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CONDITIONALLY ACCEPTABLE RECENTERED
SET ESTIMATORS!

BY GEORGE CASELLA

Cornell University

The usual confidence sphere for a multivariate normal mean can be
uniformly improved upon, in terms of coverage probability, by recentering it
at a Stein-type estimator. However, these improved sets can have poor
conditional performance. Using the theory of relevant betting procedures,
which provides an objective means for assessing the conditional performance
of a statistical procedure, a criterion for conditional acceptability can be
established. A method of constructing such sets is outlined and applied to
some recentered confidence sets. In particular, recentering at the positive-part
James—Stein estimator yields a conditionally acceptable confidence set.

1. Introduction. The usual frequentist theory of statistics is only concerned
with long-run (averaged over the sample space) performance. In particular, if
C(X) is a set estimator for a parameter 6, where X ~ F(X|0), then frequentist
theory measures the performance of C(X) according to its confidence coefficient
1 — a, given by

(1.1) ix;fP,,[ﬁ €C(X)] =1-aq,
where P[0 € C(X)] is the probability that the random set C(X) covers 6. If

there exists a subset S of the sample space [a recognizable subset in the
terminology of Fisher (1956)] that satisfies either

(1.2i) P(deC(X)XeS)>1—a+e foralld,
or
(1.2ii) P(eC(X)XeS)<l—a—¢ foralld,

for some ¢ > 0, then one should have doubts about assigning confidence 1 — a to
the set C(X). A subset S that satisfies (1.2) is called a relevant subset for C(X)
and provides a winning betting strategy against C(X). If C(X) satisfies (1.2i),
for example, and the betting strategy “bet for coverage if X € S” is adopted,
then the bettor will have positive expected gain for all 6.

In practice, one is usually willing to forgive errors in the direction of (1.2i), i.e.,
erring on the conservative side. The fact that the stated (nominal) confidence
coefficient 1 — a may be smaller than the actual coverage probability (condi-
tional or unconditional) is forgivable statistically. Errors in the direction of
(1.2ii), however, are not forgivable and cast serious doubt on the validity of
assigning 1 — « confidence to C(X).
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We will be concerned here, in general, with the conditional performance of
frequentist confidence procedures, and we will refer to the pair (C(X),1 — a) as
a confidence set for the parameter . [In general, @ may be a function of X,
a = a(X), but our concern here is measurement of conditional performance using
the frequentist confidence coefficient, which is always independent of X.] Specifi-
cally, we consider set estimation of the mean of a multivariate normal distribu-
tion. If X ~ N0, I), a p-variate normal with mean 6 and identity covariance
matrix, the usual confidence set is given by

(1.3) Co(X)=1{0:10 - X| <c},

a sphere of radius c centered at X, where c satisfies P(x2 < ¢?) = 1 — a. This
set estimator (Cy(X),1 — a) is relatively free of conditional defects [Robinson
(1979b)]; in particular, there are no recognizable subsets for which (1.2ii) is
satisfied. But (Cy(X),1 — a) can be improved upon, in the frequentist sense, by
a set estimator (Cy(X),1 — a), where

(1.4) Cs(X) = {6:16 — 8(X)| < c)

and (X)) is a Stein-type estimator. We will refer to sets such as C; as recentered
confidence sets. Results of Hwang and Casella (1982, 1984) show that recentering
at a positive-part Stein estimator will uniformly improve coverage probability
over Cy(X), while clearly maintaining the same volume. The question of whether
these recentered sets maintain good conditional properties has not been settled,
however, and is the main concern of this paper.

Buehler’s (1959) concept of relevant subsets was extended and formalized by
Robinson (1979a) to the concept of relevant betting procedures (i.e., functions).
Betting strategies exist which cannot be expressed in terms of subsets, so
Robinson’s extension was intended to include all possible betting strategies.
Thus, a betting procedure s(X) is defined to be any bounded function of X.
Without loss of generality, we take this bound to be unity. We can think of |s(x)|
as the probability that a bet of one unit is made when X = x is observed, with
the sign of s(X) giving the direction of the bet.

DEFINITION 1.1.  For the confidence set (C(X), B(X)), the betting procedure
s(X) is relevant if, for some ¢ > 0,

E {[1(6 € C(X)) — B(X)]s(X)} = eEyls(X)| forall §,

with strict inequality for some 0. If ¢ = 0, then s(X) is semirelevant.

Notice that if s(X) is the indicator function of some set, then the preceding
definition of a relevant betting procedure reduces to that of Buehler.

The type of betting procedure that causes the most concern about the worth
of a confidence set is a negatively biased betting procedure.

DEFINITION 1.2. A betting procedure s(X) is negatively biased if —1 <
s(X) < 0 for all X and positively biased if 0 < s(X) < 1 for all X.
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A negatively biased relevant betting procedure, for example, will always bet
against coverage and have a positive expected gain for all 6, giving us the
interpretation that, conditionally, the confidence set is not achieving its stated
level of confidence. If we can identify a negatively biased relevant subset [for
example, bet against C(X) if X € S], then the second inequality in (1.2) will
obtain. If a negatively biased betting procedure exists for a confidence set, we
should be concerned about the statistical validity of asserting 1 — a confidence.

In Section 2, we outline the method of constructing confidence sets with
acceptable conditional properties. The construction in Section 2 depends on a
technical lemma, Lemma 2.1, whose proof is given in the Appendix. In Section 3,
we use the results of Section 2 to exhibit a recentered confidence set with
acceptable conditional properties.

2. Eliminating negatively biased betting. The existence of a negatively
biased relevant betting procedure can be interpreted as saying that for some
subsets of the sample space we are certain that the stated unconditional
confidence level is not being attained. Therefore, we take the nonexistence of
negatively biased relevant betting to be a minimal requirement for conditional
acceptability of a confidence set. This conditional criterion agrees with that of
Bondar (1977) and Robinson (1976).

One way of guaranteeing that a confidence set does not allow negatively
biased betting is to verify that it is a Bayes credible region against some
(possibly improper) prior. More precisely, if X has density f(x|6) and there is a
distribution () resulting in a posterior density #(8|x) for which the 1 — a
frequentist confidence set C(X) satisfies

(2.1) P,[6 e C(x)] = fo Ec(x)w(0|x) d9>1-a forallx,

then if 0 < s(x) < 1 and m(x) is the marginal distribution of X, interchanging
the order of integration gives

LEo{[1(8 € ¢(X)) - (1 - @)]s(X)}(6) db
(22) "®

= foG[I(li € C(x)) - (1 — a)] 7(8]x) dOs(x)m(x) dx > 0.

It then follows that C has no negatively biased semirelevant betting procedures,
which implies that C has no negatively biased relevant betting procedures.

The calculation in (2.2) is justified only if the interchange of integrals is
justified. This is clearly the case if #(8) [and hence m(x)] is a proper density,
but if 7(f) is not proper, the interchange may not be justified. Since good
frequentist procedures often arise from improper priors, we will be especially
concerned with this case and must, therefore, pay more attention to the inter-
change of integrals in (2.2).

From Fubini’s theorem, the calculation in (2.2) is justified if

(2.3) jX Is(x)m(x)| dx < oo,
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but since an improper 7(6) will lead to an improper m(x), the inequality in (2.3)
need not hold. However, for the case of a normal distribution, it is possible to get
a relatively simple characterization of all relevant betting procedures against a
class of recentered confidence sets. This characterization, given in the following
lemma, will be helpful in verifying (2.3).

LemMa 2.1. Let X ~ N6, I) and let « and ¢ satisfy Py(X — 0] < c) =
P(x% <c®)=1-a. Let 8X) = [1 — y(|X|)]X, where y(|X|) satisfies

BN o=<y(X])<1,
(i) (I XIX| = 0 as | X| - oo.

If (X)) is a relevant betting procedure against the set estimator {Cy(X),1 — &),
where Cy(X) = {6: |0 — 8(X)| < ¢}, then

(2.4) [1s(x)ldx < oo.
X
Proor. Given in the Appendix.

Lemma 2.1 gives us some flexibility in applying the operations in (2.2) to a
particular confidence set. If the confidence set in question satisfies the conditions
of the lemma, then we only need consider betting procedures with finite
Lebesgue integrals and consideration of improper priors becomes less trouble-
some. For example, an improper prior that leads to a bounded m(x) will satisfy
(2.3) for all relevant betting procedures, allowing the integrals in (2.2) to be
interchanged.

Note that although the argument outlined at the beginning of this section led
to the conclusion of no negatively biased semirelevant betting procedures, the
characterization in Lemma 2.1 only applies to relevant betting. Thus, the
strongest conclusions we can hope to get will apply to relevant, but not semirele-
vant, betting procedures.

3. Conditionally acceptable confidence sets. We now turn to the subject
of our main concern, the conditional properties of confidence sets recentered at
the ordinary and positive-part James—Stein estimator,

Csis={0:10 - 8"(X) <c}, Cp=(6:10-8"(X) <c},

875(X) = (1 i-)X 8*(X) = (1 - i)+x
1X12)" 1X|? ’

As might be expected, the confidence set Cys is relatively easy to dismiss.
Since 87%( X) is unbounded near zero, a set of the form {X: |X| < &} will provide
a negatively biased relevant betting procedure against (Cyis,1 — ). Since 6 *(X)
does not suffer from this problem, one might hope that (C;:,1 — a) does not
allow negatively biased betting procedures. The results of Section 2 can be used
to establish that (Cs+,1 — a) does not allow negatively biased relevant betting
procedures. We will use a slight modification of the priors used by Strawderman
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(1971):
X6 ~ N9, I),
(3.1) 0N~ N[0, A1 -N)I], o0<A<1,
A~A2

The specification in (3.1) gives § an improper prior, but results in a proper
posterior if p > 3. Furthermore, the marginal density function of X is a bounded
function of X for p > 3. Thus, for betting procedures satisfying (2.4), the
interchange of integrals in (2.2) is justified, and we can use this prior structure to
identify conditionally acceptable confidence sets. That is, we want to see if there
are recentered 1 — a frequentist confidence sets that are also 1 — a Bayes
credible sets using the prior in (3.1). Such sets would allow no negatively biased
betting.

Since we are using the posterior in (3.2), an obvious place to recenter our
confidence set is at the mean of this posterior. We are mainly concerned,
however, with the conditional behavior of (Cs:,1 — a), so attention will be
confined to this set. The estimator §*(X) is, for large |X|, quite close to the
posterior mean, so there is some reason to expect Cs+ to perform reasonably
against this prior. For the confidence set (Cs+,1 — a), we want to establish:

(3.2i) P(0eCs)=21—a V4,
i.e.,, Cy+ is a 1 — a frequentist confidence set, and
(3.2ii) P(6eCp)=21-a Vau,

i.e., Cs+ is a 1 — a Bayes credible set for the prior in (3.1). Since (Cs+,1 — a)
satisfies the conditions of Lemma 2.1 and since m(x) is bounded, it will then
follow from (3.2) that there can be no negatively biased relevant betting.

That (3.2) is satisfied will mainly be verified numerically. Results of Hwang
and Casella (1982, 1984) show Cj- will satisfy (3.2i) if the constant p — 2 is
replaced by a slightly smaller value [approximately 0.8( p — 2)]. Numerical
studies, given in the aforementioned references and also in Casella and Hwang
(1983) strongly support the claim that (3.2i) is in fact true for Cj.. The
verification that (Cj+,1 — a) is also 1 — a Bayes credible sets is also, unfor-
tunately, quite intractable analytically. Again, numerical integration was used to
verify this fact. Figure 1 gives graphs of credible probabilities for Cs: for the case
1—-a=09and p = 3,5,7,11, 15. (Similar results were obtained for other cases.)
The figure shows that (Cs+,1 — a) is maintaining its 1 — a credible probability.
[1t is interesting to note the dips in Figure 1. These dips occur at the join points
(points of nondifferentiability) of the estimator &*.]

Two analytical calculations of interest that can be done with the prior of (3.1),
(0| X), are evaluations at |X| = 0 and |X| = co. It is a straightforward exercise
to verify that the distribution of || at |X| = 0 is given by

16111X| = 0 ~ X3,

independent of p. Since §"(X) =0 at |X| =0, the credible probability of
(Cy+,1 — @) is P(x3 < c?) at |X| = 0. Since c* is chosen to satisfy p(x2 < ¢2) =
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F16. 1. Credible probabilities for Cs+,1 — a = 0.9. The probabilities are increasing in p (dimen-
sion) and are shown for p = 3,5,7,11,15.

1 — @, it follows that if p >3, P(x3<c?)>1— a. As |X| > o0, (Cs+,1 — a)
collapses to the usual confidence set and its credible probabilities all approach
1-a.

APPENDIX

Proor oF LEMMA 2.1. Suppose s(X) is relevant for (Cs(X),1 — a). Then
there exists ¢ > 0 such that

(A1) E{[I(6€C(X)) - (1-a)]s(X)) = cEqs(X) V0.

Multiply both sides of (A.1) by m,(8), an N[0,(b~! — 1)I] density (0 < b < 1),
and integrate over all 6. It follows from (A.1) that

(A2) feEo[I[ﬁ € C(X)] - (1 — a)]s(X)m,(6) db > sfeEo|s(X)|7rb(0) dé

for 0 < b < 1. The proof will proceed by showing that for sufficiently small b,
the inequality in (A.2) is violated if

(A.3) fxls(x)ldx = 0.

Since 7,(0) is a proper density and s(X) is bounded, the order of integration in
the left-hand side of (A.2) can be reversed, yielding

(A4) /X[ /0 ECAX)W,,(mx) de— (1 - a)]s(x)mb(x) dx,
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where m,(0|x) is the conditional density of 8 given x, N[(1 — b)x,(1 — b)I], and
m(x) is the marginal density of X, N(0, b~ I).
Since s(X) is not a function of 8, we have

pr/2 .
(A5) [Eds(X)imy(8) db = ERZ [X |s(x)|e /2" ix.
As b — 0, e %/2X" increases, so from the monotone convergence theorem
(A.6) m4|s(x)|e‘b/2'x'2dx = fX|s(x)|dx.
Now consider (A.4). The integration over X will be split into three pieces:
W, = (X:|X] < K),
(A7) W,={X: K < |X| <b79},
W, = (X:1X| > b79),

where K and ¢, ; < g < 1, are constants. The exact method of choosing K will
be detailed later. (K will depend only on &.)
Since s(X) is bounded (without loss of generality) by |s(X)| < 1, we have

l jw[ /0 ec(x)w,,(0|x) do — (1 - a)]s(x)mb(x) dx

< lemb(x) dx = P(X| < K) = P(x2 < K%),

since b|X|* ~ x2. It is straightforward to verify that
. P(x2<K?%)
i pe

and it then follows from (A.3), (A.5) and (A.6) that for sufficiently small b,

0180~ 0 0 seomitor

< o0,

(A.8)
< (¢/3) fX |s(x)|m,(x) dx.

A similar argument will show that the integral over the region W, can be
bounded by Py(|X| > b~9) = P(x2 > b'~29). For q > },

mp(xg > b1729) /bP/% < o,
so the integral over W, also satisfies (A.8) for sufficiently small b.

It remains to establish that the integral over W, will also satisfy (A.8). Make
the transformation y = |f|cosB and Z = |f|sin B, where cos B = 0’X/|4| | X|.
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Note that Z* ~ x2_,, independent of y. We have
/ 7,(0)X) do
feCy(X)
1

= 2w = B [P s T e [y - ()

1 [y-(1-bd)x|"
Xexp{—E (l—b) }d

Make the further transformation ¢ = [y — (1 — 8)|X|]/(1 — b)"/? to obtain

f 7,(0]1X) df
eCy(X)

(A9) =(27)" " fTP[xf,_l < ! (c2 - {1 -18)"%

b vl |-,

where T = {t: |(1 -5t - [b - y(X)]IX| |s c}.For K < |X| < b™9, we have
for some K,

[6 = Y(XD]IX| | < b1X| + y(IX])IX]|
<b 7+ K,,

where the second inequality follows from assumption (ii) (of Lemma 2.1) on
¥(1X|). Note also that, since lim y, _, ,,|X|v(|X]) = 0, K, can be made as small as
we like by choosing K sufficiently large; moreover, b'~7 — 0 as b — 0. Since

(A.10) @m) [ P(x3 < - 2)ePdt=1-q,

—C

it follows from (A.9) and (A.10) that we can choose b sufficiently small and K
sufficiently large so that

<g/3.

[ m(81X)ds - (1-a)
0eCy(X) .

Therefore, for the integral over W,, we have

/W [/(;eC(x)ﬂb(olx) d6 - (1~ a)]s(x)mb(x) dx

< (e/3) [ Js(x)imy(x) d,

contradicting (A.2) and completing the proof. O
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