
Scalable Computing: Practice and Experience

Volume 10, Number 4, pp. 347–361. http://www.scpe.org
ISSN 1895-1767
c© 2009 SCPE

CONDITIONING AND HYBRID MESH SELECTION ALGORITHMS FOR TWO-POINT

BOUNDARY VALUE PROBLEMS∗

JEFF R. CASH†AND FRANCESCA MAZZIA‡

Abstract. Boundary value problems for ordinary differential equations (BVODES) occur in a great many practical situations
and they are generally much harder to solve than initial value problems. Traditionally codes for BVODES did not take into account
the conditioning of the problem and it was generally assumed that the problem being solved was well conditioned so that small
local errors gave rise to correspondingly small global errors. Recently a new generation of codes which take account of conditioning
has been developed. However most of these codes are based on a rather ad hoc approach with the need to choose several heuristics
without any real guidance on how these choices can be made. In this paper we identify clearly which heuristics need to be chosen
and we discuss different choices of monitor functions that are used in our codes. This has the important effect of unifying the
various approaches that have recently been proposed. This in turn allows us, in the present paper, to introduce a new technique
for computing the conditioning which is ideally suited to BVODES.

1. Introduction. The task of solving systems of nonlinear two-point boundary value problems numerically
has, for a long time, received a great deal of attention. Boundary value problems for ordinary differential
equations (BVODES) occur in a great many practical situations and they are generally much harder to solve
than initial value problems. In particular the numerical solution of singular perturbation problems can be
especially difficult because such equations can have solutions with very narrow regions of rapid variation typified
by boundary layers, shocks and interior layers.

Traditionally codes for BVODES did not take into account the conditioning of the problem and it was
generally assumed that the problem being solved was well conditioned so that small local errors gave rise to
correspondingly small global errors. However, in an important paper by Shampine and Muir [28], the need
to consider the conditioning of the problem being solved was clearly demonstrated by means of a numerical
example and this brought into focus some important earlier work by Brugnano and Trigiante [5, 6] and by
Mazzia and Trigiante [27] who derived codes with a monitor function depending on both conditioning and
error. Subsequently a new generation of codes which take account of conditioning has been developed. However
most of these codes are based on a rather ad hoc approach with the need to choose several heuristics without
any real guidance on how these choices can be made. In this paper we identify clearly which heuristics need
to be chosen and we discuss different choices of monitor functions that are used in our codes. This has the
important effect of unifying the various approaches that have recently been proposed. This in turn allows
us, in the present paper, to introduce a new technique for computing the conditioning parameters which is
ideally suited to BVODES. Finally we describe some codes which implement these new ideas and we give some
numerical results obtained from using these codes.

We will only consider in this paper singular perturbation boundary value problems, although the algorithms
developed are designed for general first order boundary value problems. We will not be concerned in this paper
with shooting methods but will instead confine our attention to so called finite difference or boundary value
methods. However a lot has been done on estimating the conditioning of shooting methods and the interested
reader is referred to [1, 20, 21, 19, 13].

In section 2 we give a review of the algorithms based on conditioning for singularly perturbed boundary
value problems. In section 3 we present the conditioning parameters for the continuous problem and in section 4
the corresponding parameters for the discrete one. In section 5 we analyze the hybrid mesh selection strategies
based on conditioning and the way they have been unified and updated. In section 6 we present the results of
some numerical experiments to analyze the behavior of the codes with the new condition estimator.

2. Singular Perturbation Problems.

2.1. Second Order Scalar Problems. The first attempt to use conditioning in algorithms for the solu-
tion of singularly perturbed BVODES was made in [24, 8] by Mazzia and Trigiante. The algorithm presented
in [24, 8] was designed for the following general class of scalar linear problems:

∗Work developed within the project “Numerical methods and software for differential equations”
†Department of Mathematics, Imperial College, South Kensington, London SW7, England
‡Dipartimento di Matematica, Università di Bari, Via Orabona 4, I-70125 Bari, Italy

347

348 J. R. Cash and F. Mazzia

ǫy′′ + p(x)y′ + q(x)y = f(x)
y(a) = ya, y(b) = yb, a ≤ x ≤ b,

(2.1)

where ǫ is a positive parameter which is small compared with b− a, q(x) and f(x) are continuous functions and
p(x) is differentiable.

If we discretize (2.1) using simple three point finite difference formulae, the discrete problem is a tri-diagonal
system of algebraic equations that can be solved to give an approximation to the solution of (2.1). In matrix
form this system is

Ty = f (2.2)

where y0, y1, . . . , yn is the numerical solution computed on the mesh π = {x0, x1, . . . , xn}, y = (y1, y2, . . . , yn)
T

and

T =

1 τ1
σ1 1 τ2

σ2 1
. . .

. . .
. . . τn−1

σn−1 1

. (2.3)

The matrix T depends on π and the algorithm presented in [24, 8] uses sufficient conditions for the well
conditioning of tridiagonal matrices derived in [3] to compute the mesh. This allows us to derive, for example,
the conditions that a constant stepsize, h, should satisfy in order to have T well conditioned. In general we
require h ≈ O(

√
ǫ). However in the much more important case where we solve (2.1) using a variable meshsize

the mesh must be choosen in order to have the n× n system (2.2) such that n≪ 1

ǫ
.

In [24, 8] Mazzia and Trigiante, using only information related to the well conditioning of the tridiagonal
matrix T , derive second order methods for the solution of (2.1) where the grid is chosen so that

1. The user requested accuracy is achieved.
2. The inverse coefficient matrix T−1 exists and its condition number is either independent of n (well

conditioned) or grows as n or n2 (weakly well conditioned).
The way that these two conditions are satisfied is to choose hi in order to have (σi, τi) that satisfy the conditions
for the (weakly) well-conditioning of T . The algorithm simplifies considerably if σi and τi have constant sign.
We note that in a classical approach, where ǫ is not small, it would be normal to choose σi and τi so that
the matrix T is diagonally dominant. However in this case h is of the order ǫ and n is of order 1

ǫ
and this

is unacceptable when ǫ is very small. An algorithm that chooses τi and σi so that 1) and 2) are satisfied is
described in [8] and some numerical results presented for singular perturbation problems show the power of the
method.

2.2. First Order Systems of Singular Perturbation Problems. Although the algorithm described
in the previous section represented a major step forward in the solution of singular perturbation problems it
has the disadvantage that it is only applicable for linear, scalar, second order systems, it is of low order and
it is not very easy to apply for variable stepsizes. However the strategy of using conditioning in choosing the
mesh size is an important one and in the following sections we will discuss how to deal with nonlinear systems
of BVODES.

In what follows we will be concerned with the nonlinear system of singular perturbation problems

D(ǫ)y′(x) = f(x, y), a ≤ x ≤ b, g(y(a), y(b)) = 0, (2.4)

where D(ǫ) is a diagonal matrix whose elements depend linearly on ǫ. Usually D(ǫ) = diag(1, . . . , 1, ǫ), and
y,f , g ∈ Rm. As in the previous section we will be particularly interested in the case where 0 < ǫ ≪ 1. An
efficient numerical method for the solution of (2.4) needs to be able to use non-uniform grids so that many

Mesh Selection Algorithms For Two-Point BVP 349

grid points are clustered in regions of rapid variation of the solution and relatively few grid points are placed
in regions where the solution is smooth. Most codes attempt to control the error in the solution either by
estimating the discrete error at the mesh points [7] or else by controlling a residual [28]. The important point
to realise is that in both cases the codes attempt to control the local error on the assumption that the problem
is well conditioned so that if the local error is small then the global error will also be small. However in the
case where the problem is ill-conditioned a standard backward error analysis shows that it is possible for an
accepted solution to have a small local error but to have an unacceptably large global error. There is the
additional problem that if a monitor function ([1], p. 363) takes no account of conditioning of a problem then
the grid choosing algorithm may become very inefficient. This is manifested by a sort of cycling where points
are added into the grid on conditioning considerations and are then removed in the next remeshing due to
accuracy considerations. To illustrate these ideas we present a test problem which we solve by using the code
TWPBVPC [11] both with the standard mesh selection strategy based on the estimation of the local error and
with a mesh selection strategy which considers both conditioning and local error estimation. We note that to
change from the code TWPBVPC, which takes account of conditioning, to TWPBVP, which uses a conventional
mesh choosing strategy, we need to change just one input parameter of the code TWPBVPC.

Example 1. We examine the following problem [11] :

ǫy′′ + xy′ = −ǫπ2 cos(πx) − πx sin(πx),
y(−1) = −2, y(1) = 0,

(2.5)

whose exact solution is cos(πx) + erf(x/
√
2ǫ)/erf(1/

√
2ǫ), solved using the code TWPBVP when conditioning

is not taken into account. The problem is rewritten as a first order system with two components (y, y′)T and
the input parameters are ǫ = 10−7 and tol(y) = 10−8. This means that we are seeking an approximation to the
solution with an error 0.5 ·10−8 or less in the y component. The code gives a solution using a final mesh of 4192
points with a maximum error of 0.17 · 10−8. The mesh sizes used in the intermediate steps of the computation
are: 16, 31, 61, 121, 241, 481, 530, 1059, 1108, 2215, 2242, 4483, 8965, 19912, 4192. It seems that the code finds
the problem very difficult to solve and it needs 19912 mesh points to get some worthwhile information about
the solution. This is mainly due to the fact that the mesh selection algorithm adds extra points in the wrong
place. If we use the same code with the mesh selection based on conditioning, and we call this TWPBVPC, the
solution is obtained using 368 mesh points with maximum error of 0.85 · 10−8. The meshes used are of sizes:
16, 31, 58, 85, 169, 368. The information given by the conditioning parameters allows the code to put the mesh
points in the correct place and makes it considerably more efficient for the solution of this problem.

The first papers to consider this problem of estimating the conditioning constants in a serious way were by
Brugnano and Trigiante [4, 5] and by Mazzia and Trigiante [27]. Their basic approach is to identify two con-
stants which characterise the conditioning of the continuous problem. Having done this the monitor function
used in the mesh choosing algorithm is based on the relative size of these two parameters as well as on a local
error estimate. The basic aim of the algorithm described in [27] is to choose the mesh so that the discrete and
continuous problems have conditioning parameters which have the same order of magnitude. Perhaps the first
really powerful code that used a monitor function based on accuracy and conditioning was the code TOM [27].
Numerical results presented in [27] show the excellent performance of this code compared with the case where
conditioning is not considered. Using ideas explained in [27] the two deferred correction codes TWPBVP and
TWPBVPL were modified to include conditioning in their monitor function and the much improved perfor-
mance of the modified codes TWPBVPC and TWPBVPLC can be seen from the results on the authors’ web
page [11].

3. Conditioning parameters. To introduce the conditioning parameters which will be used in the mesh
selection strategy of our codes, let us consider for simplicity the following linear boundary value problem:

dy

dx
= A(x)y(x) + q(x), a ≤ x ≤ b, Bay(a) +Bby(b) = β, β ∈ Rm (3.1)

whose solution is given by

y(x) = Y (x)Q−1β +

∫ b

a

G(x, t)q(t)dt. (3.2)

350 J. R. Cash and F. Mazzia

Here Y (x) is a fundamental solution, Q = BaY (a)+BbY (b) is non singular and G(x, t) is the Greens’ function.
Using the ∞-norm we can compute the conditioning parameter by considering a perturbed equation:

du

dx
= A(x)u + q(x) + δ(x), a ≤ x ≤ b, Bau(a) +Bbu(b) = β + δβ.

Here δ(x) and δβ are small perturbations of the data. The difference between the two solutions satisfies:

||u(x)− y(x)|| ≤ ||Y (x)Q−1δβ||+ ||
∫ b

a

G(x, t)δ(t)dt||. (3.3)

After some algebraic manipulation we obtain:

max
a≤x≤b

||u(x) − y(x)|| ≤ κ1‖δβ‖+ κ2 max
a≤x≤b

||δ(x)||,

and

max
a≤x≤b

||u(x)− y(x)|| ≤ κmax(‖δβ‖, max
a≤x≤b

||δ(x)||),

where

κ1 = max
a≤x≤b

||Y (x)Q−1||, κ2 = sup
x

∫ b

a

||G(x, t)||dt,

and

κ = max
a≤x≤b

(||Y (x)Q−1||+
∫ b

a

||G(x, t)||dt).

Following the same procedure as above and using the 1-norm we obtain

1

b− a

∫ b

a

||u(x)− y(x)||dx ≤ γ1‖δβ‖+ γ2 max
a≤x≤b

||δ(x)||,

and

1

b− a

∫ b

a

||u(x)− y(x)||dx ≤ γmax(‖δβ‖, max
a≤x≤b

||δ(x)||),

where

γ1 =
1

b − a

∫ b

a

||Y (x)Q−1||dx, γ2 =
1

b− a

∫ b

a

∫ b

a

||G(x, t)||dtdx,

and

γ =
1

b− a

∫ b

a

(||Y (x)Q−1||+
∫ b

a

||G(x, t)||dt)dx.

For many problems of interest the relative sizes of the two parameters κ and γ tell us about the conditioning
of the continuous problem. However in the discrete case the parameter γ is very difficult to compute. In general,
in a problem where the correct dichotomy is present only κ1 and γ1 are of interest. In [4] a problem with κ1

large and γ1 small was called stiff, the stiffness ratio being
κ1
γ1

. This definition, although very often giving the

correct information about the stiffness, may fail for non scalar problems, as pointed out in [6]. In [18] Iavernaro,
Mazzia and Trigiante give a slightly different definition of stiffness. The conditioning parameters presented
in [18], called κ1,c([a, b]) and γ1,c([a, b]), only depend on the perturbations of the boundary conditions, and are
defined by supposing that δ(x) ≡ 0 in (3.3). The way in which these parameters are defined is as follows:

Mesh Selection Algorithms For Two-Point BVP 351

κ1,c([a, b], δβ) =
maxa≤x≤b ‖u(x)− y(x)‖

‖δβ‖ , κ1,c([a, b]) = max
δβ

κ1,c([a, b], δβ),

γ1,c([a, b], δβ) =

∫ b

a
‖u(x)− y(x)‖dx
(b − a)‖δβ‖ , γ1,c([a, b]) = max

δβ
γ1,c([a, b], δβ).

(3.4)

Upper bounds on κ1,c([a, b] and γ1,c([a, b]) can be obtained in terms of the parameters previously introduced,
and it can be shown that

κ1,c([a, b]) ≤ κ1, γ1,c([a, b]) ≤ γ1. (3.5)

This definition of κ1,c([a, b], δβ) and γ1,c([a, b], δβ) allows us to define the stiffness ratio which is defined as

σc([a, b]) = max
δβ

κ1,c([a, b], δβ)

γ1,c([a, b], δβ)
.

With these parameters it is possible to give the definitions of well conditioned, stiff and ill conditioned problems,
see [18, 23] for details:

Well conditioned: κ, κ1, γ1 and σc([a, b]) are of moderate size;
Stiff: σc([a, b]) ≫ 1;
Ill conditioned: κ≫ 1 and γ ≫ 1.

If σc([a, b]) is large we are dealing with problems possessing different time scales for which the growth or
decay rates of some fundamental solution modes are very rapid compared to others. Many singularly perturbed
BVODES have σc([a, b]) large. Our aim is to choose the mesh so that the continuous and discrete problems
have similar conditioning parameters. This leads us to investigate the conditioning of the discrete problem and
this we do in the next section.

4. Conditioning parameters for the discrete problems. In order to use the conditioning parameters
in a mesh selection strategy we first need to compute a discrete approximation to them which can be used in
our numerical method. If in our algorithm we use a Newton iteration scheme to solve the nonlinear algebraic
equations we need to solve a linear system of algebraic equations of the form My = b for each iteration. The
matrix M depends on the numerical scheme and on the stepsize used. We use a grid π = {x0, x1, . . . , xn}
with grid spacing hi = xi − xi−1, i = 1, . . . , n on which to solve the problem. The block matrix M , of size
(n+ 1)m× (n+ 1)m, is set up so that the boundary conditions appear only in the first row block of b. Ascher,
Mattheij and Russell [1] prove that for one-step schemes ‖M−1‖∞ ≈ κ and this is a fundamentally important
result. For the computation of ‖M−1‖ we have used up to now the algorithm presented by Higham in [15],
which computes an approximation to the 1-norm of a matrix. This algorithm has now been optimized in order
to use the information that we already know to compute the estimation of κ1 and γ1. Using the definition given
in (3.4) it is possible to define the values of κ1,d(π, δβ), γ1,d(π, δβ) as:

κ1,d(π, δβ) = 1
‖δβ‖ max0≤i≤n ‖yi‖, κ1,d(π) = max

δβ
κ1,d(π, δβ),

γ1,d(π, δβ) = 1
(b−a)‖δβ‖

∑n
i=1 himax(‖yi‖, ‖yi−1‖), γ1,d(π) = max

δβ
γd(π, δβ),

(4.1)

where yi, i = 0, 1, . . . , n is the solution of the discrete problem having δη as boundary conditions and κ1,d(π)
and γ1,d(π) are the discrete approximations of κ1 and γ1 respectively. The discrete stiffness ratio is:

σd(π) = max
δβ

κ1,d(π, δβ)

γ1,d(π, δβ)
.

Since in the numerical codes we need to use easy to compute parameters, we define upper and lower bounds
for them using the information given by the matrix M−1. We define the matrices G = M−1 and Ω having
elements Ωij = ||Gij ||∞ of size (n+ 1)× (n+ 1). Here Gij is the i, jth block element of size m appearing in G.

352 J. R. Cash and F. Mazzia

The discrete approximations to κ1 and γ1 satisfy the following upper bounds that correspond to the discrete
parameters computed in [27, 5, 6, 8, 9]:

κ1,d(π) ≤ max
i

Ωi0, γ1,d(π) ≤ (
N
∑

i=1

hi max(Ωi−1,0,Ωi0))/(b− a). (4.2)

In the following we approximate the discrete conditioning parameters by their upper bounds. Moreover,
taking into account the relation between the matrix G and the Green’s function, a discrete approximation of κ2
is given by ‖grm+1,(n+1)m‖1 (we consider only the components fromm+1 to (n+1)m), where gr is the row of the

matrix G such that ‖gr‖1 = ‖G‖∞. Since the first block column of the matrix G∗0 is a discrete approximation
of Y (t)Q−1 we have that the i-th column of G∗0 is an approximation of the solution of the continuous problem
(3.3) when δ(x) = 0 and δβ = ei, with ei being the column i of the identity matrix of size m. We are able now

to define, denoting by g(i) the i-th column of G∗0, and by g
(i)
j , 0 ≤ j ≤ N its blocks of size m,

κ1,d(π, ei) = ‖g(i)‖∞,

and

γ1,d(π, ei) =
1

b− a

n
∑

j=1

(xj − xj−1)max(‖g(i)j−1‖∞, ‖g
(i)
j ‖∞).

A lower bound for σd(π) is computed as

σd(π) ≥ max
ei,1≤i≤m

κ1,d(π, ei)

γ1,d(π, ei)
. (4.3)

We note that the new value of σd(π) differs from the one computed in [6] because, instead of considering the

ratio
κ1,d(π)
γ1,d(π)

involving the norm of Gi0, we consider the columns of G∗0 separately. This allows us to retain

information that would be lost by using directly the norm of each block.
By construction σd(π) is a discrete approximation of the following continuous lower bound of σc([a, b]):

σc([a, b]) ≥ max
ei,1≤i≤m

κ1,c([a, b], ei)

γ1,c([a, b], ei)
.

In the following we approximate the discrete value of σd(π) by the lower bound given in (4.3). One of the
important advantages of computing this approximation of the discrete conditioning parameters is that it is very
inexpensive to implement since it requires only one block column of G to be computed. In what follows we
describe how to use this information to compute an estimate of ‖G‖∞ which allows us to obtain a discrete
approximation of κ. In this paper we describe the algorithm only for the one step formulae (implemented in
TWPBVPLC and TWPBVPC). In what follows we give in detail the algorithm implemented by Higham in [15]
for the estimation of the one norm of a matrix. This algorithm is a variant of the original algorithm derived by
Hager in [14]. We apply it to the transpose matrix, to compute an approximation of the infinity norm. This
algorithm, given G ∈ IRN×N , computes κd(π)) ≤ ‖G‖∞ and ‖Gx‖∞ = κd(π)‖x‖∞

The flow chart (matlab-like) for doing this is given below (see [16]):

function κd(π) = KappaHigham(G,N)
ζ = N−1ones(N, 1)
gr = GT ζ
κd = ‖gr‖1
ξ = sign(gr)
z = Gξ
nstep = 2
while nstep <= 5

ζ = ej , where |zj| = ‖z‖∞ (smallest j)

Mesh Selection Algorithms For Two-Point BVP 353

gr = GT ζ
κnd = ‖gr‖1
if sign(gr) = ξ or κnd (π) < κd(π), goto (*), end
κd = κnd
ξ = sign(gr)
z = Gξ
nstep = nstep+ 1
if |zj| = ‖z‖∞, break, end

end
(*) zi = (−1)i+1(1 + (i − 1)/(N − 1)), i = 1 : N

z = GT z
if 2‖z‖1/(3N) > κd(π) then

gr = z
κd(π) = 2‖z‖1/(3N)

end

In the following we present a variant of the Higham algorithm that uses the information given by the
conditioning parameters. Since to compute κ1,d(π) we need the infinity norm of the vector Ω∗0, which depends
on the first m columns of G, we could easily compute the index jk in which Ω∗0 reaches its maximum, that
is Ωjk0 = κ1,d(π) = maxi Ωi0, and the index k such that ‖(Gjk,0)k∗‖∞ = Ωjk0. We call gr the row of index
ik = (jk − 1)m + k of the matrix M−1, (gr = GT eik). In the case of separated boundary conditions, and
it is these boundary conditions that are allowed in the codes, if the problem has an exponential dichotomy
and it is well conditioned, we have that κ1 gives all the required information about the conditioning, and the
Green’s function in (3.2) decays exponentially with |x − t| (see [1] p.126). Since for stiff problems Ω∗0 reaches
its maximum in one isolated element we conclude that the 1-norm of gr is a good approximation to ‖G‖∞. In
this case κ1,d(π) = ‖gr1:m‖1 by construction and κ2,d(π) = ‖gr

m+1:(n+1)m‖1 is an approximation to κ2. However

for non stiff problems Ω∗0 could have many elements equal to the maximum, and if κ2,d(π) is of the same order
as κ1,d its contribution to κd(π) is important. We have modified the Higham algorithm in order to use this
information given by the stiffness parameters. The new algorithm is:

function [κd(π), κ2,d(π)] = KappaStiffBvp(G,N ,m,ik,κ1,d(π), σd(π))
nstep = 1
if σd(π) < 10

ζ = eik
else

ζ = ones(N, 1)/(N + 11), ζik = 11/(N + 11)
end
gr = GT ζ
κd(π) = ‖gr‖1
κ2,d(π) = ‖grm+1:N‖1
while (σd(π) < 10 | κ2,d(π) > κ1,d/10) & nstep ≤ 3

ξ = sign(gr)
z = Gξ
if ‖z‖∞ ≤ zT ζ

break
end
ζ = ej, where |zj | = ‖z‖∞ (smallest j)
gr = GT ζ
κnd (π) = ‖gr‖1
if κnd (π) < κd(π), break, end
κd(π) = κnd (π)
κ2,d(π) = ‖grm+1:N‖1
nstep = nstep+ 1

end

354 J. R. Cash and F. Mazzia

We note that a similar modification could be applied to the block algorithm to estimate the one norm
presented in [17], we have however explained only the algorithm which is used in the current version of the
codes.

Since the matrix that has already been factorized in the codes is of the form M̃ = DM , where D is a
diagonal matrix with blocks D0 = I, Di = hiI, i = 1, . . . , N , where hi are the gridsizes used (for simplicity
we suppose that the boundary conditions are in the first block row), we need to compute an approximation
of ‖M−1‖∞, knowing the factorization of M̃ . To do this we apply the algorithm previously described for the
computation of ‖(M̃−1D)‖∞.

We have updated the codes TWPBVPC and TWPBVPLC in order to compute σd(π) using the approxi-
mation in (4.3), and κd(π) and κ2,d(π) using the new algorithm KappaStiffBvp and these are available on the
authors’ web page.

5. Hybrid mesh selection strategies based on conditioning. At present there exist just a few codes
that implement hybrid mesh selection strategies, and these include TOM, TWPBVPC and TWPBVPLC. We
have structured our approach to mesh selection so that the strategies described in this paper are common to all
three codes being considered with the only things changing being the values of several variables which need to
be chosen heuristically. The common approach is to choose the mesh in order to have a discrete problem with
conditioning parameters similar to those of the continuous problem. That is, we need to choose the mesh so
that the discrete monitor function used by all three codes, when only the conditioning is taken into account, is:

ψ(xi) = |Ωi0 − Ωi−1,0|+ α (5.1)

where α = p
(1−p)(b−a)

∑N
i=1 |Ωi0 − Ωi−1,0|.

5.1. Mesh selection for Deferred Correction Formulae. The code TWPBVPL is a deferred correc-
tion code based on Lobatto IIIa formulae of order 4,6 and 8 [12]. This code is an extension of the one presented
in [2], and this is considerably more robust than TWPBVPC, especially for singularly perturbed boundary
value problems. For this reason these Lobatto deferred correction algorithms have also been implemented in
the code ACDC [10] in a continuation framework, in order to deal with extremely stiff problems. The deferred
correction scheme implemented in TWPBVPL has many similarities with that used in TWPBVPC, and as a
result the hybrid mesh selection strategy derived in TWPBVPC has been implemented for TWPBVPLC using
a similar procedure. The two hybrid strategies have been described in detail in [8, 12]. However since the
underlying numerical schemes used in TWPBVPC and TWPBVPLC are very different it is important to set
up some empirical parameters in order to have an efficient mesh selection for each code. In what follows we will
describe some of these parameters which have been chosen as a result of extensive numerical experimentation.
In particular, we report the empirical parameters that have been set up when the codes have been updated using
σd(π) in (4.3) for the definition of stiffness and computing κd(π) using the algorithm KappaStiffBvp presented
in the previous section.

In particular the monitor function is as defined by (5.1), but the parameter p/(1 − p) = 10−5 is used for
Lobatto and p/(1 − p) = 0.08 is used for TWPBVPC. The three parameters κd(π) κ1,d(π) and γ1,d(π) are
considered as having become stabilised using the same criterion as was defined in [8] that is if they change by
less than 5 % from one mesh to another. A problem is considered stiff if

σd(π) > 10. (5.2)

This criterion is different from the one presented in the previous version of the code TWPBVPLC, where a
problem was considered stiff if κ1(π)/γ1(π) > 100. However the new definition of the stiffness parameter σd(π)
in (4.3) allows us to use the same criterion (5.2) for both the codes.

The algorithm for adding and removing points, for stiff problems, is based on the following two quantities
associated with the monitor function ψ:

r1 = max
i=1,...,n

(ψ(xi)hi),

and

r2 =

n
∑

i=1

(ψ(xi)hi)/N.

Mesh Selection Algorithms For Two-Point BVP 355

Here hi refers to the mesh spacing on the current mesh and n refers to the number of points in the mesh.
We decided to add additional mesh points when ψ(xi)hi is sufficiently large and in our Lobatto code we have
taken this as being when it is greater than max(0.65r1, r2). For TWPBVPC we add additional mesh points
when ψ(xi)hi is greater than max(0.5r1, r2). Note that these two parameters differ because usually the Lobatto
schemes give us more reliable information concerning the regions where it is appropriate for points to be added.
The number of mesh points to be added depends on the number of intervals in which this relation is satisfied. If
the problem is stiff and the conditioning parameters are not stabilized the mesh control procedure puts points
in the region of rapid variation of the monitor function and also makes sure that not too many points are added
at any stage. If the conditioning parameters are stabilized, we are usually working with a good mesh and, if the
error is small, we add points using the estimated local error. The technique for removing points also takes into
account the monitor function and we remove points only when ψ(xi)hi is less than 10−5r2. This parameter has
been changed for TWPBVPLC in order to make it more robust for non linear problems.

For nonlinear problems the strategy used in TWPBVPLC and in TWPBVPC remain the same that is, if
the Newton iteration scheme does not converge, the partially converged solution is considered stiff if σd(π) > 10
in TWPBVPLC whereas in TWPBVPC 10 is replaced by 5.

5.2. Mesh selection for boundary value methods. The code TOM, based on boundary value methods
of even order from 2 to 10, is different from the deferred correction codes in two main respects. The first is
in the solution of non linear problems, where it uses a quasi linearization procedure that allows the use of the
conditioning parameters for each linear problem arising during the quasi linearization. The second is the use of
the monitor function that allows us to both move the mesh points and add and remove them. Nevertheless, we
tried to keep most of the empirical parameters similar to the codes based on deferred corrections. In particular,
the three parameters κd(π) κ1,d(π) and γ1,d(π) are considered as having become stabilised using the same
criterion as for the deferred correction codes, that is if they change by less than 5% from one mesh to another.
A problem is considered stiff when σd(π) > 100 and this is different from the criterion (5.2) used in the deferred
correction codes and is mainly due to the different numerical schemes used. We set p/(1 − p) = 0.08 which
is exactly the same as was used for TWPBVPC. We decided to add additional mesh points when ψ(xi)hi
is sufficiently large and in TOM we take this as being when it is greater than max(0.65r1, r2), which again
is exactly the same as in the Lobatto code. In TOM we remove points, in the first quasilinearization step,
when ψ(xi)hi is less than 10−3r2 or 10−8r2, depending on the order of the method used and on the estimated
error in the boundary points. For the subsequent quasilinearization steps we use 10−3r2. We note that the
quasilinearization algorithm implemented in TOM makes the behavior of this code different from the codes
using a damped Newton technique. The reader is referred to [23] for more details concerning the solution of
nonlinear problems.

5.3. Estimation of the error. We note that the hybrid mesh selection strategy asks for the conditioning
parameters to be stabilized before we are able to use the error or the defect in the mesh selection. This is
equivalent to asking that the fundamental matrix Y (x) in (3.2) is well approximated by the numerical method
before selecting the mesh. In this case the error estimate would be of interest and the size of the stability
constant κd(π) gives us information about the reliability of this estimate. In codes based on deferred correction
the error for the order 4 method is estimated using the local truncation error, while for the order 6, and the
order 8 methods, the error is estimated using the difference between the computed solution of order 4 and 6,
or 6 and 8, respectively. Since the error is usually computed using the relative difference between the solution
computed by methods of different orders, it is a good estimate of the global error. The same is true for the
code TOM, where the error is estimated by computing an approximate solution of a higher order method using
one step of a deferred correction procedure. However, the conditioning parameters give us more information
about the error estimation. In fact, if the codes do not give a solution because the input error tolerances are
too stringent, the user could change the input parameters accordingly. The codes only give a warning about
this, because the input error tolerances are usually different for each component of the solution and cannot be
changed automatically.

Additional important information related to the conditioning parameters is whether they are stabilized or
not. In particular if κd(π) is not stabilized the exit flag of the codes is -1 and not 0, because we can not assume
that the numerical solution is reliable and we may be basing our strategy on non-converged solutions.

6. Numerical Results. In this section we present some numerical results to justify the changes made
in the codes TWPBVPLC and TWPBVPC. We do not report on numerical experience with the code TOM

356 J. R. Cash and F. Mazzia

because the Fortran version is not yet available. Numerical results using TOM can be found in the following
papers [23, 22, 25, 26]. In the following, to simplify the notation, we denote the discrete conditioning parameters
by κ(π), κ2(π), κ1(π), γ1(π), σ(π). We have run the codes on a set of 33 singular perturbation boundary value
problems (see [11] for a description of the test problems), the first set of numerical results is intended to show
the reliability of the infinity norm estimator used in the codes. In Figure 6.1 we report, for each test problem,
the mean value of the ratio κ(π)/κH(π) where κH(π) is the value computed using the Higham algorithm in [15].
The mean value has been computed running the problems for different values of ǫ and for different values of the
input tolerances. A value smaller than unity means that the Higham algorithm is on average more accurate; a
value higher than unity means that the new estimator is better. The number of computed matrices is 19195,
having size ranging from 9 to 34976. The mean value over all the experiments for both codes is 1.139. This
value means that the new estimator gives, on average, better results. In Figure 6.1 we give a diagram showing
the mean value of the ratio κ(π)/κH(π) for the 33 problems and for the two codes. We note that for problems
9 and 16 the new estimator computes a better lower bound. For the other problems the results are similar.
However it is interesting to see that the minimum value of the mean ratio is 0.8 (computed when solving
problem 27 with ǫ = 10−5 and tol = 10−6 using TWPBVPC), the maximum value of the mean ratio is 84.3
(computed when solving problem 9 with ǫ = 10−6 and tol = 10−4 using TWPBVPC).

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
TWPBVPC

Test problem

κ
(π

)/
κ

H
(π

)

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
TWPBVPLC

Test problem

κ
(π

)/
κ

H
(π

)

Fig. 6.1. Mean value of the ratio κ(π)/κh(π) for each test problem solved with different values of ǫ and different values of tol.

In Figure 6.2 we report, for the problems 1 and 15, the ratio κ1(π)/γ1(π) compared with the new value
of σ(π). We note that for these problems σ(π) is a more reliable estimate of the stiffness of the problem. In
general, however, the difference between the two stiffness estimators is minimal.

10
−15

10
−10

10
−5

10
0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Test problem 1

 ε

σ
(p

i)
,

κ
1
(π

)/
γ
1
(π

)

10
−8

10
−6

10
−4

10
−2

10
0

10
0

10
1

10
2

10
3

10
4

Test problem 15

 ε

σ
(π

),
 κ

1
(π

)/
γ
1
(π

)

Fig. 6.2. Circle (TWPBVPC) and diamond (TWPBVPLC) are the values of σ(π) computed with different values of the input
tolerances, asterisks (TWPBVPC) and plus (TWPBVPLC) are the corresponding values of κ1(π)/γ1(π).

The behavior of the codes using the conditioning parameters is more or less the same as for the previous
versions. We refer to [8, 12], where many experiments are reported, for a comparison to the standard mesh

Mesh Selection Algorithms For Two-Point BVP 357

selection strategy with the one using conditioning. Nevertheless there are some improvements on certain difficult
problems that are explained below.

We note that when κ2(π) is very small the standard mesh selection strategy and the one based on condi-
tioning gives very similar results, and in many cases the standard mesh selection works better. This is explained
by the fact that, since κ2(π) is small, the local truncation error is a good approximation of the global error. In
the following we report only the results for three problems, the first two are problems for which κ2(π) is of the
same size as κ1(π), the third problem is one that has 2, 1 or 0 solutions depending on the value of a certain
parameter appearing in the differential equation. For all the problems we set tol(ncomp1) = tol(ncomp2) = tol
as input. The number of the problem is the same as reported in [11].
Problem 6

ǫy′′ + xy′ = −ǫπ2 cos(πx) − πx sin(πx), y(−1) = −2, y(1) = 0.

This problem is a linear singularly perturbed problem. It has been chosen because, for 0 < ǫ≪ 1, the solution
has a turning point at x = 0. The exact solution is y(x) = cos(πx) + exp((x − 1)/

√
ǫ) + exp(−(x+ 1)/

√
ǫ).

Problem 19

ǫy′′ + exp(y)y′ − π

2
sin(

πx

2
) exp(2y) = 0, y(0) = 0, y(1) = 0.

This problem has a boundary layer at x = 0. We use as initial guess 0 for y and y′.
Problem 34

y′′ + λexp(y) = 0, y(0) = y(1) = 0.

This example is Bratu’s problem, which is considered by Shampine and Muir [28]. Setting λ∗ = 3.51383. . . it is
known that if 0 ≤ λ < λ∗ the problem has two solutions, for λ = λ∗ it has one solution and for λ > λ∗ there is
no solution. We use as initial guess 0 for y and y′.

6.1. Description of the results. In Figure 6.3 we report, for problems 6 and 19, the maximum mesh
used by the two codes with and without using the conditioning parameters in the mesh selection. For simplicity
we add in brackets to the name of the code the term ON or OFF that indicates if the conditioning parameters
have been used or not in the mesh selection (TWPBVPC(ON) means that the conditioning has been used)
. The problems were solved for different values of ǫ and tol = 10−4, 10−6, 10−8. In the diagrams, circles and
diamonds are related to TWPBVPC(ON) and TWPBVPLC(ON) respectively, asterisks and plus are related
to TWPBVPC(OFF) and TWPBVPLC(OFF) respectively (if the code was not able to find a solution the
corresponding symbol is not reported). We note that for these problems the conditioning parameters usually
allow us to obtain the solution with a smaller number of mesh points than when conditioning is not used. For
both problems TWPBVPC is able to obtain the solution when the other algorithm fails; TWPBVPLC has no
problem with the linear example, but for the nonlinear example the use of the conditioning allows us to compute
the solution for smaller values of ǫ.

Figure 6.4 plots the condition numbers κ(π) and κ1(π) for a range of values of ǫ, and Figure 6.5 plots
the value of σ(π) and the ratio κ1(π)/γ1(π). For these problems we note that κ1(π)/γ1(π) ≈ σ(π), and the
condition number κ(π) ≈ 2κ1(π) grows like

√

(1/ǫ) for problem 6 and like 1/ǫ for problem 19. The stiffness
ratio σ(π) has the same behavior (see 6.5).

The third example is taken from [28] where the authors solved the problem by using the MATLAB code
BVP4C with λ = 3.45 for which there are two solutions. For this problem a solution was computed in a per-
fectly satisfactory way and the condition number was estimated to be 3400. The same procedure was carried
out again with λ = 3.55 (for which there is no solution) and the MATLAB code produced what looked like
a perfectly satisfactory solution with a conditioning constant estimated to be 106. This very big conditioning
constant warns that the ‘solution’ may have no correct digits and this is indeed the case. Further experiments
are reported in [28] where it is emphasised that we need to look at the conditioning of a problem before accepting
a solution. The approach taken by Shampine and Muir is to warn the user of a very large condition number if
it exists. We note that the condition number computed in [28] is the infinity norm of a scaled matrix W1GW2

where the diagonal scaling matrices are related to the scaling factors used in the code to compute the residual.
We compute, instead, a condition number related to the problem and some important information computed
by the code is whether the estimates of the conditioning parameters stabilised or not. In Table 6.1 we report

358 J. R. Cash and F. Mazzia

10
−15

10
−10

10
−5

10
0

10
0

10
1

10
2

10
3

10
4

10
5

Test problem 6

ε

N
M

A
X

10
−8

10
−6

10
−4

10
−2

10
0

10
0

10
1

10
2

10
3

10
4

10
5

Test problem 19

ε

N
M

A
X

Fig. 6.3. Circle (TWPBVPC(ON)), asterisks (TWPBVPC(OFF)), diamond (TWPBVPLC(ON)) and plus (TWPBV-
PLC(OFF))) are the values of maximum mesh used by the codes with different values of tol and of ǫ.

10
−15

10
−10

10
−5

10
0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Test problem 6

 ε

κ
(π

),
 κ

1
(π

)

10
−8

10
−6

10
−4

10
−2

10
0

10
0

10
2

10
4

10
6

10
8

10
10

Test problem 19

 ε

κ
(π

),
 κ

1
(π

)

Fig. 6.4. Circle (TWPBVPC) and diamond (TWPBVPLC) are the values of κ1(π), asterisks (TWPBVPC) and plus (TW-
PBVPLC) are the values of κ(π).

the results obtained by the codes TWPBVPC and TWPBVPLC solving the problem with different values of λ
and tol = 10−3, tol = 10−6 and tol = 10−9, using an initial mesh with NS + 1 mesh points. To be sure that
the conditioning parameters obtained are stabilized we checked the value by running the code using a mesh
doubled with respect to the final one and where we do not perform any grid refinement (the final mesh has
NF + 1 points). In Table 6.1 we set the value of STABC equal to T if for the doubled mesh the value of κ(π)
differs by less than 5 % from the value computed with the mesh NF + 1, STABC is set to F otherwise.

Only for λ = 3.5, 3.51, 3.513 do the codes give an output flag with a value of 0 and STABC= T, for all the
other values we have that the flag is −1. But in no cases do we accept a computed ‘solution’ when none exist.
If we start the code with a starting mesh with a larger value of NS , we see that for both the codes the value of
STABC is T when λ <= 3.51383. For λ > 3.51383, however, the number of mesh points in the final mesh can
be very high compared with the one used for λ ≤ 3.51383. In particular TWPBVPC fails to give a solution for
λ ≥ 3.513832, TWPBVPLC fails for λ ≥ 3.513833, and for the solution given with λ = 3.513832 the STABC

flag is always F.

7. Conclusion. In this paper we have been concerned with the numerical solution of singularly perturbed
boundary value problems using variable grid integration methods. We have established a fundamental approach
to choosing our meshes, defining sequences of meshes so that the continuous and discrete problems have the
same conditioning. We do this by developing a monitor function which depends both on local accuracy and
conditioning. We have presented new techniques to compute the conditioning parameters and we have empha-
sised that the approach adopted is very similar for all three codes: TOM, TWPBVPC and TWPBVPLC. The
main difference is in how we choose the different values of a few heuristic parameters and we have explained in

Mesh Selection Algorithms For Two-Point BVP 359

10
−15

10
−10

10
−5

10
0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Test problem 6

 ε

σ
(π

),
 κ

1
(π

)/
γ
1
(π

)

10
−8

10
−6

10
−4

10
−2

10
0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Test problem 19

 ε

σ
(π

),
 κ

1
(π

)/
γ
1
(π

)
Fig. 6.5. Circle (TWPBVPC) and diamond (TWPBVPLC) are the values of σ(π), asterisks (TWPBVPC) and plus (TWP-

BVPLC) are the corresponding values of κ1(π)/γ1(π).

some detail how this is done. Our codes can be considerably more efficient than other codes, due to the fact
that we pay attention to the conditioning of the problem, and we have never accepted a ‘solution’ when none
exists. However, for some problems, our conditioning parameters may converge rather slowly and we intend to
examine this in detail in a future paper.

REFERENCES

[1] U. M. Ascher, R. M. M. Mattheij and R. D. Russell. Numerical solution of boundary value problems for ordinary differential
equations, Classics in Applied Mathematics 13. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 1995. Corrected reprint of the 1988 original.

[2] Z. Bashir-Ali, J. R. Cash and H. H. M. Silva. Lobatto deferred correction for stiff two-point boundary value problems. Comput.
Math. Appl., 36, no. 10-12, 59–69, 1998. Advances in difference equations, II.

[3] L. Brugnano and D. Trigiante. Tridiagonal matrices: invertibility and conditioning. Linear Algebra Appl., 166, 131–150, 1992.
[4] L. Brugnano and D. Trigiante. On the characterization of stiffness for ODEs. Dynam. Contin. Discrete Impuls. Systems, 2,

no. 3, 317–335, 1996.
[5] L. Brugnano and D. Trigiante. A new mesh selection strategy for ODEs. Appl. Numer. Math., 24, no. 1, 1–21, 1997.
[6] L. Brugnano and D. Trigiante. Solving Differential Problems by Multistep Initial and Boundary Value Methods. Gordon &

Breach,Amsterdam, 1998.
[7] J. R. Cash. On the numerical integration of nonlinear two-point boundary value problems using iterated deferred corrections.

II. The development and analysis of highly stable deferred correction formulae. SIAM J. Numer. Anal., 25, no. 4, 862–882,
1988.

[8] J. R. Cash and F. Mazzia. A new mesh selection algorithm, based on conditioning, for two-point boundary value codes.
J. Comput. Appl. Math., 184, no. 2, 362–381, 2005.

[9] J. R. Cash, F. Mazzia, N. Sumarti and D. Trigiante. The role of conditioning in mesh selection algorithms for first order
systems of linear two point boundary value problems. J. Comput. Appl. Math., 185, no. 2, 212–224, 2006.

[10] J. R. Cash, G. Moore and R. Wright. An automatic continuation strategy for the solution of singularly perturbed nonlinear
boundary value problems. ACM Trans. Math. Software, 27, no. 2, 245–266, 2001.

[11] J. R. Cash and F. Mazzia. Algorithms for the solution of two-point boundary value problems. http://www.ma.ic.ac.uk/

~jcash/BVP_software/twpbvp.php.
[12] J. R. Cash and F. Mazzia. Hybrid mesh selection algorithms based on conditioning for two-point boundary value problems.

JNAIAM J. Numer. Anal. Ind. Appl. Math., 1, no. 1, 81–90, 2006.
[13] C. de Boor and H.-O. Kreiss. On the condition of the linear systems associated with discretized BVPs of ODEs. SIAM J.

Numer. Anal., 23, no. 5, 936–939, 1986.
[14] W. W. Hager. Condition estimates. SIAM J. Sci. Statist. Comput., 5, no. 2, 311–316, 1984.
[15] N. J. Higham. FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition

estimation. ACM Trans. Math. Software, 14, no. 4, 381–396 (1989), 1988.
[16] N. J. Higham. Accuracy and stability of numerical algorithms. Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, 1996.
[17] N. J. Higham and F. Tisseur. A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra.

SIAM J. Matrix Anal. Appl., 21, no. 4, 1185–1201 (electronic), 2000.
[18] F. Iavernaro, F. Mazzia and D. Trigiante. Stability and conditioning in numerical analysis. JNAIAM J. Numer. Anal. Ind.

Appl. Math., 1, no. 1, 91–112, 2006.
[19] P. Kunkel and V. Mehrmann. Differential-algebraic equations,Analysis and numerical solution. EMS Textbooks in Mathe-

matics. European Mathematical Society (EMS), Zürich, 2006.

360 J. R. Cash and F. Mazzia

Table 6.1

Conditioning parameters, flags, number of mesh points in the initial constant mesh and number of mesh points in the final
mesh for Problem 34

TWPBVPC(ON)
λ tol κ(π) κ1(π) γ1(π) σ(π) FL NS + 1 STABC N+1
3.5 10−3 0.534E+02 0.366E+02 0.289E+02 0.130E+01 0 10 T 10

10−6 0.537E+02 0.368E+02 0.277E+02 0.136E+01 0 10 T 18
10−9 0.538E+02 0.368E+02 0.275E+02 0.137E+01 0 10 T 21

3.51 10−3 0.102E+03 0.701E+02 0.556E+02 0.128E+01 0 10 T 10
10−6 0.104E+03 0.712E+02 0.539E+02 0.134E+01 0 10 T 17
10−9 0.104E+03 0.712E+02 0.535E+02 0.135E+01 0 10 T 21

3.513 10−3 0.209E+03 0.144E+03 0.114E+03 0.126E+01 0 10 F 10
10−6 0.224E+03 0.154E+03 0.117E+03 0.132E+01 -1 10 T 19
10−9 0.224E+03 0.154E+03 0.115E+03 0.134E+01 -1 10 T 24

3.5138 10−3 0.105E+04 0.720E+03 0.549E+03 0.131E+01 -1 10 F 19
10−6 0.105E+04 0.720E+03 0.549E+03 0.131E+01 -1 10 F 19
10−9 0.105E+04 0.720E+03 0.549E+03 0.131E+01 -1 10 F 19
10−9 0.117E+04 0.801E+03 0.593E+03 0.135E+01 0 40 T 40

3.51383 10−3 0.214E+04 0.147E+04 0.112E+04 0.131E+01 -1 10 F 19
10−6 0.537E+04 0.369E+04 0.274E+04 0.135E+01 -1 10 F 37
10−9 0.537E+04 0.369E+04 0.274E+04 0.135E+01 -1 10 F 37
10−9 0.721E+04 0.495E+04 0.363E+04 0.136E+01 0 80 T 80

3.513831 10−3 0.225E+04 0.155E+04 0.118E+04 0.131E+01 -1 10 F 19
10−6 0.120E+05 0.823E+04 0.612E+04 0.135E+01 -1 10 F 37
10−9 0.120E+05 0.823E+04 0.612E+04 0.135E+01 -1 10 F 37
10−9 0.773E+04 0.531E+04 0.385E+04 0.138E+01 -1 80 T 10113

3.513832 10−3 *
10−6 *
10−9 *

TWPBVPLC(ON)
3.5 10−3 0.534D+02 0.366D+02 0.289D+02 0.130D+01 0 10 T 10

10−6 0.534D+02 0.366D+02 0.289D+02 0.130D+01 0 10 T 10
10−9 0.538D+02 0.368D+02 0.276D+02 0.137D+01 0 10 T 21

3.51 10−3 0.102D+03 0.701D+02 0.556D+02 0.128D+01 0 10 T 10
10−6 0.102D+03 0.701D+02 0.556D+02 0.128D+01 0 10 T 10
10−9 0.104D+03 0.712D+02 0.535D+02 0.135D+01 0 10 T 22

3.513 10−3 0.209D+03 0.144D+03 0.114D+03 0.126D+01 0 10 F 10
10−6 0.209D+03 0.144D+03 0.114D+03 0.126D+01 0 10 F 10
10−9 0.154D+03 0.116D+03 0.224D+03 0.133D+01 -1 10 T 21

3.5138 10−3 0.102D+04 0.700D+03 0.533D+03 0.131D+01 -1 10 F 19
10−6 0.102D+04 0.700D+03 0.533D+03 0.131D+01 -1 10 F 19
10−9 0.102D+04 0.700D+03 0.533D+03 0.131D+01 -1 10 F 19
10−9 0.117E+04 0.801E+03 0.593E+03 0.135E+01 0 40 T 40

3.51383 10−3 0.214D+04 0.147D+04 0.112D+04 0.131D+01 -1 10 F 19
10−6 0.537D+04 0.369D+04 0.274D+04 0.135D+01 -1 10 T 37
10−9 0.537D+04 0.369D+04 0.274D+04 0.135D+01 -1 10 T 37

3.513831 10−3 0.225D+04 0.155D+04 0.118D+04 0.131D+01 -1 10 F 19
10−6 0.354D+04 0.244D+04 0.176D+04 0.138D+01 -1 10 T 9217
10−9 0.354D+04 0.244D+04 0.176D+04 0.138D+01 -1 10 T 9217

3.513832 10−3 0.238D+04 0.164D+04 0.125D+04 0.131D+01 -1 10 F 19
10−6 0.146D+05 0.101D+05 0.729D+04 0.138D+01 -1 10 F 9217
10−9 0.146D+05 0.101D+05 0.729D+04 0.138D+01 -1 10 F 9217
10−9 0.146D+05 0.101D+05 0.729D+04 0.138D+01 -1 20 F 9729
10−9 * * * * -1 40 * *

3.513833 10−3 *
10−6 *
10−9 *

[20] R. M. M. Mattheij and G. W. M. Staarink. An efficient algorithm for solving general linear two-point BVP. SIAM J. Sci.
Statist. Comput., 5, no. 4, 745–763, 1984.

[21] R. M. M. Mattheij and G. W. M. Staarink. On optimal shooting intervals. Math. Comp., 42, no. 165, 25–40, 1984.
[22] F. Mazzia, A. Sestini and D. Trigiante. The continous extension of the B-spline linear multistep metods for BVPs on non-

uniform meshes. Appl. Numer. Math., 59, no. 3-4, 723–738, 2009.
[23] F. Mazzia and D. Trigiante. Efficient strategies for solving nonlinear problems in bvps codes. Nonlinear Studies. In press.
[24] F. Mazzia and D. Trigiante. Numerical solution of singular perturbation problems. Calcolo, 30, no. 4, 355–369, 1993.

Mesh Selection Algorithms For Two-Point BVP 361

[25] F. Mazzia, A. Sestini and D. Trigiante. B-spline linear multistep methods and their continuous extensions. SIAM J. Numer.
Anal., 44, no. 5, 1954–1973 (electronic), 2006.

[26] F. Mazzia, A. Sestini and D. Trigiante. BS linear multistep methods on non-uniform meshes. JNAIAM J. Numer. Anal. Ind.
Appl. Math., 1, no. 1, 131–144, 2006.

[27] F. Mazzia and D. Trigiante. A hybrid mesh selection strategy based on conditioning for boundary value ODE problems.
Numer. Algorithms, 36, no. 2, 169–187, 2004.

[28] L. F. Shampine and P. H. Muir. Estimating conditioning of BVPs for ODEs. Math. Comput. Modelling, 40, no. 11-12,
1309–1321, 2004.

Edited by: Pierluigi Amodio and Luigi Brugnano
Received: April 9, 2009
Accepted: October 7, 2009

