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In what follows every ring is assumed to have the property that in it every element x 
has a unique cube root y (i.e., x = y^) which, as usual, is denoted by ^x. For 
brevity, we call such a ring a cuberoot ring. Let x be an element of a cuberoot ring R, 
Then x^ = 0 impHes x^ = 0 which impUes x — 0, Thus, every cuberoot ring R is 
reduced (i.e., R has no nonzero nilpotent element). 

It is known [1, Theorem 1, p. 46] that if jR is a reduced ring then (R, g ) is a par
tially ordered set where for every element x and y of R, 

(1) X S У if and only if xy = x^' . 

In what follows any reference to order is made in connection with the partial 
order given by (1). 

Note. It is known that a cuberoot ring is not necessarily commutative. Based on 
the Structure Theorem [1, Theorem 3, p. 49] all the results of this paper concerning 
cuberoot rings can be proved without commutativity assumption. However, for the 
sake of simpHcity, we assume commutativity. 

Lemma 1. Let a and b be elements of a commutative ring R. Let M as well as N 
be a product of n '^ 1 factors each factor being equal to a or to b. Then 

(2) ab{a — b) = 0 implies abM = abN 

Proof. Clearly, ab{a — b) implies a^b = ab^ from which (2) follows trivially. 
Thus, in particular, ab{a — b) = 0 implies 

(3) bababa = Ь^аЧ = a^a^b = аЧа^Ь . 

Remark 1. If R is a reduced ring which is not necessarily commutative then (2) 
holds for all the permutations of the factors in abM and abN. 

*) This research was partially supported by the Iowa State University SHRI. 
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Lemma 2. Let a and b be elements of a commutative-cuberoot ring R. Then the 
following are pairwise equivalent: 

(4) {a, b} is bounded above , 

(5) ab{a - b) = 0 , 

(6) \иЪ{а,Ь} = b + a - lj{a4), 

(7) Ь ( а - ^ ( а ^ Ь ) ) = а ( Ь - ^ ( а ^ Ь ) ) = 0 , 

(8) lub (b, a - У{аЧ)} = lub {a, b} = b + a - lj{a4). 

Proof. Let и be an upper bound of {a, b}. Then by (1) we have 

(9) au = a^ and bu = b^ . 

Hence, aub = a^b = ab^ or ab[a -- Ь) = 0. Thus, (4) implies (5). 
Next, let ab{a ~ b) = 0. Then (3) is valid and by taking cube roots from both 

sides of the equalities in (3) we obtain: 

(10) ba = b 11{аЩ = a ^(a^b) = lj{a4) ^/{аЩ. 

Hence b^ ^ba-b ЩаЧ) = b^ or b{b + a - ^ (a 'b ) ) = b^ which by (1) implies 
b S{b + a - lj{a^b)\ Similarly, by (10) we derive that a ^{b + a - U{a^b)), 
Thus, b + a ~ lj{a^b) is an upper bound of {a, b]. Let и be an upper bound of 
(a, b]. Then (9) is valid and implies {u^{a^b)f = u^a^b = a^b. Consequently, 

(11) , и l/{a'b) = a U{a4) . 

But then, (9), (10), (11) imply u{b + a - U{a4)) = (b + a - Х1{аЧ)У which 
by (1) shows that Ъ -^ a - ll{a^b) = lub {a, b}. Thus, (5) implies (6). 

Next, let lub {a, b} = b + a — lj{a^b). Hence, by (1) we have b{b -h a — 
- l/{a^b)) = b^ and a{b -\- a - U{a^b)) = a^ which readily imply (7). Thus, (6) 
imphes (7). 

Next, let (7) hold. But then (8) is derived from (7) the same way as (6) is derived 
from (5). 

Finally, we observe that (8) impHes (4) trivially. 
Thus, Lemma 2 is proved. 

R e m a r k 2. Using the terminology introduced in [2], from Lemma 2 it follows 
that if [a, b] is a boundable (quasiorthogonal in the sense of [4]) subset of a com
mutative-cuberoot ring then {a, b] has a least upper bound which is equal to Ь + 
+ a - U{a4). 

We recall that a subset 5 of a ring R is called orthogonal if and only if for every 
element x and у of 5 if x ф у then xy = 0. 
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R e m a r k 3. From (4) and (7) of Lemma 2 it follows that if {a, b} is a bounded 
above subset of a commutative-cuberoot ring R then {b, a — ̂ {a^b)} is an ortho
gonal subset of R. Moreover, by (8), these two subsets have least upper bounds and 
these least upper bounds are equal. 

We recall also that a partially ordered set P is called conditionally complete if and 
only if every nonempty bounded above subset of P has a least upper bound (equi-
valently, every nonempty bounded below subset of P has a greatest lower bound). 

If JR! is a reduced ring then [R, ^ ) is called conditionally orthogonally complete 
if and only if every nonempty bounded above orthogonal subset of R has a least 
upper bound. 

Clearly, every conditionally complete reduced ring is conditionally orthogonally 
complete. The Theorem below shows that the converse holds for commutative-
cuberoot rings. 

Theorem 1. Let R be a commutative-cuberoot ring. Then (jR, ^ ) is conditionally 
complete if and only if {R, S) is conditionally orthogonally complete. 

Proof. Clearly, it is enough to prove that if [R, ^ ) is conditionally orthogonally 
complete then (JR, ^ ) is conditionally complete. 

Thus, we assume that every nonempty bounded above orthogonal subset of R has 
a least upper bound. Let Л be a nonempty subset of R such that Ä is bounded above 
by p. To prove the Theorem it suffices to show that lub Ä exists. 

Let A = k. Thus, A can be represented as a well ordered sequence («»)̂ <^ of type k. 
Hence, 

(12) A = {a^i^k ^nd ai ^ p for every i < к . 

We define a sequence ((ii)i<fc of type к of elements di of R by 

(13) di = a^— Xl{a] lub d^ for every i < к 
j<i 

which is justified since we prove immediately that 

(14) (^i)j<i, is a bounded above by p orthogonal subset of R such that 

lub di = lub ai for every v ^ к . 
i<v i<v 

To this end it is enough to show that: (i) the truth of (14) impHes the truth of (14) 
with V replaced by t; + 1 and that: (ii) the truth of (14) for every ordinal v less than 
a Hmit ordinal и implies the truth of (14) with v replaced by the Hmit ordinal u. 

(i) Since (flf)i<fc is bounded above by p, we see that {a^, lub a j is also bounded 
i<v 

above by p and from (14) it follows that [a^, lub J j is bounded above. Thus, by 
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Lemma 2 (cf. Remark 3) we have 

(15) { lub diy a„ — lj(al lub d^} is orthogonal 
i<v i<v 

and 

(16) lub {lub di, a, - l/{al lub d,)} = lub {a„ lub d^} . 
i<v i<u 

But then from (16), (13), (14) it follows 

lub { lub di, d^} = lub {a„, lub a J 
f < i; i<v 

which implies 

(17) lub di = lub aj g p . 
i < i ; + l i<v+l 

On the other hand, from (15) and (13) we have 

{lub di, d„} is orthogonal 
i<v 

which impUes d^ lub d̂  = 0 which in turn, in view of [1, Theorem 2, p. 47] implies 
i<v 

lub d^,di = 0. Consequently, d^di = 0 for every i < Ü, i.e., 
i<t; 

(18) {di)i<v+i is orthogonal. 

Clearly, from (17) and (18) it follows that (14) is true with v replaced by i? + 1. 
Hence (i) is proved. 

(ii) Let (14) be true for every ordinal v less than a limit ordinal u. But then trivially, 
{di)i<u is a bounded above by p orthogonal subset of R. Thus, by our assumption 
lub di exists and in view of (14) we see that lub di = lub a,-. 
i<u i<u i<u 

Hence, (14) is estabhshed. Thus, {di)i<k is a bounded above orthogonal subset 
of R and therefore lub di exists which by (14) impHes that lub â  as well as lub A 

i<k i<k 

exists, as desired. 
Hence, the Theorem is proved. 

As mentioned earlier, in view of the Structure Theorem [1, Theorem 3, p. 49] the 
conclusion of Theorem 1 remains vahd even if in its hypothesis the commutativity 
assumption is dropped. Hence, we have: 

Theorem 2. Let R be a cuberoot ring. Then (R, ^ ) is conditionally complete if 
and only if {R, ^ ) is conditionally orthogonally complete. 

In our attempt to establish criteria relating completeness to orthogonal complete
ness of reduced rings (cf. [2], [3]), we prove below (see Theorems 3 and 4) that the 
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conclusions of Theorems 1 and 2 remain vahd if in them "conditional completeness'* 
and "conditional orthogonal completeness" are replaced respectively by "countable 
completeness" and "countable orthogonal completeness". First we introduce some 
definitions and prove a lemma. 

As in [2], a subset Б of a ring is called boundable if and only if every two-element 
subset of В is boundable. Thus, in view of Remark 2, a subset В of a commutative-
cuberoot ring is boundable if and only if every two-element subset of В has a least 
upper bound. 

Lemma 3. Let R be a commutative-cuberoot ring and let S be a finite subset of R. 
Then lub S exists. 

Proof. Let S = («05 «1, •••» «n}- Since every two-element subset of S has a least 
upper bound, by Lemma 2 we see that 

«1 + ^0 - V(^o«i) = lub {ao, a^} = b^ . 

Again, it can be readily verified that 

^2 + bi - lj{bla2) = lub {ao, a^, «2} 

and so on, asserting the conclusion of the Lemma. 
Following [2], we call a reduced ring R countably complete if and only if every 

countable boundable subset of Ĵ  has a least upper bound. Also, we call R countably 
orthogonally complete if and only if every countable orthogonal (which, a priori 
is boundable) subset of JR has a least upper bound. 

Based on the above definitions, we prove: 

Theorem 3. Let R be a commutative-cuberoot ring. Then (R, ^ ) 15 countably 
complete if and only if (R, S) is countably orthogonally complete. 

Proof. Since every orthogonal subset of i^ is a priori boundable, to prove the 
Theorem it is enough to show that if (Я, g ) is countably orthogonally complete 
then (R, ^ ) is countably complete. 

Thus, we assume that every countable orthogonal subset of R has a least upper 
bound. Let Л be a countable boundable subset of R. To prove the Theorem it suf
fices to show that lub Ä exists. 

The proof parallels that of Theorem 1 where к is replaced by the set со of all natural 
numbers and (14) is replaced by 

lub di = lub ai for every v ^ о , 

For the case at hand, it is enough to verify only (i) of the proof of Theorem L 
But this amounts to verifying only that for every natural number u, the set {a„, lub a J 
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is bounded above. This however, follows from Lemma 3, since {a^ | Ï < t; + 1} 
is a finite boundable subset of a commutative-cuberoot ring R and therefore has 
a least upper bound implying that {a^, lub a J is bounded above. 

i<v 

Again we observe that in view of [1, Theorem 3, p. 49] in the above considerations 
the commutativity assumption can be dropped. Hence, we have: 

Theorem 4. Let R be a cuberoot ring. Then [R, g ) is countably complete if and 
only if {R, S) is countably orthogonally complete. 

R e m a r k 4. The main results of this paper remain valid if instead of cuberoot 
rings n-root rings are considered (as expected if n ^ 2 is a fixed natural number 
then a ring R is called an n-root ring if and only if in jR every element has a unique 
n-th root). One of the reasons that we have chosen cuberoot rings is that they are 
less restrictive. For instance, squareroot rings are necessarily of characteristic two. 
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