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ABSTRACT   

Landslides are type of natural geohazard interfering with many economical and social activities and causing serious 

damages on human life. It is ranked as a great disaster, threatening life, property and environment. Therefore, early 

prediction of landslide prone areas is vital. Variety of causative factors such as glaciers melting, excessive raining, 

mining, volcanic activities, active faults, earthquake, logging, erosion, urbanization, construction, and other human 

activities can trigger landslide occurrence. Then, identification of factors that directly influences the slide events is 

highly in demand. Some topographical, geological, and hydrological datasets (e.g., slope, aspect, geology, terrain 

roughness, vegetation index, distance to stream, distance to road, distance to fault, land use, precipitation, profile 

curvature, plan curvature) are considered to be effective conditioning factors. However, the importance of each factor 

differs from one study to another. This study investigates the effectiveness of four sets of landslide conditioning 

variable(s).  Fourteen landslide conditioning variables were considered in this study where they were duly divided into 

four groups G1, G2, G3, and G4. Three machine learning algorithms namely, Random Forest (RF), Naive Bayes (NB), 

and Boosted Logistic Regression (LogitBoost) were constructed based on each dataset in order to determine which set 

would be more suitable for landslide susceptibility prediction. In total, 227 landslide inventory datasets of the study area 

were used where 70% was used for training and 30% for testing. To this end, in the present research, the two main 

objectives were: 1) Investigation on effectiveness of 14 landslides conditioning factors (altitude, slope, aspect, total 

curvature, profile curvature, plan curvature, Stream Power Index (SPI), Topographic Wetness Index (TWI), Terrain 

Roughness Index (TRI), distance to fault, distance to road, distance to stream, land use, and geology) by analyzing and 

determining the most important factors using variance-inflated factor (VIF), Pearson’s correlation and Chi-square 

techniques. Consequently, 4 categories of datasets were defined; first dataset included all 14 conditioning factors, second 

dataset included Digital Elevation Models (DEM) derivatives (morphometrice factors), third dataset was only based on 5 

factors namely lithology, land use, distance to stream, distance to road, and distance to fault, and last dataset was 

included 8 factors selected using factor analysis and optimization. 2) Evaluate the sensitivity of each modeling technique 

(NB, RF and LogitBoost) to different conditioning factors using the area under curve (AUC). Eventually, RF technique 

using optimized variables (G4) performed well with AUC of 0.940 followed by LogitBoost (0.898) and NB (0.864). 

Keywords: Landslide conditioning factors, machine learning, landslide prediction, Naive Bayes, Random Forest, 

LogitBoost 
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1. INTRODUCTION  

Natural disasters such as landslides or mass movements have recently been reflecting important attention around the 

globe. That is due to their destructive impacts on economy, social and environment particularly in urbanized area 1. 

Moreover, a large number of landside events and their consequences have been boosted due to urban sprawls in risky 

areas 2. Although it may not be fully achievable to prevent landslide occurrence, prone areas can be mapped to mitigate 

future losses in human, infrastructures and resources 3. 

In this regard, remote sensing technology including space born, airborne and Unmanned Aerial Vehicle (UAVs) 

platforms with their broad prosperities can support to implement fast response, recovery, preparation and mitigation 

strategies. From one side, conditioning factor play an important role in landslide susceptibility analysis. These factors 

have been investigated using different remote sensing data such as Spaceborne Synthetic aperture radar (SAR), optical 

LiDAR (Light Detection and Ranging), ground based SAR, terrestrial LiDAR incorporation with in-situ measurements 4. 

However, different study area with different type of data has diverse susceptibility result. Accordingly, effective 

conditioning factors and spatial relationship between them are essential to identify risk zones 5. From another side, 

machine learning methods have influential role to generate better landslide susceptibility maps 6 5 7 8 9. For instance, 

considerable attempts have been conducted to optimize landslide susceptibility mapping; scholars such as Dou et al.  10 

optimized potential of effective factors from fifteen to six factors (distance to faults, distance to geological boundary, 

drainage density, slope angle, lithology and slope aspect) in Sado Island, Japan. They utilized Statistical Index (SI) and 

Logistic Regression (LR) to enhance the susceptibility map, and then they concluded that the model using certain factor 

was more accurate. In another study, Afungang et al. 11 used Informative value Model to enhance the effective 

conditioning factors from 8 to 6 factors. Their training model gained success rate of 87%, and the validation model 

achieved a rate of 90%. Another investigation by Mahalingam et al. 12  addressed the performance of six factors derived 

from digital elevation model (DEM), LiDAR data. They considered six methods for their analysis namely, Support 

Vector Machine (SVM), Frequency Ratio (FR), Weights of Evidence (WoE), LR, Discriminant Analysis (DA) and 

Artificial Neural Network (ANN). Among all, SVM ranked the highest compared to other methods and ANN the lowest. 

However, Hydrology effects and qualitative validation have not been considered in their study. More review studies on 

landslide susceptibility considering different factors and methods can be found through the following scholars 13 14 15 16 17 
4 16. 

Through deep investigation from literatures, it appears that different areas with various environmental and geological 

properties have unique landslide modelling. Hence, the involvement of diverse factor combination with implementation 

of various machine learning methods is still a great interest to gain more realistic susceptibility modelling. In this study, 

4 datasets namely G1, G2, G3 and G4 (derived from initial 14 conditioning factors) were considered to generate 

landslide susceptibility map. First, each dataset, which contains combination of different factors, were extracted from 

most important factor analysis methods namely VIF, Pearson’s correlation, Chi-square. Then, the four datasets were 

implemented as feeding input for performance evaluation in order to develop landslide susceptibility models based on 3 

different machine learning algorithms such as Random Forest (RF), Naive Bayes (NB), and Boosted Logistic Regression 

(LogitBoost). Finally, sensitivity of each modelling technique was evaluated. 

 

2. STUDY AREA AND DATA 

 
2.1 Study area 

Sajadrood catchment with approximate coverage area of 118 Km² and population of 62,809 (census 2006), is one of 

Babolrood sub-catchments, which is located in Mazandaran province, Northern Iran with north latitudes 36°9′ and 36°10′ 
and east longitudes 52°30′ and 52°40′ (Figure 1a).  This region experienced several landslides events along recent years. 

Sajadrood, geologically, categorized as faulted geologic region. In terms of Hydrology, the catchment experiences 

highest amount of raining in the autumn season. The highest elevation in Sajadrood is 3713 meters, in contrast, the least 

level is 30 meters. As it is illustrated in the (Figure 1o), the study area has diverse lithology pattern. For the current 

study, a DEM with 20 meters resolution was generated including a topographic map with scale of 1: 25,000.  

In this research, 227 historical landslide events which known as inventory map gathered by means of satellite images as 

well as field expert surveying in Iran were used. We randomly utilized 70 % of the inventories for training of three 
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machine learning models namely, RF, NB and LogitBoost. we retrained the remaining 30 % of the inventories data for 

testing the models. Due to data availability and according to relevant studies by 1 18 19 20 3 we derived 14 conditioning 

factors from DEM and topographic directory using Arc Map v. 10.5. The condoning factors including as the following: 

altitude, slope, aspect, curvature, profile curvature, plan curvature, Stream Power Index (SPI), Topographic Wetness 

Index (TWI), Terrain Roughness Index (TRI), distance to fault, distance to road, distance to stream, land use and lastly 

Lithology (Figure 1b-o). 

 

 

2.2 Landslide conditioning factors preparation 

Process of factor arrangements and selection was carried out according to previous studies such as 3 21. This process is 

described briefly in this section.  

 

Altitude: Alternation in the altitude has noticeable effect on landslide susceptibility models. In our study, we divided the 

altitude to 5 classes via natural break pattern. Accordingly, its classes were defined from minimum value of 74 meters to 

maximum of 1500 meters (Figure 1b). 

 

Slope: Slope is considered as one of critical causing landslide hazard in areas with sharp slope due to soil weakness and 

stresses. In this study, slope angle was classified into 5 levels, including: (i) 0°-8.4°, (ii) 8.5°-13°, (iii) 14°-17°, (iv) 18°- 

23°, and (v) 24°-48° (Figure 1c). 

 

Aspect: This factor, generally, represents the compass orientation that a slope or hillshade confronts. It is also can be 

used as indication for some measurements of plants group, soil moistures and evaporation. It is categorized into 9 classes 

including: (i) flat, (ii) north, (iii) northeast, (iv) east, (v) southeast, (vi) south, (vii) southwest, (viii) west, and (ix) 

northwest (Figure 1d). 

 

Curvature, Profile curvature, Plan curvature: Surface curvature reveals the earth’s ground shape including soil run off. 
Profile curvature is in parallel direction with maximum slope. It has influence on speeding up or slowing down of run off 

on the surface. The other factor namely plan curvature, however, is at the 90 degrees to the orientation of maximum 

slope which indicates the encounter or separation of flow on a surface. In principal, curvature is summation of plan and 

profile curvature. Further detail is addressed in the reference 22. In this research, total, profile and plan curvature were 

categorized based on three clasess namely concave, flat and covex 23 (Figure 1e,f,g). 

 

Stream Power Index (SPI), Topographic Wetness Index (TWI), Terrain Roughness Index (TRI): SPI illustrates the 

discharge erosion of a given point in a surface. The SPI and risk of erosion increase if the amount of supply up-stream 

water increases. TWI, on the other hand, estimates amount of wetness in the soil. Whereas, TRI indicates the variation in 

the elevation of neighboring cells in a digital elevation cells network. We classified the SPI, TWI, TRI (Figure 1h,i,j) 

based on 5 classes as per reference 1, which further definitions are available there.  

 

Distance to fault, Distance to road, Distance to stream: Potential of landslide occurrence generally increases by 

adjacent to fault, road, and stream. This may be related to human activities and erosion in those areas. Considering 

references 24 25 23 we classified these factors into 5 classes via ARCGIS 10.5 software by implementing Euclidean 

distance function (Figure 1k, l, m). 
 

Land use: Land use map illustrates how a land resources are used for. As an example, in rural area a land can be used as 

agriculture, forestry or water bodies. While, in urban area, a land can be used as industrial purpose, housing, green 

spaces or parks. In this research, we categorized the land use based on 6 classes using supervised classification with 

accuracy of 90 %, namely agricultural lands, harvested forest, massive forest, residential land, rural lands and finally 

water and rain gardens (Figure 1n). For this scope, we utilized satellite image of Landsat Thematic Mapper which was 

taken in 2017. 

 

Lithology: This factor considers the physical characteristics of outcrop rocks in the case study. The study area has 13 

types of lithology classes (Figure 1o).   
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Figure 1. a) study area, b) Altitude, c) Slope, d) Aspect, e) Curvature, f) Profile curvature, g) plan curvature, h) SPI, i) 

TWI, j) TRI, k) distance to fault, l) distance to road, m) distance to stream, n) landuse, o) lithology. 

 

3. METHODOLOGY 

Figure 2 shows the overall methodology flowchart of this study. First, the dataset that we use consisted of 227 landslide 

inventory points collected by the Geological Survey of Iran from the Sajadrood District of the Sari County. 70% of the 

dataset was used for training and 30% was used for testing. Next, the dataset was divided into four groups, G1, G2, G3, 

and G4. Then three machine learning algorithms namely, NB, RF, and LogitBoost were constructed on each group of 

factors. Lastly, Area Under Curve (AUC) was analyzed to evaluate the performance of three groups of conditioning 

factors in each model.  

 

3.1 Conditioning factor analysis and optimization  

We implemented the highly related features discard approach using an estimation of variance-inflated factor (VIF) as the 

following equation:  

                                                                                   (1)                       
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where 𝑅′ represent the multi correlation coefficient among single factor and other factors in the model.  In the this study, 

factors with a VIF value greater than 5 or 10 were identified as the high correlation and should be removed 26. The 

correlation coefficient of two conditioning factors was calculated using Pearson's correlation coefficients method (Eq. 2):  

 

 

(2) 

In landslide susceptibility analysis, both training samples and computational cost are generally raised by increasing the 

conditioning factors. This issue leads to misguiding the regression coefficients.  Accordingly, in order to decrease the 

obstacles, these factors require an optimization process which is known as factor optimization. In this investigation, the 

Chi-square was implemented as factor optimization method to drop out the senseless components at confidence grade of 

0.05 (95%). 

 
Figure 2. Methodological flowchart. 

 
 

 

3.2 Principle of machine learning models  

3.2.1 Random forest (RF) 

Random forest (RF) is one of the powerful non-parametric learning approaches which is extensively used in variety of 

geospatial applications such as image classification and analysis 27 28. It relies on multiple decision trees from set of 

training data. In complex dataset, compared with other decision trees, RF is less sensitive to over-fitting obstacles. The 

output of every individual random forest is anticipated by a decision tree, and that output receives a weightage by votes. 

The final classification generated from the greater part of voting for an output accompanying a convergency level 2930. 
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3.2.2 Naive Bayes (NB) 

Naive Bayes (NB) is one of machine learning classifiers, which is well-employed in remote sensing applications such as 

landslide susceptibility models 313233. It is considered as a part of simple Probabilistic classifiers family, Bayes’s law 
based and its performance relies on self-reliant variables estimation 34. It is noticeably convenient to use because there is 

no complex repeated parameter assessment in its structure 35. 

3.2.3 Boosted Logistic Regression (LogiBoost) 

LogitBoost is boosting algorithm which is mainly used for best fitting the linier logistic regression 36. It determines the 

over-fitting obstacle using LogitBoost design 37. Basically, a singular class is well-fitted with least square fitting using 

additional logistic regressions, taking an example of landslide and non-landslide events 38. 

3.3 Validation  

In this research, the area under the receiver operating characteristic curve (AUC) by evaluation the prediction and 

success rates were looked at to evaluate the performance of three machine learning algorithms namely, NB, RF and 

LogitBoost. The AUC value is classified into scales related to qualitative classes. Values from 0.5-0.6 indicates poor, 

0.6-0.7 average, 0.7-0.8 as good, 0.8-0.9 means very good and 0.9-1 is exceptional (or excellent) 26 

4. RESULT  

Results are presented in two sections.  

(i) First, factor analysis and optimization using VIF, Pearson’s correlation, and Chi-Square is presented.  

 

(ii) Second, we review the performance of three machine learning algorithms with four different datasets (G1, G2, 

G3, and G4). Then the AUC accuracies are used to compare the outcomes of the models. 

 
4.1 Factor analysis and optimization results  

Both VIF and Pearson's coefficients were used to detect the multicollinearity through the conditioning factors. A value of 

VIF greater than 5 or 10 implies a high correlation, which means higher multicollinearity39. According to Table 1, the 

highest VIF value was 3.02255E+13 (curvature). Moreover, the slope, plan curvature, profile curvature and TRI with 

VIF values of 23.29, 1.11475E+13, 1.18828E+13, 23.51 were detected as the highly correlated factors. In addition, the 

linear correlations between two conditioning factors were calculated using Pearson’s correlation coefficient (Table 2). 
The coefficient more than 0.7 indicate high collinearity18. As it can be seen in Table 2, the highest correlation was 

between TRI and slope with a value of 0.9. Moreover, there were strong correlation between profile curvature and 

curvature, and curvature and plan curvature with a value of 0.82 and 0.80, respectively. In this case, the simple method to 

overcome with high Pearson correlation between conditioning factor is to remove one of the factors from the dataset and 

rebuild analtysis 1. On the other hand, factor optimization using Chi-Square indicated that higher Chi-square values with 

p-value less than 0.05 ranks the significance of each factor for landslide prediction. Therefore, the factor optimization 

results determined that distance to road, altitude, lithology, TWI and distance to fault were found the most important 

landslide conditioning factors; however, the land use and slope and distance to stream were identified as less significant 

factors (Figure 3). 

 

Table 1. The estimated variance information factor (VIF) for landslide conditioning factors. 

Variable 

Summary statistics and multicollinearity  

Means Std.Devs Multiple VIF 

Altitude 507.60 236.5 0.67 1.814552713 

Slope 16.07 8.2 0.98 23.29487996 

Curvature 0.05 0.4 1.00 3.02255E+13 

Plan Curvature 0.03 0.3 1.00 1.11475E+13 

Profile Curvature -0.02 0.3 1.00 1.18828E+13 
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TWI 6.37 2.1 0.63 1.658710203 

TRI 6.50 3.4 0.98 23.51014998 

SPI 17070.64 152054.2 0.30 1.100591715 

Distance to Stream 44.90 32.1 0.24 1.062830076 

Distance to Road 144.73 248.6 0.39 1.183368206 

Distance to Fault 501.08 436.9 0.18 1.032186586 

Landuse 3.13 0.7 0.07 1.005608413 

Lithology 7.20 3.0 0.57 1.481543944 

Aspect 4.61 2.8 0.03 1.0008435 

 

Table 2. Pearson correlations between landslide conditioning factors. 

Variable 

Correlation matrix between landslide conditioning factors 

Altitude Slope Total 

Curvatur

e 

Plan 

Curvatur

e 

Profile 

Curvatur

e 

TWI TRI SPI Distance 

to 

Stream 

Distance 

to Road 

Distance 

to Fault 

Landuse Geology Aspect 

Altitude 1.00 0.53 0.11 0.02 -0.15 -0.30 0.55 -0.07 0.02 0.55 0.05 -0.21 -0.69 -0.12 

Slope 0.53 1.00 0.09 0.04 -0.10 -0.47 0.99 -0.12 0.05 0.32 0.08 -0.08 -0.45 -0.07 

Total Curvature 0.11 0.09 1.00 0.80 -0.82 -0.55 0.07 -0.18 0.41 -0.12 0.09 0.00 0.03 -0.03 

Plan Curvature 0.02 0.04 0.80 1.00 -0.31 -0.49 0.03 -0.09 0.44 -0.17 0.06 0.00 0.03 -0.03 

Profile Curvature -0.15 -0.10 -0.82 -0.31 1.00 0.39 -0.08 0.20 -0.22 0.02 -0.09 -0.01 -0.02 0.03 

TWI -0.30 -0.47 -0.55 -0.49 0.39 1.00 -0.44 0.46 -0.31 0.04 -0.09 0.04 0.18 0.02 

TRI 0.55 0.99 0.07 0.03 -0.08 -0.44 1.00 -0.09 0.04 0.35 0.08 -0.08 -0.47 -0.07 

SPI -0.07 -0.12 -0.18 -0.09 0.20 0.46 -0.09 1.00 -0.10 0.00 0.00 -0.11 0.02 -0.06 

Dis. to Stream 0.02 0.05 0.41 0.44 -0.22 -0.31 0.04 -0.10 1.00 -0.13 0.19 -0.02 0.08 -0.04 

Dis. to Road 0.55 0.32 -0.12 -0.17 0.02 0.04 0.35 0.00 -0.13 1.00 -0.09 -0.06 -0.39 -0.09 

Dis. to Fault 0.05 0.08 0.09 0.06 -0.09 -0.09 0.08 0.00 0.19 -0.09 1.00 0.03 0.21 -0.07 

Landuse -0.21 -0.08 0.00 0.00 -0.01 0.04 -0.08 -0.11 -0.02 -0.06 0.03 1.00 0.14 0.04 

Lithology -0.69 -0.45 0.03 0.03 -0.02 0.18 -0.47 0.02 0.08 -0.39 0.21 0.14 1.00 0.08 

Aspect -0.12 -0.07 -0.03 -0.03 0.03 0.02 -0.07 -0.06 -0.04 -0.09 -0.07 0.04 0.08 1.00 

 
 

 
Figure 3. The important plot of conditioning factors using Chi-Square. 
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4.2  Models validation 

Finally, for the evaluation of the prediction models and the best choice of datasets, the results of AUC for 4 groups of 

datasets using 3 models are shown in Table 3. RF model’s prediction performances were reported by the value of 0.939 
in G1, 0.819 in G2, 0.903 in G3, and 0.940 in G4 dataset. The second model, NB, obtained the maximum AUC of 0.866 

using G3, and minimum AUC of 0.658 using G2 dataset. Lastly, LogitBoost model’s maximum and minimum 
performance were recorded by 0.911and 0.688 using G3 and G2, respectively. All models had satisfactory results except 

NB and LogitBoost using DEM-derived variables (G2). 

 

Table 3. The ROC area value for RF, NB, and LogitBoost. 

Models ROC AREA 

G1 G2 G3 G4 

RF 0.939 0.819 0.903 0.940 

NB 0.857 0.658 0.866 0.864 

LogitBoost 0.893 0.688 0.911 0.898 

 

5. DISCUSSION 

Based on the results of factor analysis and optimizations, between slope and TRI, we removed slope factor, because it 

was labeled redundant data by VIF and Pearson’s correlation, also it was ranked as one of the least important factors by 

Chi-square analysis, as well. Similarly, distance to stream, land use, all curvatures variables were excluded from G1 to 

create the last group of data (G4) including the most significant factors namely, distance to road, altitude, lithology, 

TWI, distance to fault, aspect, SPI, and TRI. Consequently, three aforementioned models were applied on G1, G2, G3, 

and G4. 

According to Table 3, RF model successfully was evaluated by very good and excellent level of prediction performance 

in all 4 groups of dataset and it reached almost the highest rate of success among 3 applied models, as well. Applying 

RF, G2 dataset (DEM derivatives only) represented the lowest reliability to compare with G1, G3, and G4, while the 

optimization procedures lead to the best AUC result in G4. However, the AUC’s values enhancement from using all 14 

conditioning factors (G1) to optimized factors (G4) were not significant by exploiting RF. This highlights the power of 

RF model to handle all types of variables and causative factors even redundant or incomplete datasets. The similar 

pattern was followed by NB model whereas, NB was not successful in using G2 and it obtained an average level of AUC 

rate. Meanwhile, LogitBoost model obtained an average accuracy when it was dealing with G2 dataset, as well. In 

contrast, LogitBoost performed excellent with G3 dataset. It showed LogitBoost result was insignificantly better than RF 

using only 5 factors (G3). Generally speaking, RF was the best prediction model for landslide susceptibility mapping 

(AUC=0.940) and factor optimization could slightly improve the accuracy of the results. In addition, NB and LogitBoost 

models were not reliable in a certain place where we have incomplete and redundant data such as G2. 

6. CONCLUSION 

In this study, the precision of four groups of conditioning factors were compared to analysis and determinate the most 

important factors for landslide susceptibility mapping. The first dataset named as G1 included 14 landslide conditioning 

factors (altitude, slope, aspect, total curvature, profile curvature, plan curvature, SPI, TWI, TRI, distance to fault, 

distance to road, distance to stream, land use, and geology). The second dataset G2 included only DEM derived factors. 

However, the third dataset (G3) was only based on 5 factors namely lithology, land use, distance to stream, distance to 

road, and distance to fault. In other words, G3 included all factors excluding DEM-derived factors. The last dataset G4 

included 8 factors which selected using factor analysis (VIF, Pearson’s correlation) and factor optimization (Chi-square 

technique). The study analyzed landslide susceptibility on a catchment scale in Sajadrood, Iran, using well-known 

machine learning techniques, NB, RF and LogitBoost. This research emphasized on the significance of distance to road, 
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altitude, and lithology as landslide causal factors. The results showed the RF has higher accuracy in almost every group 

of conditioning factors. The multiple decision trees in RF were successfully trained by all forms of datasets and it was 

proved by our research. However, NB and LogitBoost algorithms had an average performance in G2 which was only 

DEM-derived factors. The level of accuracy improvement using factor optimization methods was not considerably 

highlighted while NB and LogitBoost models were significantly sensitive to the use of morphometric datasets only. To 

great extent, the results of RF technique showed this algorithm was more suitable for landslide prediction with all type of 

variables. 
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