, since xnk
∈ ψV (νnk

) and
by the lower semicontinuity of g(x, ν) on K × {µ}, we obtain that for all ε > 0
it holds g(xo, µ) 6 g(xnk

, νnk
) + ε 6 ε for almost all k ∈ N, and so g(xo, µ) 6 0.

Therefore, xo ∈ ψV (µ) ⊆ O, which yields the contradiction, and ψV is Berge
upper semicontinuous at µ.

(iii) As shown above in the proof of part (i), it holds that ψV (ν) 6= ∅ for all
ν ∈ ∆p,C(Rs). Since Z = ψV (µ) is a CLM set for (Pµ) with respect to V , we have
ψV (µ) ⊆ V . Recall that V is open. By the upper semicontinuity established in
(ii) now there exists a neighborhood N ′ of µ in ∆p,C(Rs) such that ψV (ν) ⊆ V
whenever ν ∈ N ′. Hence, ψV (ν) is a CLM set for all ν ∈ N ′. ⊓⊔

5. Algorithm and computational experiments

In this Section we consider the case where the measure µ is discrete with finitely
many scenarios. As justified by the results of the last Section these models
are suitable to approximate models with continuous probability distributions
yielding multivariate integration problems. We start with an equivalent problem
formulation that will enable us to use an already existing solution algorithm.
Namely the one developed for the traditional expectation-based model, cf. [12].

Proposition 5.1. Assume that µ is discrete with finitely many scenarios h1, . . .,
hJ and corresponding probabilities π1, . . . , πJ . Let α ∈ (0, 1). Then the stochastic
program

min{QCV aRα
(x) : x ∈ X} (15)

can be equivalently restated as

min
x,y,y′,v,η

{

η +
1

1 − α

J
∑

j=1

πjvj : Wyj +W ′y′j = hj − Tx,

vj > c⊤x+ q⊤yj + q′⊤y′j − η, (16)

x ∈ X, η ∈ R, yj ∈ Zm̄
+ ,

y′j ∈ Rm′

+ , vj ∈ R+, j = 1, . . . , J

}

.
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Proof. By Lemma 4.4, (15) is equivalent to

min
x,η

{

η +
1

1 − α

∫

Rs+1

(c̃⊤x̃+ Φ̃(h̃− T̃ x̃)) µ̃(dh̃) : x ∈ X, η ∈ R

}

.

Since µ is discrete with finitely many scenarios, this is equivalent to (16) which is
already well-known from linear two-stage models without integer requirements,
see [9,17,27]. The same proof applies here. ⊓⊔

In the following we assume that X ⊆ Rm is nonempty and compact, and
arises as a solution set to a system of linear inequalities, possibly involving
integer requirements to some components of x. By the lower semicontinuity of
QCV aRα

our problem therefore always has an optimal solution.
The dimensions of problem (16) quickly become large-scale such that general-

purpose mixed-integer linear programming algorithms and software fail. How-
ever, the constraint matrix of (16) has the same block-angular structure which
occurs in the traditional expectation-based model: If we consider the additional
variable η as a first-stage variable and vj , j = 1, . . . , J , as additional second-
stage variables, the second-stage variables (yj , y

′
j , vj) for different scenarios are

not linked in explicit constraints but only through the scenario-independent first-
stage variables x and η. Similarly to the traditional expectation-based model,
cf. [12], this allows for the following algorithmic approach to (16) via scenario
decomposition, i.e., Lagrangian relaxation of nonanticipativity.

We introduce in (16) scenario-many copies xj , ηj , j = 1, . . . , J, of the first-
stage variables x and η, and force them to be really copies of each other, by the
addition of the nonanticipativity constraints x1 = . . . = xJ and η1 = . . . = ηJ

(or equivalent systems). For the latter we use the notations
∑J

j=1H
′
jxj = 0

and
∑J

j=1H
′′
j ηj = 0 with suitable (l′,m)-matrices H ′

j and (l′′, 1)-vectors H ′′
j ,

j = 1, . . . , J . Problem (16) then becomes

min
x,y,y′,v,η

{ J
∑

j=1

πjηj +
1

1 − α

J
∑

j=1

πjvj : Wyj +W ′y′j = hj − Txj ,

vj > c⊤xj + q⊤yj + q′⊤y′j − ηj ,

xj ∈ X, ηj ∈ R, yj ∈ Zm̄
+ , (17)

y′j ∈ Rm′

+ , vj ∈ R+, j = 1, . . . , J,

J
∑

j=1

H ′
jxj = 0,

J
∑

j=1

H ′′
j ηj = 0

}

.

The constraint system of (17) can be decoupled by Lagrangian relaxation of
∑J

j=1H
′
jxj = 0 and

∑J

j=1H
′′
j ηj = 0. For this purpose, we consider for λ′ ∈ Rl′

and λ′′ ∈ Rl′′ the functions

Lj(xj , yj , y
′
j , vj , ηj , λ

′, λ′′) := πjηj +
1

1 − α
πjvj + λ′

⊤
H ′

jxj + λ′′
⊤
H ′′

j ηj ,
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for j = 1, . . . , J , and obtain the Lagrangian with λ := (λ′, λ′′)

L(x, y, y′, v, η, λ) :=

J
∑

j=1

Lj(xj , yj , y
′
j , vj , ηj , λ).

Then, the Lagrangian dual of (17) is the optimization problem

max{D(λ) : λ ∈ Rl} (18)

where l := l′ + l′′ and

D(λ) = min

{ J
∑

j=1

Lj(xj , yj , y
′
j , vj , ηj , λ) : Wyj +W ′y′j = hj − Txj ,

vj > c⊤xj + q⊤yj + q′⊤y′j − ηj ,

xj ∈ X, ηj ∈ R, yj ∈ Zm̄
+ ,

y′j ∈ Rm′

+ , vj ∈ R+, j = 1, . . . , J

}

.

Separability yields

D(λ) =
J
∑

j=1

Dj(λ) (19)

where

Dj(λ) = min
{

Lj(xj , yj , y
′
j , vj , ηj , λ) : Wyj +W ′y′j = hj − Txj ,

vj > c⊤xj + q⊤yj + q′⊤y′j − ηj ,

xj ∈ X, ηj ∈ R, yj ∈ Zm̄
+ , (20)

y′j ∈ Rm′

+ , vj ∈ R+

}

.

EachDj(λ) is the pointwise minimum of affine functions in λ. ThereforeD(λ)
is piecewise affine and concave. Thus, (18) is a nonsmooth concave maximization
(or convex minimization) problem that can be solved by bundle methods from
nondifferentiable optimization, for instance by the conic bundle method of [14]
or the proximal bundle method of [18,19].

At each iteration, these methods require the objective value of D which is
given by (19) and one subgradient of D which is given by the vector





J
∑

j=1

H ′
jx

λ
j ,

J
∑

j=1

H ′′
j η

λ
j



 .

Here, xλ
j and ηλ

j refer to the corresponding components in an optimal solution
vector to (20). Note that the structure of D, cf. (19), enables substantial decom-
position, since the single-scenario problems (20) can be tackled separately. Their
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moderate size often allows application of general-purpose mixed-integer linear
programming codes, like CPLEX, [15].

The optimal value zLD of (18) is a lower bound to the optimal value z
of problem (16). From integer programming theory ([22]) it is known, that,
generally, one has to live with a positive duality gap. However, the lower bound
obtained by the above procedure, is never worse than the bound obtained by
eliminating the integer requirements. In other words, it holds that zLD > zLP

where zLP denotes the optimal value of the LP relaxation of (16).
The results of the dual optimization provide starting points for heuristics

to find promising feasible points for the unrelaxed problem (16). Our relaxed
constraints being very simple (x1 = . . . = xJ , η1 = . . . = ηJ), ideas for such
heuristics come up quickly. For example, examine the xj , ηj-components, j =
1, . . . , J , of solutions to (20) for optimal or nearly optimal λ, and decide for the
most frequent value arising, or average and round if necessary.

If the heuristic yields a feasible solution to (16), then we obtain by the objec-
tive value of the latter an upper bound z̄ for z. Together with the lower bound
zLD this gives the quality certificate (gap) z̄− zLD. The full algorithm improves
this certificate by embedding the procedure described so far into a branch-and-
bound scheme for (15) seen as a nonconvex global optimization problem.

In contrast to the expectation-based model the objective function QCV aRα
is

not explicitly given and therefore in some cases additional computational effort
is needed: If the scenario solutions (xj , ηj), j = 1, . . . , J , differ and we determine
by some heuristics a suggestion (x̄R, η̄R), then η̄R is not necessarily a minimizer
for QCV aRα

(x̄R) in (12), thus yielding just an upper bound on QCV aRα
(x̄R).

However, by Proposition 4.6 it holds that f(α, ·, x) is convex for all (α, x) ∈
(0, 1) × Rm. So, we can determine a minimizer η, and thus QCV aRα

(x̄R), by
solving a one-dimensional piecewise-linear convex, or equivalently, the following
(J+1)-dimensional linear optimization problem:

QCV aRα
(x̄R) = min

{

η +
1

1 − α

J
∑

j=1

πjvj : vj > c⊤x̄R + Φ̄j − η, vj ∈ R+,

j = 1, . . . , J, η ∈ R
}

(21)

where Φ̄j := min{q⊤yj + q′⊤y′j : Wyj + W ′y′j = hj − Txj , yj ∈ Zm̄
+ , y

′
j ∈

Rm′

+ , xj ∈ X, xj = x̄R}. Note, that if Φ̄j < +∞ for all j = 1, . . . , J , the sug-
gested first-stage solution x̄R is feasible for all scenario subproblems. Otherwise,
if Φ̄j = +∞ for some j, x̄R can be discarded.

If the scenario solutions (xj , ηj), j = 1, . . . , J , are identical, therefore feasible
for the unrelaxed problem (16), then ηj is a minimizer corresponding to xj and

so QCV aRα
(xj) = ηj + 1

1−α

∑J

j=1 πjvj , where the vj are solutions to the scenario
subproblems with fixed xj , ηj .

Let P denote the list of current problems and zLD = zLD(P ) the Lagrangian
lower bound for P ∈ P. The algorithm then proceeds as follows.
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Algorithm 5.2.
Step 1 (Initialization): Set z̄ = +∞ and let P consist of problem (17).
Step 2 (Termination): If P = ∅ then the solution x̂ that yielded z̄ = QCV aRα

(x̂)
is optimal.
Step 3 (Node selection): Select and delete a problem P from P and solve its
Lagrangian dual. If the optimal value zLD(P ) hereof equals +∞ (infeasibility of
a subproblem) then go to Step 2.
Step 4 (Bounding): If zLD(P ) > z̄ go to Step 2 (this step can be carried out as
soon as the value of the Lagrangian dual rises above z̄). Consider the following
situations:

1. The scenario solutions (xj, ηj), j = 1, . . . , J , are identical: If QCV aRα
(xj) <

z̄ then let z̄ = QCV aRα
(xj). Go to Step 2.

2. The scenario solutions (xj, ηj), j = 1, . . . , J differ: Compute the average

x̄ =
∑J

j=1 πjxj and round it by some heuristic to obtain x̄R. Calculate Φ̄j,

j = 1, . . . , J . If, for some j, Φ̄j = +∞ then go to Step 5, otherwise solve
(21) and obtain the value QCV aRα

(x̄R). If QCV aRα
(x̄R) < z̄ then let z̄ =

QCV aRα
(x̄R). Go to Step 5.

Step 5 (Branching): Select a component x(k) of x and add two new problems to
P obtained from P by adding the constraints x(k) 6 ⌊x̄(k)⌋ and x(k) > ⌊x̄(k)⌋+1,
respectively (if x(k) is an integer component), or x(k) 6 x̄(k) − ε and x(k) >

x̄(k) + ε, respectively, where ε > 0 is a tolerance parameter to have disjoint
subdomains. Go to Step 3.

Since X is bounded, and if all x-components are restricted to be integers,
the algorithm is obviously finite. If x is mixed-integer some stopping criterion to
avoid endless branching on the continuous components has to be employed.

Apart from the adaptations due to the implicit nature of the representation of
QCV aRα

the algorithm follows the same lines as the algorithm for min{QIE(x) :
x ∈ X} developed in [12]. In a straightforward manner this leads to a scenario
decomposition algorithm for the mean-risk model min{QIE(x) + ρQCV aRα

(x) :
x ∈ X}. Using Proposition 5.1 this problem can be equivalently restated as

min
x,y,y′,v,η

{ J
∑

j=1

πj(c
⊤x+ q⊤yj + q′⊤y′j) + ρ(η +

1

1 − α

J
∑

j=1

πjvj) :

Wyj +W ′y′j = hj − Tx, vj > c⊤x+ q⊤yj + q′⊤y′j − η, (22)

x ∈ X, η ∈ R, yj ∈ Zm̄
+ , y′j ∈ Rm′

+ , vj ∈ R+, j = 1, . . . , J

}

.

As described in Section 1, by solving this problem for various values of ρ > 0, we
are able to obtain supported efficient points of the corresponding multiobjective
optimization problem min{(QIE(x), QCV aRα

(x)) : x ∈ X}. As a systematic
procedure for choosing the values of ρ we follow the tracing method described
in [33] which will be outlined exemplarily at a specific problem instance below.



Conditional Value-at-Risk in Stochastic Programs with Mixed-Integer Recourse 21

We have run some first numerical experiments with an optimization problem
from chemical engineering. It is about a planning model of a real-life multi-
product batch plant producing expandable polystyrene (EPS). A detailed de-
scription of the EPS process can be found in [13].

The process consists of three production stages: preparation, polymeriza-
tion, and finishing. In the preparation stage various kinds of intermediates are
produced. Depending on a finite number of recipes certain mixtures of the inter-
mediates are fed batch-wise into the polymerization reactors. Upon completion
of each polymerization its product is transferred without delay into a mixing
tank of a finishing line, yielding a discontinuous inflow into these tanks. Fur-
ther, each finishing line consists of a separation stage where different grain sizes
of EPS are separated from each other. These grain sizes are the final products
whose amounts have to comply with customer demands. Shut-down and start-
up procedures for the continuously driven separation stages are time consuming,
expensive, and are restricted by minimum up- and down-times of the stages.

The process is controlled by determining starting times and choices of recipes
for the polymerizations and by choosing start-up and shut-down times as well
as feed rates for the separation stages. A typical planning horizon is given by
two weeks, with the time period discretized into five equidistant intervals. The
essential source of uncertainty is customer demand. The objective function to be
minimized is a weighted sum of costs coming from running the polymerizations,
switching the separation stages, and compensating deficit between production
and customer demand.

The described model gives rise to a multitude of two-stage stochastic integer
programs, cf. [13]. For our numerical experiments we have formulated a planning
model with the first-stage variables being the states of the separation stages. This
focuses on the qualitative aspect that a smooth operation of the EPS process is
desired, which is achieved by fixing the states of the most sensible part of the
plant as early as possible.

Table 1 reports the tracing of the supported part of the efficient frontier of
four EPS problem instances, using 10, 20, 50 or 100 scenarios to describe the
uncertain data. The probability level α was set to 0.7 for all computations. The
ρ column shows which weight factor was used for the specific instance of the
mean-risk model, where ρ = 0 denotes the traditional expectation-based model,
and ρ = +∞ the model using just Conditional Value-at-Risk as the objective
function. For each instance the size of the problem min{QIE(x)+ρQCV aR 0.7

(x) :
x ∈ X} is displayed in the columns Cont/Int/Bin and Constraints, showing
the number of continuous, integer (nonbinary), binary variables and constraints
respectively. The Time column shows the time needed by our decomposition
algorithm to obtain an optimal solution with a quality certificate of a relative
gap less than 1%. For comparison, we employed directly CPLEX 8.1.1 (with
default parameters) to tackle the large-scale mixed-integer program (22). The
CPLEX column contains the relative gap achieved by CPLEX within the time
displayed in the Time column. Finally, the (QIE , QCV aR 0.7

) column contains
the QIE(x̄) and QCV aR 0.7

(x̄) values, rounded to the second decimal place, where
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Table 1. Computational results for the EPS problem

Scenarios Cont/Int/Bin Constraints ρ (QIE , QCV aR 0.7
) Time (h:mm) CPLEX

500/400/352 1370 0 (114.81, 135.33) 0:03 3.24%
511/400/352 1380 0.001 (114.81, 135.33) 0:18 2.97%
511/400/352 1380 0.987 (115.86, 134.26) 0:27 2.11%

10 511/400/352 1380 2.044 (115.86, 134.26) 0:23 2.38%
511/400/352 1380 2.414 (123.20, 131.22) 0:23 2.54%
511/400/352 1380 1000 (123.20, 131.22) 0:22 2.72%
511/400/352 1380 +∞ (123.20, 131.22) 0:23 2.25%
1000/800/692 2740 0 (120.50, 151.53) 0:06 4.86%
1021/800/692 2760 0.001 (120.50, 151.53) 0:36 4.61%

20 1021/800/692 2760 0.35 (120.50, 151.53) 1:46 4.90%
1021/800/692 2760 1000 (125.20, 138.11) 0:35 4.28%
1021/800/692 2760 +∞ (125.20, 138.11) 2:07 3.79%

2500/2000/1712 6850 0 (124.00, 156.52) 0:19 9.07%
2551/2000/1712 6900 0.001 (124.00, 156.52) 1:56 4.86%

50 2551/2000/1712 6900 0.093 (125.79, 137.30) 2:56 4.68%
2551/2000/1712 6900 1000 (125.79, 137.30) 1:58 6.19%
2551/2000/1712 6900 +∞ (125.79, 137.30) 7:15 4.44%
5000/4000/3412 13700 0 (122.10, 153.94) 0:36 8.42%
5101/4000/3412 13800 0.001 (122.10, 153.94) 4:43 5.05%

100 5101/4000/3412 13800 0.203 (125.45, 137.41) 6:04 6.30%
5101/4000/3412 13800 1000 (125.45, 137.41) 3:55 4.97%
5101/4000/3412 13800 +∞ (125.45, 137.41) 15:36 5.34%1

x̄ is the obtained efficient point. For the computations we have used a Linux PC
with an Intel Pentium 4 CPU 3.00 GHz and 2 GB RAM.

We explain the tracing of the supported part of the efficient frontier ex-
emplarily at the 10 scenario instance. The first computation carried out is the
traditional expectation-based model (ρ = 0). The obtained solution is not nec-
essarily an efficient point, since the second objective is not minimized explicitly.
However, now we know that the obtained QIE value 114.81 is the smallest pos-
sible. So, if we can find a ρ > 0 that yields an efficient point with this QIE

value, we can be sure that there is no efficient point with a smaller QIE value.
This is done with the computation using ρ = 0.001. The same procedure has
been done concerning QCV aR 0.7

with the computations ρ = +∞ and ρ = 1000.
Knowing both outer efficient points, (114.81, 135.33) and (123.20, 131.22), we
are able to calculate the ρ that yields the biggest chance of finding another effi-
cient point, or proves, of course, depending on the accuracy of our computations,
that there is no other supported efficient point with a different objective value
vector from what we already have: The new ρ is calculated such that (1, ρ) is the
normal vector of the straight line passing through the points (114.81, 135.33)
and (123.20, 131.22). For this ρ = 2.044 we obtain a new efficient point having
the objective value vector (115.86, 134.26). This process is iterated for the lower
and upper parts until no efficient point with a new objective value vector can
be found. This is the case for the computations ρ = 0.987 and ρ = 2.414, thus
terminating the tracing procedure.

We conclude that our decomposition algorithm is suitable to trace the sup-
ported part of the efficient frontier of the given nonconvex multiobjective opti-
mization problem.

1 CPLEX termination by “Out of memory” after 5:35 time with the displayed relative gap
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