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Abstract. Shannon's pessimistic theorem, which states that a cipher can be perfect 
0nly when the entropy of the secret key is at least as great as that of the plaintext, 
is relativized by the demonstration of a randomized cipher in which the secret key 
is short but the plaintext can be very long. This cipher is shown to be "perfect with 
high probability." More precisely, the eavesdropper is unable to obtain any infor- 
mation about the plaintext when a certain security event occurs, and the probability 
of this event is shown to be arbitrarily close to one unless the eavesdropper performs 
an infeasible computation. This cipher exploits the assumed existence of a publicly- 
accessible string of random bits whose length is much greater than that of all the 
plaintext to be encrypted; this is a feature that our cipher has in common with 
the previously considered "book ciphers". Two modifications of this cipher are 
discussed that may lead to practical provably-secure ciphers based on either of two 
assumptions that appear to be novel in cryptography, viz., the (sole) assumption 
that the enemy's memory capacity (but not his computing power) is restricted and 
the assumption that an explicit function is, in a specified sense, eontrollably-difticult 
to compute, but not necessarily one-way. 

Key words. Provable security, Perfect secrecy, Information theory, Randomized 
encryption, Public randomness, Book cipher. 

1. Introduction 

One of  the  mos t  i m p o r t a n t  prac t ica l  and  theore t ica l  open  p rob l ems  in c r y p t o g r a p h y  
is to devise a c ipher  tha t  is bo th  p rovab ly -secure  and  pract ical .  The  significance of  
a result  on  p rovab le  securi ty crucial ly  depends  on  the defini t ion of  securi ty used, 
on  the a s sumpt ions  a b o u t  the enemy 's  knowledge  and  resources,  and  on  the pract i -  
cal i ty  of  the  cipher.  Excluding  a p p r o a c h e s  tha t  are  based  on an  unp roved  hypothes is  
such as the  in t rac tab i l i ty  of  a cer ta in  p r o b l e m  (e.g., factoring), we observe  tha t  every 
a p p r o a c h  to p rovab le  securi ty tha t  has  prev ious ly  been p r o p o s e d  (except m a y b e  the 
recent  a p p r o a c h  by  M a u r e r  [5],  briefly discussed below) is ei ther  imprac t i ca l  or  is 
based  on  a genera l ly  unreal is t ic  a s sumpt ion  a b o u t  the enemy 's  a priori a n d / o r  

I Date received: July 17, 1990. Date revised: January 10, 1991. A preliminary version of this paper 
was presented at Eurocrypt '90, May 21-24, ,~rhus, Denmark, and has appeared in the proceedings, 
pp. 361-373. 
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obtainable knowledge. To list a few examples: the one-time pad [10-1 is, because of 
its large key size, impractical in most applications; perfect local randomizers [6] are 
based on the generally unrealistic assumption that an eavesdropper can only obtain 
a small number of ciphertext bits; Wyner's wire-tap channel [12] is based on the 
generally unrealistic assumption that the eavesdropper's channel is noisier than the 
main channel; and the Rip van Winkle cipher proposed by Massey and Ingemarsson 
[3], [4] is completely impractical since the legitimate receiver's deciphering delay 
is on the order of the square of the time the enemy must spend in order to break 
the cipher. It is conceivable that quantum cryptography introduced by Bennett, 
Brassard and others in a series of papers (see [1] and its references) can eventually 
become practical, but their proofs of security rely on the uncertainty principle of 
quantum physics. Finally, the result that a cascade of additive stream ciphers is at 
least as secure as any of its component ciphers 17] yields provably-secure ciphers 
only when a set of additive stream ciphers can be constructed that provably contains 
at least one computationally secure cipher (which may be impossible to identify). 

The only practical and provably-secure cryptosystem that is not based on an 
unrealistic or unproven assumption is Maurer's recently proposed information- 
theoretically secure key exchange protocol [5]. It allows two parties A and B 
receiving the output of a random source (e.g., a satellite broadcasting random bits) 
over different noisy channels to agree (by public discussion) on a secret key Z such 
that an enemy is left with arbitrarily little information in Shannon's sense about Z. 
This key can subsequently be used to set up a perfect one-time pad. The protocol 
is secure even when the enemy is receiving the output of the same source over a 
much more reliable (less noisy) channel than A and B, and when the enemy can 
listen to the public discussion between A and B. The proof is based on the sole 
realistic assumption that the noise on the enemy's channel is at least to some degree 
independent of the noise on A's and B's channels. 

In this paper, we present a new approach to provable security that was motivated 
by [4] and is based on the assumed availability of a very large publicly-accessible 
string of random bits. The need for this public randomizer is the only, but at present 
serious, detriment to the practicality of the proposed cipher. The randomizer could, 
for instance, be stored on a high-density storage medium, copies of which are 
publicly available, or it could be broadcasted by a satellite. Alternatively, a natural 
publicly-accessible source of randomness could be used. 

The enemy's computational effort needed to break the cipher is measured in terms 
of the number of randomizer bits that he must examine or, equivalently, as the depth 
of the decision tree corresponding to his computation (see 1"11]). The basic idea of 
our approach is to prove that, even if he uses an optimal strategy for examining 
randomizer bits, an eavesdropper obtains no information in Shannon's sense about 
the plaintext with probability very close to one unless he accesses a substantial 
fraction of all the randomizer bits. More precisely, we prove that if a certain event 
occurs, then the eavesdropper's entire observation, consisting of the cryptogram 
and the examined randomizer bits, is statistically independent of the plaintext. The 
probability of this event is lower bounded by a quantity that depends only on the 
number of bits examined by the eavesdropper, and it is very close to one unless he 
examines a substantial fraction (e.g., 2) of the entire randomizer. It is obviously 
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impossible to prove that the number of bits that the eavesdropper must examine is 
greater than the total number of randomizer bits, and thus our result is close to 
optimum within our framework of provable security. 

Since the effort to examine a random bit is, in current technology, roughly equal 
to that required to generate one, our lower bound on the enemy's computational 
effort appears to be on the same order as the effort needed to generate the random- 
izer. Therefore, our strongly-randomized cipher is truly practical only when either 
a source of randomness is available from Nature (e.g., a deep-space radio source or 
the surface of the moon) or should a much simpler way of generating large amounts 
of random data be discovered. It is not the purpose of this paper to discuss further 
the technical problem of generating a huge amount of publicly available random 
data. Rather, our interest is in exploring the question whether provable security is 
possible in such a model. However, as will be explained in Section 4, the broadcast 
version of our cipher requires a randomizer length that is only somewhat larger 
than the enemy's memory capacity and can therefore be practical. Unfortunately, 
the security of this cipher could so far be proved only under the unrealistic assump- 
tion that the enemy stores actual randomizer bits in his memory rather than cleverly 
chosen Boolean functions of the randomizer bits. 

The results of this paper appear to be somewhat surprising for two reasons. First, 
they demonstrate that, although perfect secrecy can be achieved only when the 
entropy of the secret key is at least equal to that of the plaintext (see [9]), relaxing 
the notion of perfectness only slightly allows us to build a provably-secure cipher 
whose secret key is very short compared to the length of the plaintext. Second, 
although information-theoretic security usually implies that the enemy has infinite 
computing power, our proposed cipher is secure for an information-theoretic notion 
of security only when the enemy is computationally restricted. 

Previously proposed book ciphers share an essential feature with our cipher: the 
use of a long publicly-accessible random string (a book) and a short secret key that 
selects portions of the random string which are used for enciphering a message. The 
approach of this paper however differs from previously discussed book ciphers in 
that a novel way of accessing the public randomness is proposed that, under the 
assumption that the "book" is truly random, allows us to prove the security of the 
cipher. 

In Section 2, our model of a cipher with public randomizer is introduced, and a 
particular randomized cipher is presented. After describing a general model of 
attacks against randomized ciphers, a proof of the information-theoretic security of 
our cipher against all feasible attacks is given in Section 3. In Section 4, techniques 
are suggested for basing the (provable) security of ciphers on either one of two 
assumptions, viz., that the enemy's memory capacity is restricted or that a certain 
function is difficult to compute in a specified sense, but not necessarily one-way. 

2. Description of the Randomized Cipher 

Throughout this paper, random variables are denoted by capital letters, whereas 
the corresponding small letters denote specific values that can be taken on by these 
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R[1, 0] R[1, 1] 
R[2, 0] R[2, 1] 

- ' - R [ 1 ,  T - -  l] 
�9 " - R [ 2 ,  T - -  l]  

R[K, O] R[K, 1] .-. R[K, T - 1 ]  

Fig. 1. The randomizer _R, viewed as a two-dimensional array. 

r a n d o m  variables. Under l ined  capital  letters or  superscripted capital  letters denote  
r a n d o m  vectors; a superscript  indicates the n u m b e r  of  components .  O u r  model  of 
a s t rongly- randomized  cipher is as follows. As in a convent ional  symmetr ic  crypto-  
system, the communica t ing  part ies share a shor t  randomly-selected secret key. The  
randomizer  _R is a b inary  r a n d o m  string of length L, whose bits can be read in a 
random-access  manne r  by the legitimate part ies as well as by an eavesdropper ,  i.e., 
_R is assumed to be publicly accessible. The  c ryp tog ram is a function of the plaintext,  
the secret key, and the randomizer  such that  given the c ryp togram,  the key, and the 
randomizer ,  the plaintext  is uniquely determined.  The  goal of the design of a 
randomized  cipher is to devise an encrypt ion t rans format ion  such that  the crypto-  
g ram depends  on only a few randomizer  bits whose posit ions in turn depend on the 
secret key in such a manne r  that  wi thout  the secret key it is impossible to obta in  
any informat ion  abou t  the plaintext wi thout  examining a very large number  of 
randomizer  bits. 

We now describe our  specific s t rongly- randomized  cipher. It  is a b inary addi- 
tive s t ream cipher in which the plaintext X = [X1 . . . . .  X~],  the c ryp tog ram 
_Y = [Y1 . . . . .  YN], the keys t ream W = [W1, . . . ,  WN] are b inary  sequences of  length 
N. The c ryp tog ram Y is obta ined  by adding _X and W bitwise modu lo  2: 

Yn = X ,  O) W, for 1 < n < N. 

The publicly-accessible binary r a n d o m  string _R consists of K blocks of length T 
and thus has total  length L = K T  bits. These blocks are denoted by R[k,  0], . . . ,  
R [k, T - 1] for 1 < k < K, i.e., the randomizer  can be viewed as a two-dimensional  
a r ray  of b inary  r a n d o m  variables (see Fig. 1). The  secret key _Z = [ Z 1 , . . . ,  ZK], 
where Zk ~ {0 . . . . .  T - 1 } for 1 < k _< K, specifies a posi t ion within each block of 
_R, and is chosen to be uniformly distributed over  the key space S z = {0 . . . .  , T - 1} r. 
Thus  the n u m b e r  of bits needed to represent  the key is K log2 T. 

RE1, Z,] RE1, Z , + I ]  "" RE1, Z , + N - 1 ]  
RE2, Z23 RE2, Z2 + 1] "" RE2, Z 2 + N - 1] 

R[K, ZK] REK, Zr + I] " REK, ZK + N - 1 ]  

Fig. 2. The subarray R -z of the randomizer _R is selected by the secret key _Z. All second indices are to 
be reduced modulo T. The keystream W = [W 1 .... .  WN] is formed by adding the K rows of R z bitwise 
modulo 2. 



Conditionally-Perfect Secrecy and a Provably-Secure Randomized Cipher 57 

The keystream IV, which is a function of the secret key _Z and the randomizer _R, 
is the bitwise modulo 2 sum of the K subsequences of length N within the random- 
izer starting at the positions specitied by the key, where each block (row) of _R is 
considered to be extended cyclically, i.e., the second index is reduced modulo T: 

K 
I4I. = ~ R[k ,  (n - 1 + Zk) mod T] (1) 

k=l 

for 1 < n _< N, where the summation is modulo 2. The subarray of the randomizer 
that determines W is denoted by R -z and is depicted in Fig. 2. A diagram of the 
sending site of the cipher system is shown in Fig. 3. Note that the legitimate receiver 
who knows the secret key needs to examine only KN of the L random bits, i.e., a 
fraction N/T of the entire randomizer which is very small when T >> N as we shall 
assume. 

Plaintext 
Source 

X 

A priori 
Information 

Channel 

. #T~  -Y 

Row Adder 

l R=z 

Bit 
Selector 

Key 
Source 

Enemy 
Cryptanalyst 

Public 
Randomizer 

Binary 
Symmetric 

Source 

Oz = R(Ei )  

Fig. 3. A block diagram of the specific strongly-randomized cipher investigated in Section 3. The public 
randomizer R is an array of independent and completely random binary random variables. The 
keystream W is formed by letting the key Z select the subarray R z of bits of _R consisting of K rows 
of length N, and adding these rows bitwise modulo 2. The enemy cryptanalyst or eavesdropper uses 
an arbitrary, possibly probabilistic, sequential strategy to determine the positions E~, Ez . . . .  of the 
randomizer bits 01, 02 . . . .  that he examines. 
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3. Model of Attacks and Main Results 

An eavesdropper trying to break the cipher may have (possibly partial) knowledge 
of the plaintext statistics and may also have some other a priori information about 
the plaintext. Let P x be the probability distribution of the plaintext and let V be a 
random variable, jointly distributed with X according to P_xv, that summarizes the 
eavesdropper's other a priori information about X. Since precise knowledge of P_xv 
and thus also of P x can only help the eavesdropper and because we assume that he 
precisely knows these distributions, our proof of security remains valid when the 
eavesdropper actually has only partial knowledge about P_xv. 

Our model of the eavesdropper's attack is described in the sequel. We allow the 
eavesdropper to use an arbitrary, possibly probabilistic, sequential strategy for 
selecting the positions of the randomizer bits that he examines. At each step of the 
attack, the eavesdropper can make use of the entire available information, i.e., the 
cryptogram _Y, the side-information V, and the positions and values of the bits 
observed so far. Let El = [Ai, Bi] denote the address of the ith randomizer bit 
examined by the eavesdropper, where Ai and B/satisfy 1 < A i < K and 0 < B i < 
T - 1 for i = 1, 2 . . . . .  Let further Oi = R(E~) = R[A~, B~] denote the observed value 
of the randomizer bit at position E~ that is examined by the eavesdropper at the ith 
step of his attack. Note that the randomizer bit Oi is a binary random variable whose 
address E~ is a random variable rather than a constant. However, we will make use 
(several times) of the fact that, given E~ = e,, O~ corresponds to the randomizer 
bit R(e~) at the specific address e i. We use the notation E" = [ E l , . . . ,  E,,] and 
O" = [O1 . . . . .  O,,] for all m > 1. For  a particular sequence e m = [ e l , . . . ,  em] of m 
bit positions, where ei = [a,., hi] with 1 < a~ < K and 0 < b~ < T - 1 for 1 < i < m, 
R(e") = [R(el) . . . .  , R(e,,)] denotes the corresponding sequence of randomizer bits. 
Correspondingly, we have O" = R(E") for m > 1. 

The bit position Em is for m > 1 determined by the eavesdropper as a (possibly 
randomized) function of the entire information he possesses at this time, i.e., the 
cryptogram _Y, the value 0 "-1 of all previously examined bits together with their 
addresses E m-l, and the a priori information V. The eavesdropper's strategy is hence 
completely specified by the sequence of conditional probability distributions P~ll_rv, 
PE21~VE 101' PE31~VEI E20102' and so on. The following theorem is the main result of this 
paper. 

Theorem. There exists an event ~ such that, for all joint probability distributions 
Pxy and for all (possibly probabilistic) strategies for examining bits 01 . . . . .  Ou of _R 
at addresses E l , . . .  , EM, 

I(X; y_EMO M] V, o ~) = 0 and P(8) >__ 1 -- N(} K, 

where 6 = M / K T  is the fraction of randomizer bits examined by the eavesdropper. 

Here I(_X_; _YEUO u ] V, g) denotes the (mutual) information that _Y, E u, and 0 M 
together give about X, given that V is known and given that the event g occurs. 
The theorem states that if the event 8 occurs, then the eavesdropper's total observa- 
tion [Y, E u, 0 u] gives no information about the plaintext _X beyond the informa- 
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tion already provided by E Clearly, if the eavesdropper knew the value of a random 
variable V that uniquely determines X, i.e., such that H(_~I V) = 0, it would make 
little sense to use a cipher at all. But the point is that, no matter what a priori 
information about the plaintext the eavesdropper has, this does not help him to 
obtain any additional information. For instance, even if the eavesdropper knew all 
but one bit of the plaintext, he would still get no information about this remaining 
bit if 8 occurs, and the probability of d' could not be reduced by explciting his 
virtually complete knowledge about the plaintext. This cipher hence provides 
perfect secrecy in Shannon's sense if the event ~ occurs. 

Note that the theorem asserts the existence of a high-probability event g, but does 
not specify it since the specification of 8 has no impact on the significance of the 
result. However, in the proof we will specify such an event. The result that will be 
proved is in fact stronger than the theorem. It will be proved that if 8 occurs, then 
the eavesdropper would have no information about the plaintext even if he were 
given the secret key. (Of course, he could avoid the occurrence of the event g if he 
knew the secret key before requesting his observations of the randomizer.) 

Example. Assume that K = 50, T = 1 0  2 ~  and let the plaintext be one gigabit, i.e., 
N = 230 ~ 1 0  9, The key size of this cipher is 50- log 2 1020 ,~ 3320 bits. The legiti- 
mate users need to examine only 50 randomizer bits per plaintext bit. An eavesdrop- 
per, however, even if he used an optimal strategy for examining a fraction 6 --- �88 of 
all bits, i.e., M = KT/4 = 1.25.1021 bits in total, would have a chance of obtaining 
any new information about the plaintext not greater than 230. (�88 < 10-21. 

The proof of the above theorem is divided into four steps: the proofs of Lemmas 
1 to4. 

Definition. The sequence e u = [ e l , . . .  , eu] of M > 1 bit positions yields a con- 
sistency check for the key z_ = [zl . . . . .  zr]  if and only if there exists an integer 
n ~ [1, N] and a subset {[l, t l] ,  [2, t2] . . . . .  [K, tx]} of{el . . . . .  eu} such that 

t k - - z k = n - - l ( m o d T )  for l < k < K .  

In other words, e u yields a consistency check for _z if and only if when _Z = z, R(e u)  
determines at least one (the nth) bit of the keystream _W = [I4:1 . . . . .  WN] or, 
equivalently, if and only if R(e u)  completely determines at least one column of R z 
(see Fig. 2). Furthermore, let ~(e  u)  ~_ Sz_ denote the set of keys for which e u yields 
at least one consistency check, i.e., 

~(e  u)  = {z_ ~ Sz_: e u yields at least one consistency check for _z}. 

The idea behind this definition is that if the eavesdropper knew the plaintext (and 
hence also the keystream because he knows the ciphertext) and the set R(e ~) of 
randomizer bits, then, for every key _z ~ ~(eM), he could perform one consistency 
check per keystream bit that he could compute from R(e~t), by comparing the 
computed keystream bit for the key z with the actual keystream bit. If all computed 
(for key z) keystream bits agree with the actual keystream bits, the key _z is still a 
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possible candidate, but if any of the computed keystream bits differs from the 
corresponding actual keystream bit, then z cannot be the actual key. Note that when 
e M consists of one bit in each block of R, then e M yields exactly one consistency 
check for N different keys. In general, if e ~ consists of mk bits in the kth block for 
1 < k < K, then e M yields a total number N I-Ikr=l m k of consistency checks, but 
several of these checks could be for the same key. The event ~ introduced in the 
main theorem will later be defined as the event that the actual key does not belong 
to the set of keys for which the eavesdropper's set E u of observed bits yields a 
consistency check. The following lemma is proved in the Appendix. 

Lemma 1. For all joint  probability distributions Px_v, for  every sequence 
e ~ = [el . . . . .  eu]  of  M > 1 bit positions, and for  all _x, v, y, r M ~ {0, 1} u and 
z_ ~ ~ ( e  M) (such that the conditioning event has nonzero probabffity), 

P [ X  = x I V  = v, Y_ = y, E M = e u, O u = r M , Z  = z] = P[X_ = x l V =  v]. 

Lemma 2. For all probability distributions Pxv and for  all (possibly probabilistic) 
strategies for  examining M >_ I bits 01 . . . . .  Ou of  R_ at positions E 1 . . . . .  Eu ,  we have 

l(X; Y EMOMZI V, Z (~ ~(EM))  = O. 

This lemma establishes the first part of the main theorem when 8 is defined as 
the event that _Z r (EM). It states that if the eavesdropper does not succeed in 
choosing the bit positions E M such that _Z ~ ~(EM), then he does not obtain 
any information whatsoever about the plaintext beyond the information already 
conveyed by V, even if an oracle would give him the key _Z for free after he has 
finished his observation. Note that this lemma is true even if the eavesdropper knew 
the key beforehand, but that clearly a clever eavesdropper would exploit the 
knowledge of the secret key in order to make the event 8 have zero probability. 

Proof. The conditional mutual information of Lemma 2 can be written as a 
difference of conditional uncertainties: 

I(_X; Y_EUOUZ_l V, _Z ~ ~((EU)) = H(_XI V, _Z r ~e(EU)) 

- U(_8[ VYEMOMZ_, Z_ r ~(EM)). 

It is an immediate consequence of Lemma 1 that both uncertainties are equal. [] 

Remark. Lemma 2 seems to be an immediate consequence of the fact that when 
Z ~ ~r(EU), then at least one randomizer bit that has not been observed by the 
eavesdropper contributes to every keystream bit, and that therefore X is concealed 
by a "perfect one-time pad." However, the proof of Lemma 1 is quite involved due 
to the fact that the random variable E ~ depends on _Z and thus the event 8 is 
nontrivial. 

It remains to prove the second part of the theorem, viz., to establish a lower bound 
on the probability of the event ~ that _Z ~ ~e(Eu). For a given set S, let ISI denote 
its cardinality. 
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Lemma 3. For  all probabi l i ty  dis tr ibut ions Px_v and f o r  all (possibly  probabil ist ic)  

s t ra teoies  f o r  examin ing  M >_ 1 bits 01 . . . . .  Ou o f  _R at posi t ions E1 . . . . .  E u ,  

maxe~,l~(eU)l 
P[_Z r ~.~(EU)] _> 1 -- 

T K 

Proof. We consider the conditional probability distribution of the key, given all 
the eavesdropper's information after having observed m bits of_R: 

P[Z_ = z[Y_ = y, V = v , E ' = e " , O  m = r  m] 

= P [ Z  = z_lY = y, V = v, E "  = e" ,  R ( e " )  = r m] 

= P [ Z  = z_lY = y, V = v, R ( e " )  = r ' ]  

for all _z, y, v, e" and r". The last step follows from expanding p [ E r " =  e m, 

Z_ = z_lX = y, V = v, R ( e ' )  = r"]  in two different ways and applying equation (8) 
of the Appendix. Similarly expanding P [  Z_ = z, _Y = Yl V = v, R ( e ' )  = r m] in two 
different ways and applying equation (5) of the Appendix yields 

P[_Z = _zlr = y, v = v, R(e  r") = r m, Z_ r ~(e") ]  

= P [ Z  = z[ V = v, R(e  M) = r M, Z q~ ~e(em)] 

= P[_Z = zl_Z r ~e(e')] (2) 

for all e", y, v, r m, and z r ~(e").  The second step follows from the fact that _Z is 
statistically independent of V and _R. Hence 

1 
P[Z_ = z_lY = y_, V = v, E M = e ~ ,  0 M = r u,  Z_ r ~e(em)] - T* - I~(em)l (3) 

for all e", y, v, r", and z r ~(em). Therefore, as long as the eavesdropper's set of 
observed bits R ( E " )  is such that Z r ~'(E"), all z r Sz_ \N(E  m) are equally likely 

candidates for the key _Z. Hence, even if the eavesdropper had available a genie who, 
after every step, told him whether Z e ~ ( E  m) is true or not, his optimal strategy 
for minimizing P[_Z r ~e(Em+l)] (given that Z r Y'(Em)) would be to maximize 
ILr(Em+l)l: by summing (3) over all _z r ~(e  re+l) we obtain 

T k - I~(em+l)[ 
P[Z_ (E ~(e~+l ) l_Y  = y, V = v, E m = e% 0 ~ = r m, Z q~ ,,~(em)] = 

- T k - [ Y ' ( e " ) [  

(4) 

for all e m+~, y, v, and r m. The enemy's optimal strategy for selecting bits without the 
genie's help can clearly be no better than his optimal strategy based on the genie's 
help. [] 

It was mentioned above that the eavesdropper's optimal strategy for making 
the event _Z r ~r(E u )  as unlikely to occur as possible is simply to make the set . ~ (E  u )  
as large as possible. Notice that, surprisingly, this strategy is independent of_Y, O u, 
and V. In other words, letting the selected bit positions E l ,  . . . ,  E u depend on the 
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observed bits 01 . . . . .  Ota, the cryptogram _Y and on the a priori information V cannot 
help the eavesdropper in reducing the probability of the event ~. However, to base 
the strategy on _Y, 0 M, and V can increase the amount of information that he gets 
about the plaintext in case that 8 does not occur, i.e., when _Z e .a/(Eta). Note that 
although P [_Z ~ ~(Eta)l Eta = eta] equals the number of keys that are not in ~(eta) 
divided by the total number of keys, equation (4) is nontrivial since Eta is a random 
variable that, because it depends on _Y, also depends on _Z. 

Lemma 4. For every sequence eta = [el . . . . .  eta] of  M > i bit positions, 

I~(eta)l < g 

Proof. Let ink, for 1 < k < K, be the number of randomizer bits specified by e ta 
that belong to the kth block of_R, i.e., whose first address component is equal to k. 
Every subset of elements of e u of the form {[1, t l] ,  [2, t : ]  . . . . .  [K, t r ]}  yields a 
consistency check for exactly N keys, namely, for the keys z = [(tl - x) mod T, 
(t2 - x) mod T, . . . .  (t K - x) mod T] for 0 < x < N - 1. There are exactly I-I~=l mk 
different subsets of the described form and hence there are at most N 1-I[=1 mk keys 
for which eta yields a consistency check, l-I[=1 mk is maximized for real mk under the 
restriction ~ = 1  m~ = M by the choice m I = " -  = m K = M / K  for which 1-I[=~ rnk = 
(M/K)  K. Clearly, this maximum is also an upper bound on I-[[=1 mk under the 
restriction that m 1 . . . . .  m K must be integers satisfying ZK=I m k = M. [] 

Proof of the Theorem. Lemma 2 shows that if we define o r as the event that 
Z_ r ~(EM),  then I(_X_; Y_EUOMZ_[ V, r = 0 and therefore also I(X_; Y_EtaOU[ V, ~) = 
0. This last step follows from the two basic facts that mutual information is 
always nonnegative and that joining additional random variables (here _Z) to the 
information-giving set cannot reduce the information about _X. Lemmas 3 and 4 
finally give 

maXeMI ~e(eM)[ ( M )  K 
P [ 8 ] >  1 TK > 1 -  N ~ = 1 -  Nc~ x. [] 

4. Two Modifications and Conclusions 

In this section, we suggest two modifications of the randomized cipher presented in 
Section 2 that are more practical in that the size of the public randomizer required 
to achieve a sufficient level of security can be much smaller. A rigorous proof of 
security for the first suggested modification would lead to the first cipher that is 
provably-secure under the sole assumption that the enemy's memory capacity, but 
not necessarily his computing power, is restricted. The second suggested modifica- 
tion has the potential of leading to an existence proof for secure cryptosystems 
without necessarily leading to a specific realization. 

We first discuss a version of our strongly-randomized cipher in which, instead of 
having the randomizer stored in a publicly-accessible way, it is broadcasted by a 
sender (e.g., a satellite), i.e., the randomizer evolves in time rather than in space. 
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There may exist natural sources of randomness, such as a deep-space radio source, 
that could be used. Alternatively, the randomizer could be transmitted as a burst 
of random data over the (insecure) communication channel prior to the transmis- 
sion of the actual cryptogram. It should be pointed out that the special case where 
K = 1 and the randomizer is interleaved with the cryptogram, corresponds to a 
finite-plaintext version of the Rip van Winkle cipher [4], which was formulated for 
an infinite plaintext sequence. Because in this version of our cipher, the randomizer 
is not available at the time that the ciphertext is transmitted, an enemy must not only 
examine but also store a substantial fraction of the randomizer in order to be able 
to obtain any information about the plaintext from the subsequently transmitted 
ciphertext. Thus, if the enemy's memory capacity is at most 6 times the number of 
randomizer bits, then there exists no strategy for storing randomizer bits such that 
these will later be of any use to the enemy with probability more than N6 ~, where 
N is the length of the plaintext. 

In a situation as considered in [2-1, [6], and I-8] where an enemy is for some reason 
restricted in the number of bits he may obtain of the message (in our case the 
randomizer) that is transmitted over the insecure channel but where he is free as to 
choose the positions of the bits, this "broadcast" cipher is provably-secure even for 
a moderate size of the randomizer. 

However, in order to prove the security of the cipher under the sole assumption 
that the enemy's memory capacity is at most M bits but without restriction on his 
computing power, we would have to prove the stronger result that, for every 
function {0, 1} L ~ {0, 1} u, the evaluation of the function with the randomizer as its 
argument would with overwhelming probability (over choices of the secret key) give 
only a negligible amount of information about the plaintext. We strongly believe 
that a result of this type holds and suggest its precise formulation and proof as an 
open research problem. 

A second modification of our cipher is based on the observation that the size of 
the randomizer can be strongly reduced if the bit access operation can be made 
more difficult. Assume that a function f :  {0, 1}" ~ {0, 1} is available with the 
property that we can prove a lower bound that is linear in n for n << 2" on the 
complexity of computing the values f(xO, f(x2) . . . . .  f(x.) for n randomly selected 
arguments Xl, x2 . . . . .  x. with substantial probability of success. Assume further 
that an algorithm is known that computes the function f and whose complexity is 
not much greater than that guaranteed by the lower bound. In other words, to 
compute the function f (possibly only approximately) for n randomly selected 
arguments is about n times as difficult as to compute f for one argument. We can 
then replace every randomizer bit in our cipher by a string of m random bits and 
the bit-access operation by the evaluation of the function f for the corresponding 
m-bit argument. The computational security of such a cipher relies on the fact that 
the number of times the legitimate users need to evaluate the function is much 
smaller than the number of randomizer bits that the enemy must compute in order 
to obtain sufficient information about the plaintext. A possible candidate for f could 
be the output function of some nonlinear finite automaton after Q clock cycles where 
the function argument is the initial state and where Q is a fixed large number. 

It is well known (see, e.g., [11]) that, even for moderate m, almost all Boolean 
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functions {0, 1} '~ ~ {0, 1} are very difficult to compute, yet no explicit function is 
known to be difficult to compute. It may similarly be possible to prove the existence 
of a function f of the type described above without exhibiting a specific example so 
that this above approach to provable security, as opposed to approaches based on 
the existence of one-way functions, may lead to the first true existence proof for 
computationally-secure ciphers although it would not provide a specific example. 

Another interesting property of the randomized cipher of Section 2 is that its 
security is not compromised when it is used repeatedly with only one initial secret 
key and with the second and subsequent secret keys being transmitted as part of 
preceding plaintexts. 

Finally, we would like to point out that randomization techniques similar to those 
presented in this paper may be useful for the construction of practical ciphers, even 
when the randomizer is not sufficiently long to guarantee a reasonable lower bound 
on the enemy's computational effort required to break the cipher or when the 
randomizer is replaced by a pseudo-random sequence. 
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Appendix 

Proof of Lemma 1. Every bit of the keystream W is the sum of K randomizer 
bits (see equation (1)). The crucial observation is that when _Z r ~ ( e M ) ,  then, for 
1 < n < N, at least one of the K randomizer bits contributing to W~ is not contained 
in the sequence R ( e  u )  of randomizer bits. Therefore, for every sequence e M of bit 
positions, all keystream sequences w N ~ {0, 1} N, and therefore also all cryptograms 
y S  ~ {0, 1} N, are equally likely candidates when _Z ~ ~ ( e M ) ,  i.e., 

P[Y_ = ylX_ = x_, V = v , R ( e  M ) = r  M , _ Z = _ z ] =  2 -N (5) 

for all y, x, v, r M, and _z r ~ ( e U ) .  

The Tact that the position E,. of the mth examined bit is determined by a (possibly 
probabilistic) strategy based on _Y, V, E r"-l, and O --1 can be expressed as 

P I E  m = emlE  m- l  = e " - I ,  X = x ,  Y_ = y,  V = v, R ( e  m-1)  = r m - l ,  R = ~, Z = z]  

= P [ E  m = emlE  m-1 = e m- l ,  _Y = y,  V = v, R ( e  r ' -~)  = r m - l , / ~  = 7] (6) 

for m > 1 and for all era, e "-1, _x, y, v, r m-l, ~, and z, where/~ is an arbitrary fixed 

subset of bits of_R. The condition/~ = ~ on the right-hand side of (6) can be omitted, 
but we will make use of (6) in the given form. Note that (6) does not imply that 
knowing the secret key would not help the enemy in selecting the bit positions, but 
rather that the bit positions of the real attack do not depend on the secret key _Z 
and the plaintext _X other than by the fact that _Y depends on _X and _Z, and V 
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depends on X. Equation (6) can be used to obtain 

P I E  u = eUlX_ = x, Y = y, V = v, R (e  M) = r M, Z_ = z_] 

M 
= 1--I P [ E m  eml Era-1 e m-1 X = _  = = = _ = = , _ x ,  _Y y ,  V v, R(e  u )  r u ,  Z = z ]  

r a = l  

M 

= 1-I P [ E m  emlE m-1 e r'-I r g ( e  u )  Z_ = z] = = , _  = y,  V =  v, = r M, 
m = l  

= P [ E  u = e U l y  = y, V = v, R (e  M) = r M,_Z = z] (7) 

for all e M, x_, y, v, r M and z such that the conditioning event has nonzero probability. 
In the second step, we have made use of (6) where/~ is the set { R ( e m )  , R ( e m + l ) , . . .  , 

R ( e u ) } .  The condition Z = z can be omitted in the last two lines, and this shows that 

P I E  M = eMI Y =  y, V =  v , R ( e  M ) =  r M,Z_ = z] 

= P I E  M = e M I y  = y, V = v, R (e  u )  = r M] (8) 

for all e M, y, v, r u ,  and _z such that the conditioning event has nonzero probability. 
Equation (8) is used in the proof of Lemma 3. We continue the proof of Lemma 1 
by noting that, given the event E M = e M, 0 u is a fixed set of randomizer bits, namely, 
0 M = R(eM), and by application of (7), which leads to 

P[_X = xlY = y, v = v, E u = e M, 0 M = r M, Z_ = z] 

= P[X_ = x_IY = y, V = v , E  M = e M , R ( e  M ) =  r M,Z_ = z_] 

= P[X_ = x_I_Y = y, V = v, R (e  M) = r M, _Z = _z] (9) 

for all e M, x_, y, v, r M, and _z such that the first conditioning event has nonzero 
probability. Using (5) gives 

P [  X_ = x_l Y_ = y, V = v, R(e  M) = r M, Z_ = z] 

= P[X_ = x_l V = v, R (e  M) = r u ,  Z_ = z] 

= PI-_X =_xlV = v] (10) 

for all e M, X_, y, V, r M, and _z 6 _~(e M) such that the first conditioning event has nonzero 
probability. ~Fhe last step follows from the facts that _X, _R, and _Z, and thus also _X, 
R(eM), and Z, are statistically independent and that V is statistically independent 
of _Z and _R. The lemma follows from (9) and (10). [] 
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