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ABSTRACT: Prediction of sedimentary architecture for modeling of flu-
id flow in hydrocarbon reservoirs and aquifers is accomplished mainly
using stochastic, structure-imitating models, because these can be con-
ditioned to data from wells, seismic profiles, and outcrop analogs. Con-
ditioning implies that modeled architecture fits all available observa-
tions. However, the sedimentary architecture simulated by such models
is commonly unrealistic. Process-based (forward) models potentially
provide more realistic prediction and understanding of sedimentary
architecture, but these models are not widely used because conditioning
to well, seismic, or outcrop data is considered to be very difficult. We
show here that conditioning of process-based models to well data is
possible in principle, using a 3D alluvial-architecture model as an ex-
ample. This model considers the formation of alluvial deposits as a
predominantly deterministic process, with a single channel belt moving
by avulsion over an aggrading floodplain. However, the initial flood-
plain topography is simulated by a random field, thus yielding different
model output for each run. Monte Carlo simulation was used to pro-
duce model realizations that fit five hypothetical vertical wells within
predetermined tolerance bands. Such simulation allows calculation of
the probability of occurrence of channel-belt deposits for each 3D cell
in the 3D block of sediments generated by the model, as well as the
probability distributions of volumes of channel-belt deposits and con-
nectedness ratios. Adding more conditioning wells increases the pre-
cision of model predictions. Application of this approach in practice
will require a major effort, particularly in overcoming the anticipated
large amounts of computing time.

INTRODUCTION

Determination of the volume and quality of hydrocarbon reservoirs and
aquifers, and development of fluid production and management strategies,
requires understanding of the geometry, orientation, proportion, and spatial
distribution (i.e., architecture) of the various sediment types present. Infor-
mation derived from geophysical profiles, cores, well logs, and well-test
data is rarely sufficient to provide comprehensive 3D description and un-
derstanding of hydrocarbon reservoirs or aquifers. Recourse must normally
be made to outcrop analogs and depositional models. A common approach
is to use outcrop analogs to provide supplementary data on sedimentary
architecture, and to use stochastic models conditioned by subsurface data
to distribute the architectural elements in 3D space (reviews by Bryant and
Flint 1993; Koltermann and Gorelick 1996; North 1996; Anderson 1997).

Modeling approaches include structure-imitating methods and process-
based methods. Structure-imitating models do not simulate processes of
deposition. These models directly simulate the sedimentary architecture and
generally include stochastic components. Methods used are indicator geo-
statistics (e.g., Journel 1983; Bierkens and Weerts 1994), simulated an-
nealing (e.g., Deutsch and Cockerham 1994), Markov chains (e.g., Doveton
1994; Carle et al. 1998), and probabilistic rules defining the geometry and
location of stratigraphic units, known as Boolean object models (e.g., Bud-
ding et al. 1992; Deutsch and Wang 1996; Hirst et al. 1993; Holden et al.
1998). An advantage of these models is that they are conditioned to ob-
servational data. However, adequate input parameters are difficult to obtain

for simulating realistic depositional architectures (e.g., Tyler at al. 1994;
Deutsch and Wang 1996; Holden et al. 1998).

Unlike the structure-imitating models mentioned above, three-dimen-
sional process-based models, sometimes referred to as process-imitating
models, simulate the sedimentary processes acting to produce a deposit
(Koltermann and Gorelick 1996; Anderson 1997). Process-based models
can be deterministic and/or stochastic, and empirical and/or theoretical.
Examples of such models include random-walk sedimentation models of
braided rivers (Webb 1994), models based on the fundamental equations
of fluid flow and sediment transport (e.g., Bridge 1977, 1992; Tetzlaff and
Harbaugh 1989; Stam 1996; Gross and Small 1998), and avulsion-related
alluvial-architecture models (e.g., Bridge and Leeder 1979; Mackey and
Bridge 1995; Heller and Paola 1996). Process-based models are forward
models in the sense that they predict the nature of deposits given a set of
initial starting parameters. It is not known a priori what the deposits will
look like. Advantages of three-dimensional process-based models are that
they can help provide genetic interpretations of deposits and can predict
more realistic sedimentary architecture than structure-imitating (stochastic)
models. A perceived disadvantage of three dimensional process-based mod-
els, however, is that it is difficult or impossible to make the simulated
deposits fit (or be conditioned to) observational data in sufficient detail in
three dimensions (Clemetsen et al. 1990; North 1996; Koltermann and Go-
relick 1996; Anderson 1997). Therefore, process-based models have had
limited application in quantitative simulation of the architecture of hydro-
carbon reservoirs or aquifers, although recent studies have shown that sim-
ple, two-dimensional, sequence-stratigraphic models with simple process
equations can be conditioned to well data (Bornholdt et al. 1999; Cross
and Lessenger 1999). But such two-dimensional models have limited in-
terpretive value in hydrocarbon reservoir characterization and geohydrol-
ogy.

The advantages of structure-imitating and process based methods could
be retained by combining them. One way of doing this would be the use
of a range of outputs from process-based models to provide input for sto-
chastic models. However, the view that three dimensional process-based
models cannot be conditioned to observational data can be challenged.

It is demonstrated here that conditioning of three-dimensional process-
based models to well data using an essentially trial-and-error approach is
possible in principle, using an alluvial-architecture model as an example.
The model, based on that of Mackey and Bridge (1995), considers the
formation of alluvial deposits as a single channel belt moves by avulsion
over an aggrading floodplain. The model is partly stochastic in the sense
that it has a stochastic random field (initial floodplain topography) as input
yielding a different model outcome (realization) for each run. Monte Carlo
simulation is used to calculate the probability of occurrence of channel-
belt deposits in each voxel (3D cell) of the 3D block of sediments generated
by the model, as well as the probability distributions of volumes of channel-
belt deposits and channel-belt connectedness ratios.

MODEL CONCEPTS

In this exploratory study, we use a slightly simplified version of the 3D
alluvial-architecture model of Mackey and Bridge (1995). It was simplified
to save computer time for conditioning the model to the wells. We devel-
oped the new model in the spatio-temporal modeling language that runs
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FIG. 1.—A) Calculation of channel-belt
centerline that is the path in the direction of
maximum floodplain slope. For cell i, the
floodplain slope towards the 8 adjacent cells is
calculated in order to determine the direction of
maximum slope. B) Plan view of initial surface
elevation E(x, y, 0) (m), inflow cell, initial
channel-belt centerline and initial channel belt.

inside the PCRaster environmental modeling system (Wesseling et al.
1996). (PCRaster information and demonstration software including links
to Gstat available at http://www.geog.uu.nl/pcraster.) Stochastic simulations
are performed with Gstat (Pebesma and Wesseling 1998). The model starts
by calculating the initial floodplain topography and the initial geometry
and location of the channel belt. Then, the model calculates for each time
step representing the period between avulsions: (1) channel-belt and ov-
erbank aggradation (thickness, age, and type of deposited sediment, i.e.,
either channel-belt or overbank deposit) and new surface topography; and
(2) channel-belt avulsion location and new channel-belt location (including
erosion of previous deposits by channel-belt incision).

Initial Floodplain Topography

The rectangular modeling area has a down-valley length L (m) and width
W (m). It is discretized by square raster cells with constant cell length C
(m) and cell center coordinates x, y (m; origin at the bottom left corner of
the modeling area). The initial floodplain surface has a constant down-
valley slope plus uncorrelated random noise representing local variation in
elevation. The initial floodplain topography is the only stochastic input to
the model. For each cell, the surface elevation at the start of the model run
is

E(x, y, 0) 5 S · y 1 e(x, y), (1)

with:
E(x, y, 0) surface elevation (m) at point x,y at time t 5 0 (yr),
S down-valley slope (–),
y distance of the cell center from the downstream end of the

modeling area (m),

e(x, y) stochastic field: spatially uncorrelated random noise with var-
iance s and zero mean.

Channel-Belt Geometry and Initial Location

Throughout the model run, a single channel belt is active on the flood-
plain. Unaggraded channel-belt dimensions are defined by the bankfull
channel depth d (m) and channel-belt width w (m), both constant in time.
The inflow location of the channel-belt center is at the upstream center cell
(i.e., inflow cell) throughout a model run. The initial channel-belt location
on the floodplain is determined by first defining the cells representing the
downstream path of the channel belt center following the local direction
of maximum floodplain slope, using the 8-point pour algorithm (Moore
1996; Burrough and McDonnell 1998). Each channel-belt center cell i leads
to a channel-belt center cell that is one of the n 5 1 . . . 8 adjacent cells
following the maximum downstream slope (Fig. 1A). Local closed depres-
sions are removed using the algorithm of Van Deursen (1995). The initial
channel belt consists of the cells with a distance less than w /2 normal to
this centerline (Fig. 1B).

Channel-Belt and Overbank Aggradation

The aggradation rate in the channel belt (a, m/yr) is constant in space
and time. Overbank aggradation rate decreases with distance from the chan-
nel-belt edge. For each point x, y and time step t, the aggradation rate in
the overbank area A(x, y, t) (m/yr) is:

A(x,y,t) 5 ac 1 a(1 2 c) e2D(x,y,t)/b (2)

where:
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FIG. 2.—Determination of the location of the channel-belt avulsion.

FIG. 3.—Calculation of new channel-belt center and new channel belt following
an avulsion. Letters A, B, and C refer to explanation in text.

FIG. 4.—Evaluation of the objective function for each well. A) Well log and B)
model output for conditioned result with tolerance bands wt.

a channel-belt aggradation rate (m/yr),
c theoretical aggradation rate at infinite distance from the channel

belt, expressed as a fraction of a (–),
D(x, y, t) distance to the channel-belt edge at time step t (m),
b dimensionless aggradation exponent (–).

Mackey and Bridge (1995) did not include the c value in the equation for
overbank aggradation rate. Equation (2) allows definition of aggradation
rates that approach a value much greater than zero at large distances away
from the channel belt that is not possible if c is omitted. If c is set to zero,
the equation is equivalent to Mackey and Bridge’s equation (1995), when
D is converted to their dimensionless distance from the channel-belt edge.

For each time period between avulsions, the total thickness of aggraded
sediment is stored by the computer model. This deposit is labeled with its
age and sediment type (channel-belt deposit or overbank deposit). Erosion
of formerly deposited strata occurs only as a result of incision of new
channel belts. In the interest of simplicity, compaction of sediment is not
included in this model (cf. Bridge and Leeder 1979; Mackey and Bridge
1995).

Avulsion

Avulsion is the process whereby the channel belt shifts abruptly from
one location to another on the floodplain. In the interest of model simplic-
ity, avulsion occurs at a constant time interval T (yr). Concepts of calcu-
lation of the avulsion location correspond with Mackey and Bridge (1995),
but the algorithms used are slightly different. The floodplain surface mor-
phology at the edge of the channel belt determines the avulsion location
(Fig. 2). The direction of maximum floodplain slope at the edge of an
unaggraded channel belt will be approximately parallel to the active chan-
nel belt, resulting in a low probability of avulsion. Because the aggradation
rate of the channel belt is greater than that of the overbank area, however,
an alluvial ridge develops, and the direction of maximum floodplain slope
may locally change from parallel to nearly perpendicular to the edge of an
aggraded channel belt. This situation will lead to a high probability for an
avulsion to occur (cf. Heller and Paola 1996; Slingerland and Smith 1998).
This principle is represented in the model with the following algorithm.
For each cell immediately neighboring the channel belt the avulsion angle
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FIG. 5.—Evaluation of the directive function for each well. A) Well log with
tolerance bands with width wt. B) Model output at the well location for t 5 i without
directive function error: runs possibly resulting in conditioned model result at t 5
end. C) Model output at the well location for t 5 i with directive function error:
runs that will not result in conditioned model result at t 5 end.

TABLE 1.—Model parameter values for the case study.

Symbol Value Description

L
W
C
S

20100
10050

150
5·1025

down-valley floodplain length (m)
cross-valley floodplain width (m)
cell length (m)
down-valley slope (2)

s 3·1023 variance of spatially uncorrelated random variation for
initial floodplain surface (m)

d
w
a

10
1200

2·1023

bankfull channel depth (m)
channel-belt width (m)
channel-belt aggradation rate (m/yr)

c 0.5 theoretical deposition rate at infinite distance from channel
belt, fraction of a (2)

b
T
wt

1·103

400
0.6

overbank-aggradation exponent (2)
time interval between avulsions (yr)
width of tolerance bands (m)

a is calculated by a 5 z b–g z, with b, the azimuth of direction of
maximum floodplain slope (algorithm of Horn 1981, also described in Bur-
rough and McDonnell 1998), and g, the azimuth of direction perpendicular
to the channel-belt edge.

The avulsion location is the cell with the lowest avulsion angle (a)
immediately adjacent to the channel belt (Fig. 2). The lowest avulsion angle
is equivalent to the highest value of Mackey and Bridge’s (1995) slope
ratio. The centerline of the new channel belt is determined as: (1) the set
of cells that connect the avulsion cell with the center of the former channel
belt (upstream path, A in Fig. 3); (2) the center of the former channel belt
upstream of this connecting set of cells (B in Fig. 3); and (3) the down-
stream path from the avulsion cell over the locus of maximum floodplain
slope (C in Fig. 3) calculated with the 8-point pour algorithm also applied
for the initial channel belt. The new channel belt consists of cells with a
distance of less than w /2 normal to this centerline.

CONDITIONING TO WELL DATA

Our model is stochastic only in the sense that the initial floodplain to-
pography is represented in part by a random field, causing the first channel
belt to be at a different location and elevation for each model run. As a
result, the entire alluvial succession will be different for each run because
the behavior of the model is determined by antecedent conditions. In fact,
the probability that one model run will result in an outcome that agrees
with well data is very low. The trial-and-error method for producing pro-

cess-based model outcomes that agree with well data (well-conditioned
output) is described below.

Stochastic Model with Output Conditioned to Well Data

The stochastic model resulting in an output conditioned to well data is

U(x, y, z) 5 g(E(x, y, 0), d (x, y, z), . . . , d (x, y, z)) and (3)1 m

f(U(x, y, z), w) 5 0 (4)

where

g(·) process-based alluvial-architecture model,
E(x, y, 0) input random field: initial topography of the

floodplain surface,
d1(x, y, z), . . . , dm(x, y, z) deterministic input fields for the alluvial archi-

tecture model,
U(x, y, z) output random field: well-conditioned alluvial

architecture,
f(·) objective function for well-conditioned output,
w well data.

The only input random field is E(x, y, 0), the randomly varying initial
floodplain elevation with random variation. All other parameters of the
model are assigned deterministic values. The output random field is U
(x, y, z), which is the 3D block of sediment generated by the stochastic
model at the end of the model run. In this block, each voxel has a prob-
ability of containing channel-belt deposits. The Boolean objective function
f(·) is a function of U(x, y, z) and the well data w, giving an error of zero
or one. If the error is zero, the outcome of the process-based model fits the
well data within predetermined limits. If the error is one, the model out-
come does not adequately fit the well data. The objective function is de-
scribed in the next section.

The stochastic model derives the distributions (or parameters describing
these) of the random field U(x, y, z) from: (1) the distribution of the input
random field E(x, y, z) and the deterministic inputs d1(x, y, z), . . . , dm(x,
y, z); (2) the process-based model g(·); (3) the well data w; and (4) the
objective function f(·). The Monte Carlo simulation approach solves this
in two steps (Hammersley and Handscomb 1979; Heuvelink 1998):

Step (1)

Repeat K times (lower case letters represent realizations):
(a) Generate a realization of the initial floodplain elevation: input ran-

dom field e(x, y, z).
(b) With this realization and deterministic input fields d1(x, y, z), . . . ,

dm(x, y, z), run g(·) and compute the outcome u(x, y, z) of the process-
based model.

(c) With the model outcome u(x, y, z) and well data w, calculate the
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FIG. 6.—Case study well data set. A) Model
area with the location of the wells and B) well
logs. Well area is used for calculation of volume
of channel-belt deposits and connectedness ratio.
Origin of vertical axis corresponds to original
topography (substratum) at downstream edge of
the floodplain. Note that substantial amounts of
substratum have been eroded at wells 1, 3,
and 4.

error of the objective function f(·). If the error is 1, the outcome of
the process-based model does not fit the well data and start again at
(a); otherwise continue to (d).

(d) Store the model outcome u(x, y, z). N is the number of outcomes of
the process-based model that resulted in well-conditioned output.

Step (2)

Compute sample statistics (e.g., mean, variance, skewness, channel-belt
connectedness ratio, volume of channel belt deposits) from the N well-
conditioned outcomes u1..N(x, y, z) of the process-based model.

Objective Function

The role of the objective function is to select the realizations of the
process-based model that fit the well data within prescribed limits. These
well-conditioned realizations are used for computing the sample statistics
of the conditioned outcomes of the process-based model (e.g., channel-belt
connectedness ratio). Running the model without the restrictions defined
by the objective function results in a model output that does not fit the well
data.

For each loop in the Monte Carlo simulation, the objective function is
defined as

 5 0, if the generated alluvial succession u
 fits all well logs w ,1...nf(u, w , . . . , w ) (5)1 n
5 1, if the generated alluvail sucession u

does not fit one or more well logs w 1...n

In the current model, we use vertical well logs with positions and thickness
of the channel-belt and overbank deposits. For each well, the well log is
compared with the alluvial succession generated by the process-based mod-
el at the vertical that contains the well. Figure 4 shows how the objective
function is evaluated for each well. Figure 4A shows the well log. Because
exact conditioning is extremely difficult, tolerance bands with vertical
length wt (Fig. 4B) are defined at the boundary between the channel-belt
deposits and overbank deposits, and at the top of the well log (top surface).
The succession at the well location is said to fit the well data if the model
output matches the strata in the well log within the tolerance bands, typi-
cally 0.1–1 m.

Reducing Computing Time with a Directive Function

In step (1) of the Monte Carlo simulation, only a small number of runs
of the process-based model give output that matches well data, and a lot
of computing time is needed because the process-based model has to be
run thousands of times. For this reason, a directive function is included to
decrease run times. This function is applied in step (1b) of the Monte Carlo
simulation. The principle is that, while running the process-based model
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FIG. 7.—Evolution in time of conditioned model run, including initial situation (t 5 0) and five successive time steps (each timestep represents 400 yr). Each map shows
the position of the old and new channel belt, and surface topography (m) at the end of the time step, i.e., at the moment of the avulsion. The new channel belt corresponds
with the old channel belt for the next time step.

forward in time, for each t 5 i the alluvial succession u(t 5 i) is compared
with the well data w1, . . .,wn. If the alluvial succession for t 5 i deviates
from the well data in such a way that the model outcome will not be
conditioned at the end of the model run, the run is interrupted and a new
loop K is started by generating a new input random field (step 1a). Oth-
erwise the process run is continued.

The directive function uses the property of the process-based model that
channel-belt deposits cannot be replaced by overbank deposits, because
erosion of the floodplain occurs only as a result of channel-belt incision.
A run of the process-based model that predicts channel-belt deposits in a

well log at time step t where the well log contains overbank deposits cannot
give a conditioned result, and the run of the process-based model is inter-
rupted. As in the objective function, this comparison is done only for the
well log outside the tolerance bands (Fig. 5). Within the tolerance bands,
the sediment type predicted by the model may deviate from the well log.

CASE STUDY

An example of an application of the approach, using model parameters
given in Table 1, is now described. Figure 6 gives the hypothetical well
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FIG. 8.—Conditioning to well data of the
model run in Figure 7. For each well number the
left column represents the well log with
tolerance bands; the right column represents
model output. Numbers to the right of the wells
refer to interavulsion periods (i.e., time steps in
Fig. 7). Substratum is material below initial
floodplain surface at t 5 0.

FIG. 9.—3D alluvial architecture resulting from the realization of the model in
Figure 7. Only channel-belt deposits are shown.

data set used for conditioning. Model test runs demonstrated that a mini-
mum value of 0.6 m is necessary for the width of the tolerance band. A
further decrease in wt resulted in unacceptably large computer run times to
arrive at 50 realizations that fit the wells, needed for the stochastic model.
Figure 7 gives the evolution in time of the floodplain for one run of the
process-based model with the simulated deposits fitting the five wells. The
initial floodplain at t 5 0 shows a channel belt that is slightly curved as
a result of the random noise included in the initial floodplain topography.
The decrease in deposition rate with distance from the channel belt is rep-
resented in the topography at the end of a time step: an alluvial ridge is
formed at the location of the channel belt. As a result of this alluvial ridge,
an avulsion occurs resulting in a new channel-belt location for the next
time step. The maps show that the new channel belt for each time step
follows the lowest topography downstream of the avulsion location. The
simulated succession at the well sites matches the stratigraphy in the well
logs within the tolerance bands (Fig. 8). Figure 9 gives the 3D alluvial
architecture resulting from the model run of Figure 7.

Effect of Number of Conditioning Wells on Model Output

In order to evaluate the effect of the number of conditioning wells on
the model outcome, the stochastic model was run without conditioning and
conditioned to different numbers of wells. Figure 10 shows the stochastic
outcomes of alluvial architecture for three scenarios, based on 50 realiza-
tions for each scenario (N 5 50 in the Monte Carlo simulation procedure).

Without conditioning (Fig. 10A), probabilities of greater than 0.8 for the
occurrence of channel-belt deposits occur at the edges of the floodplain
and close to the channel-belt inflow location. High probabilities at the edges
of the floodplain are related to the decrease in deposition rate (hence flood-
plain elevation) with distance from the channel belt. An initial channel belt
at the center of the floodplain results in the lowest deposition rate and
elevation at the edge of the floodplain. Thus, subsequent channel belts tend
to move towards these low areas (Fig. 7). The area directly downstream of
the inflow location has high probabilities because all channel belts originate
in this zone. Between these high probability areas, values are typically 0.3–
0.5 and show little spatial structure.

Addition of conditioning well data (Fig. 10B, C) results in spatial het-
erogeneity occurring in the central part of the floodplain in addition to the
pattern observed for the unconditioned run. Volumes with low and high
probabilities for the occurrence of channel-belt deposits occur immediately
adjacent to each other. The scenario conditioned to wells 1 and 2 (Fig.
10B) results in an extensive volume with high probabilities of channel-belt
occurrence upstream and downstream of well 1. Well 2 containing only
overbank deposits results in low channel-belt probabilities near the well.
The probability field for the scenario where all wells are used for condi-
tioning is strongly determined by the five well logs (Fig. 10C).

Number of Well Logs and Estimation Precision

Total volume of channel belt deposits (m3) and areal (2D) connectedness
ratio were calculated within the area of the well data (Fig. 6). Areal con-
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FIG. 10.—3D images of probability of occurrence of channel-belt deposits. Top diagrams show volumes with probability . 0.8. Bottom diagrams are transects through
the 3D block; grayscale represents probability of occurrence of channel-belt deposits. A) Model unconditioned to wells. B) model conditioned to wells 1 and 2. C) model
conditioned to wells 1–5.

nectedness ratio is the sum for all channel belts of the total horizontal area
of contact with another one, divided by the total horizontal area of all
channel belts (Fig. 11). Results for total volume of channel-belt deposits
are reported here instead of net-to-gross ratio (channel-deposit proportion),
which can also be calculated. Net-to-gross ratios are not discussed because
the thickness of the simulated deposit is too small to enable realistic com-
parison with real world successions.

Probability density distributions of total volume of channel-belt deposits
and the areal connectedness ratios are unimodal (Fig. 12). Average total
volume of channel-belt deposits is between 4.0·108 and 4.8·108 m3. Aver-
age connectedness ratios for the scenarios with different numbers of wells
are between 0.4 and 0.5. There is no clear trend in these values with in-
creasing number of wells.

Prediction precision, however, does increase with increasing number of
conditioning wells, as shown by a decrease in coefficients of variation and
an increase in the volume fraction of the 3D block that is predicted with
high precision. The coefficient of variation of total volume of channel-belt
deposits decreases from 0.18 to 0.13 (Fig. 13A). Similarly, coefficients of
variation for connectedness ratio decrease from 0.45 with no conditioning
wells to 0.21 when five conditioning wells are used (Fig. 13B). Addition
of more well data also increases the precision of the prediction of the 3D
block of alluvial architecture. The volume fraction of this block that is
predicted by the model with a high probability (. 0.9) of occurrence of
either channel-belt or overbank deposits increases with increasing number
of wells (Fig. 14). If there is no conditioning to well data, a volume fraction
of only 0.08 is predicted by the model as channel-belt deposits or overbank
deposits with a probability of occurrence greater than 0.9. With five wells,
this fraction is 0.15.

DISCUSSION AND CONCLUSIONS

The goal of this study is to show that it is possible in principle to con-
dition process-based models to observational data. The example given here
does not prove the applicability of the process-based model to real-world
problems, because the model and the hypothetical well data were relatively
simple. Fitting of the model to the well data using Monte Carlo simulation
required much computer time. For example, 5000 realizations took five
days running time on a 200 MHz Linux machine to arrive at 50 realizations
that fit five wells. As a result, success of the method with real-world prob-
lems depends on future decrease of model run times. It is expected that
model run times can be reduced by development of faster computers, op-
timizing the computer program (e.g., improve the directive function), pro-
viding key input parameters, and application of optimization algorithms for
finding model outcomes that fit well data, such as genetic algorithms (Born-
holdt et al. 1999). However, model run times will be increased as the
process-based models become more complicated.

The computing time required depends on the probability that one run of
the process-based model will fit the well data. Figure 15A shows the prob-
ability distribution Uau of the alluvial architecture generated by the uncon-
ditioned model and the range r of all possible alluvial architectures that fit
the observational data. For illustrative purposes, Uau is assumed to be nor-
mal here, although other probability distributions would be possible. The
probability p that one run of the process-based model fits the well data is
the area under the curve of Uau for alluvial architectures r. The probability
p depends on several factors. Increasing the number of wells for condi-
tioning decreases the range of alluvial stratigraphies r that will fit all wells,
resulting in a smaller value for p (Fig. 15B). Increasing the width of the
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FIG. 11.—Method of calculation of areal
channel-belt connectedness ratio, A) plan view,
B) cross section. A, B, and C represent areas
(m2). Horizontal contact between channel belts
exists in area C. Channel-belt connectedness
ratio is 2C/(A1B12C).

FIG. 12.—Probability density distributions for
(A, B) total volume of channel-belt deposits in
the well area and (C, D) channel-belt
connectedness ratios in the well area. A, C)
Model conditioned to wells 1 and 2; B, D)
model conditioned to all the wells 1–5.
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FIG. 13.—Coefficients of variation (standard deviation divided by mean value) for A) total volume of channel-belt deposits and B) connectedness ratio. Different well-
conditioning scenarios on x axis.

FIG. 14.—Volume fraction in the well area that is A) classified as containing no channel-belt deposits with a probability . 0.9; B) classified as containing channel-belt
deposits with a probability . 0.9; and C) total volume classified with a probability . 0.9 (sum of values in graph A and B). Different scenarios of conditioning to well
data on the x axis.
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FIG. 15.—Schematic probability density
distribution (Uau, area under the curve is 1) of
alluvial architecture for unconditioned model run
and range of possible alluvial architectures
conditioned to well data r. Each location on the
x axis represents a different alluvial architecture.
The x axis is the same for all figures. The area
under the curve of Uau for r is the probability p
for a conditioned model outcome. A) Standard
curve. Effects of B) larger number of well data,
C) larger tolerance bands, D, E) incorrect model
structure or model parameters, F) higher degree
of variability in the stochastic input.

tolerance bands wt in the objective function increases the range of alluvial
stratigraphies r that are regarded as being conditioned, resulting in a higher
value for p (Fig. 15C). If the process-based model or its input parameters
are incorrect, r will be at one of the tails of the distribution of Uau and p
values will be very small (Fig. 15D) or even zero (Fig. 15E). This can be
solved by increasing the variability of the stochastic input of the model,
resulting in a wider distribution of Uau, but p values will be relatively low
(Fig. 15F).

Successful conditioning of a process-based model depends on the amount
of soft information that is available in addition to hard observational data.
Soft information may come from seismic profiles and ancient or modern
analogs. Conditioning to seismic data and analog data is expected to be
possible with some changes in the objective and directive functions. Soft
data may include paleoflow direction, channel-belt geometry, aggradation
rates, floodplain width, and the presence of synsedimentary faults. If these
data are not available, a process-based model can still be used by using
stochastic variables for these input parameters. In the example given here,
it is assumed (in the interest of simplicity) that these parameters were
known except for the initial floodplain elevation, which was represented as
a stochastic variable. Adding more stochastic inputs to process-based mod-
els would be a worthwhile extension to the approach of sedimentary ar-
chitecture modeling described here.

Under the assumptions of a correct model structure and input, the Monte
Carlo method applied here gives model outputs that are true probability
distributions. For each voxel, the probability of occurrence and the con-
nectedness of channel-belt deposits is known. This is an advantage com-
pared to some stochastic modeling studies in which only one or a few
realizations are given. Another advantage of Monte Carlo simulation is the
possibility of deriving a relationship between the number of observational
data (i.e., wells) and the precision of the predicted architecture.

The quality of prediction of alluvial architecture using process-based
models depends strongly on the quality of the model used. Current knowl-
edge of alluvial processes allows considerable improvement of the model
presented here. Such development would be worthwhile in view of the

potential of this method of fitting process-based models to observational
data. Furthermore, the potential use of process-based models to provide
input to purely stochastic models would also require further development
of process-based models.

Process-based models conditioned to observational data could potentially
be used in other depositional environments such as coastlines, marine
shelves, and submarine fans. The method also has potential for application
at larger scales (such as sequence-stratigraphic models) and smaller scales
(such as crevasse-splay models).
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