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In May 2020, many jurisdictions around the world began lifting physical distancing

restrictions against the spread of severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2). This gave rise to concerns about a possible second wave of coronavirus

disease 2019 (COVID-19). These restrictions were imposed in response to the presence

of COVID-19 in populations, usually with the broad support of affected populations.

However, the lifting of restrictions is also a population response to the accumulating

socio-economic impacts of restrictions, and lifting of restrictions is expected to increase

the number of COVID-19 cases, in turn. This suggests that the COVID-19 pandemic

exemplifies a coupled behavior-disease system where disease dynamics and social

dynamics are locked in a mutual feedback loop. Here we develop aminimal mathematical

model of the interaction between social support for school and workplace closure and the

transmission dynamics of SARS-CoV-2. We find that a second wave of COVID-19 occurs

across a broad range of plausible model input parameters governing epidemiological and

social conditions, on account of instabilities generated by behavior-disease interactions.

The second wave tends to have a higher peak than the first wave when the efficacy

of restrictions is greater than 40% and when the basic reproduction number R0 is less

than 2.4. Surprisingly, we also found that a lower R0 value makes a second wave more

likely, on account of behavioral feedback (although a lower R0 does not necessarily

cause more infections, in total). We conclude that second waves of COVID-19 can

be interpreted as the outcome of non-linear interactions between disease dynamics

and social behavior. We also suggest that further development of mathematical models

exploring behavior-disease interactions could help us better understand how social and

epidemiological conditions together determine how pandemics unfold.

Keywords: COVID-19, epidemic model, behavioral fatigue, coupled behavior-disease system, SARS-CoV-2,

evolutionary game theory, imitation dynamics, social learning
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1. INTRODUCTION

The COVID-19 pandemic has given rise to an “epidemic of
models” [1]. Diverse mathematical models of SARS-CoV-2
transmission (the virus that causes COVID-19 disease) have been
instrumental in capturing infection dynamics and informing
public health control efforts to mitigate the COVID-19 pandemic
and reduce the mortality rate. The concept of “flattening the
curve” comes from model outputs that show how reducing the
transmission rate through efforts such as contact tracing and
physical distancing can lower and delay the epidemic peak [2].

On account of limited options for pharmaceutical
interventions such as vaccines, and inadequate testing capacity
in many jurisdictions, the COVID-19 pandemic has also
been characterized by large-scale physical distancing efforts–
including school and workplace closure–being adopted by
entire populations despite heavy economic costs. Mathematical
models of SARS-CoV-2 transmission and control show that
physical distancing can mitigate the pandemic [2–5] and this
has subsequently been backed up by empirical analyses of case
notification data. These analyses show how mitigation measures
have reduced the effective reproduction number of SARS-CoV-2
below one, meaning that each infected case infects less than one
person on average [6–8]. However, the population’s willingness
to support school and workplace closures could wane over
time, as the economic costs of closure accumulate [9]. This has
given rise to the possibility of a second wave of COVID-19 in
many populations.

The large role played by physical distancing during the
COVID-19 pandemic exemplifies a coupled behavior-disease
system, in which human behavior influences infectious disease
transmission and vice versa [10–16]. These systems are part
of a broader class of pervasive systems in which human
behavior both influences, and responds to, the dynamics of our
environment. Hence, one might better speak of a single, coupled
human-environment system, instead of just human systems or
environmental systems in isolation from one another [17–19].

The interactions between disease dynamics and behavioral
dynamics in COVID-19 are emphasized by research showing
that the perceived risk of SARS-CoV-2 infection is a predictor
of adherence to physical distancing measures [20] and moreover
that individuals respond to the presence of COVID-19 cases
in their population by increasing their physical distancing
efforts [21]. In turn, physical distancing has been shown
to reduce the number of cases [6], completing the loop of
coupled behavior-disease dynamics. Some models have already
begun exploring this interaction between disease dynamics and
individual behavior and/or public health policy decision-making
for COVID-19 [5, 16, 22–26]. The emergence of a second wave
of COVID-19 on account of population attitudes to physical
distancing has also been explored in mathematical models [27].

The social aspects of behavior-disease interactions seem to
be relevant for COVID-19 decision-making. Individuals do not
necessarily make the best possible (most rational) response to
the presence of COVID-19 cases in their population. Instead,
it has been found that political leaders can be influential
in convincing individuals to change their physical distancing

efforts [23]. Additionally, jurisdictions experiencing outbreaks
that start relatively late appear to learn from the experiences of
jurisdictions that were affected earlier [28]. Meanwhile, other
research emphasizes a need for more work on the socio-
economic aspects of the pandemic [29]. These findings suggest
that imitation and social learning processes are important
for understanding interactions between disease dynamics and
decision-making for COVID-19, which ultimately determine the
epidemic curve.

Here we model the coupled behavior-disease dynamics of
SARS-CoV-2 transmission and population support for school
and workplace closure, using a simplified theoretical model. We
opted for a simple model that avoids heterogeneities because our
objective is to gain insights into potential interactions between
social and behavioral dynamics. Public opinion evolves according
to social learning rules [10, 18], and public opinion in support
of closure depends both on COVID-19 case incidence and
accumulated socio-economic losses due to school and workplace
closure. A central decision-maker chooses a time to initially
close schools and workplaces when the outbreak begins, but
may subsequently open and close them again depending on how
public opinion ebbs and flows. Meanwhile, disease dynamics are
described by a compartmental epidemic model [30]. The details
of our mathematical model are described in the section 2. We
analyze the model to characterize the conditions that give rise to
a second wave of COVID-19 in the population.

2. METHODS

2.1. Model Equations
Transmission dynamics are given by an SEIR model, modified to
take physical distancing into account,

dS

dt
= −β(1− C(t))SI,

dE

dt
= β(1− C(t))SI − σE,

dI

dt
= σE− γ I,

dR

dt
= γ I, (1)

where S is the proportion of susceptible individuals
(“susceptible”), E is the proportion of individuals who have
been infected but are not yet infectious (“exposed”), I is the
proportion of individuals who are both infected and infectious
(“infectious”), and R is the proportion of individuals who are
no longer infectious (“removed”). The time-varying parameter
C(t) captures the impact of school and workplace closure on the
transmission of SARS-CoV-2. β is the baseline transmission rate
in the absence of school/workplace closure, σ is the time rate at
which an exposed person becomes infections, and γ is the time
rate at which an infectious person recovers. We use an SEIR
model since they are appropriate for population-level modeling
epidemics of acute, self-limiting infections that confer natural
immunity [30, 31]. Since our focus is on physical distancing and
lockdown, we do not include compartments for testing, contact
tracing and asymptomatic transmission.

The decision-maker decides to “turn on” closure at some time
tclose, and then decides to “turn off” closure when population
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support for closure, x(t) drops below 50%. HenceC(t) is given by:

C(t) =

{

0 t < tclose or x < 50%,
C0 t ≥ tclose and x ≥ 50%,

where C0 is a combined measure of how many workplaces
are closed (the remainder being essential workplaces such as
hospitals) as well as the effectiveness of physical distancing in
those workplaces that remain open.

Approaches to modeling human opinions and decision-
making vary greatly and include agent-based network models
based on complex systems science [32–34], evolutionary game
theory (imitation dynamics) [10, 11, 13], mathematical models
based on psychological theory [35] and other approaches. For
our study system, the imitation dynamic approach is suitable
because (1) imitation dynamics are sufficient to describe the
population-level opinion dynamics when individuals learn from
one another and response to changes in their utility functions,
as epidemic and socio-economic conditions evolve [36]; (2)
differential equations are usually easier to analyze (either
rigorously or through numerical analysis) than agent-based
models. The percentage of the population that supports school
and workplace closure, x, evolves according to an imitation
dynamic as:

dx

dt
= κx(1− x)(ωI − ǫL), (2)

where κ is the social learning rate, ω is sensitivity to infection
prevalence, and ǫ is sensitivity to accumulated socio-economic
losses L. Support for closure goes up when the prevalence of
infection goes up, but it declines when the accumulated socio-
economic losses, L, become too large. The quadratic term x(1−x)
represents a social learning dynamics where individuals sample
others at some rate, and they change opinion based on the utility
difference ωI − ǫL (A full derivation of this type of differential
equation appears in [18]). The social learning rate κ represents
how often individuals discuss opinions about lockdown. The
parameterω control how the population opinion about lockdown
reacts to the prevalence of infection, and it is influenced by
the perceived risk of the severity of infection (frequency of
severe cases, hospitalizations, and deaths). The parameter ǫ

controls how population opinion about lockdown reacts to socio-
economic losses and is influenced by the perception of how
severe the socio-economic losses as a function of media coverage,
for instance.

We can absorb ω into κ , yielding:

dx

dt
= κω · x(1− x)(I − ǫ/ω · L) (3)

and then, setting κ ′
= κω and ǫ′ = ǫ/ω and dropping the primes

for simplicity we obtain

dx

dt
= κx(1− x)(I − ǫL). (4)

Finally, the variable L is a phenomenological representation of
accumulated socio-economic losses obeying

dL

dt
= αC(t)− δL, (5)

where α controls the rate at which school and workplace
closure impacts socio-economic health of the population, and
δ is a decay rate that represents adjustment to baseline
losses. These two parameters represent the sum effect of
multiple processes. For instance, α is influenced by what
proportion of workers are affected by lockdown through loss
of employment or working hours; household savings and debt;
and economic stimulus packages. Similarly, δ is determined by
economic discounting, the ability of individuals to adjust to new
economic circumstances (for instance by offering new products
and services to meet demand in a pandemic market), and
other factors.

2.2. Parameterization
A full list of parameter definitions, baseline values, and literature
sources appears in Table 1. The transition rates σ and γ , were
set based on COVID-19 epidemiological literature [37–39, 44,
45], while the transmission rate β was estimated. Note that
the last compartment of the model, R, does not correspond
to a stage of illness preceding recovery but rather a stage of
infectiousness [31], which wanes quickly after the imposition
of case isolation, in addition to the decline in viral shedding
after the first 5 days [46]. Moreover, the infectious stages is
preceded by a latent stage in which the virus is still replicating
inside its new host until it can reach a level where the host can
transmit the infection to others. These features of COVID-19
disease history guided our choice of γ and σ . Since the prevalence
I(t) as used in the model is different from case incidence
as appears in daily lab-confirmed case reports, a new state

TABLE 1 | Parameter values, baseline values, and literature sources.

Parameter Meaning Baseline

value

Range Source

1/σ Latent period 2.5 days 2.0–3.0 [37]

1/γ Infectious period 5 days 3.0–7.0 [37–39],

β Transmission rate 0.54/day 0.42–0.54 [40],

Calibrated

C0 Closure efficacy 0.63 0–0.67 C0 =

1− 1/R0,

[30]

α Rate of

socio-economic

loss

0.0657/day 0.00273–0.0822 Calibrated

δ Discounting rate 0.0033/day 0.00014–0.0041 δ = 0.05α,

[41]

κ Social learning rate 1.5/day 1–500 Calibrated;

[42, 43]

ǫ Sensitivity to

infection

0.005 0.001–0.01 Calibrated
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variable denoting daily infection incidence, Ii was defined as the
difference between accumulated health outcomes. That is, Ii(t) =
H(t) − H(t − 1), where H(t) is the cumulative number of cases
at time t:

dH

dt
= σE(t). (6)

The state variable Ii(t) was used when fitting the model to daily
case notifications was required.

Because ǫ, κ , and α and ω encapsulate many different factors,
we take the approach of inferring parameter values by fitting
the model to data. (We also explore the impact of variation in
these parameter values in sensitivity analysis through parameter
planes). To avoid over-fitting, δ is fixed based on commonly
used discounting rates. The social parameters κ and ǫ were
calibrated. While κ dictates how quickly population opinion
changes, ǫ dictates how sensitive the population is to changes in
case reports relative to socio-economic losses. κ was estimated
from behavior early in the epidemic when socio-economic losses
are small as dx/dt ≈ κx(1 − x)I. We derived I(t) from
reports of confirmed positive cases from the early stages of the
United States epidemic, adjusted by a case under-ascertainment
factor of 8.7 in the United States [42]. We used 21 January
2020 as the initial date of the epidemic, when the first case of
COVID-19 was reported in the United States. Most populations
rapidly adopted physical distancing measures against COVID-
19. Gallup polls indicate that 59%/79%/92% of the United States
public avoided going to events with large crowds, as of 13-
15 March/16-18 March/20-22 March 2020 respectively [43].
Similarly, 30%/54%/72% avoided public places, and 23/46/68%
avoided small gatherings [43]. Taking the average of these
responses across the three question types, we obtain that x(52) =
0.373, x(59) = 0.597, x(66) = 0.773 where time is measured in
days since January 21. Finally, we shifted these points forward
14 days as physical distancing at time t will not be reflected
in infection data until t + 14 due to the delays in testing and
symptom recognition. We assumed x(0) = 0.25 when fitting to
these three data points using least-squares error minimization for
the κ estimation.

To estimate β we used least-squares error minimization to
fit the modeled Ii(t) to lab-confirmed daily case reports in the
United States from the early epidemic [40]. The fitted infection
trajectory, Ii is in good agreement with reported cases in the US
during the initial phase of the epidemic leading up to 4 April
2020 (Supplementary Figure 1b). Our inferred estimate β =

0.54/day yields a basic reproduction number R0 ≈ β/γ = 2.7
[30], which agrees well with published estimates of R0 for SARS-
CoV-2 [47]. For the special case where there is an absence of
any control measures, the model predicts that about 80% of
the population becomes infected by the end of the outbreak
(Supplementary Figure 1a).

The remaining two parameters, ǫ and α, were calibrated
to obtain the result that x remains high after the initial surge
in support for closure, but begins to drop after 2 months.
This period of time was based on the observation that 2
months that have elapsed since the declaration of the national

emergency in the United States on 13 March 2020, and the
process of re-opening state economies that has unfolded over
the month of May 2020. These two parameters control the
timescale of lifting school and workplace closure based on its
socio-economic impacts. Finally, the parameter δ was set such
that δ = 0.05α on the basis of commonly used discounting rates
in economics and assuming that economic losses accumulated
through the αC(t) term would be discounted at a rate of 5% per
year [41].

In order to illustrate curve flattening and show that the
model has the expected response to reduction in the transmission
rate due to closure, we generated model timeseries of I(t) for
the special case where closure is applied throughout the entire
outbreak. The epidemic curve for different values of the closure
efficacy C0 is shown, ranging from C0 = 0 (no intervention)
to C0 = 0.6 (Supplementary Figure 1c). The timeseries show
that the epidemic curve is flattened and delayed as closure
becomes more efficacious, which reduces peak demand for
intensive care beds and buys time for developing pharmaceutical
interventions like vaccines and antiviral drugs, improving testing
capacity, and establishing novel approaches to patient care.
For the remainder of our analysis, to determine C0 it was
assumed that C0 should be large enough to bring the effective
reproduction number Reff below 1, reflecting the observed
success in multiple jurisdictions where physical distancing and
closure have maintained Reff < 1 [6–8]. Hence we chose
C0 = 1 − 1/R0 based on the elimination threshold for the
SEIR model [30]. We also assumed tclose = 20 days but
in practice, our second requirement that x ≥ 50% was not
reached until after 20 days in all of the model simulations. We
analyzed numerical simulations of our model to determine the
conditions where one or more waves of SARS-CoV-2 infections
could occur. A wave was defined as a local maximum in the
prevalence I(t), and the simulation time horizon was 730 days
(2 years).

3. RESULTS

3.1. Mechanisms Causing a Second Wave
At our baseline parameter values, time series of infection
prevalence I(t) and support for closure x(t) exhibit non-
trivial time evolution, including a second wave of COVID-
19 infections (Figure 1). These results illustrate the basic
mechanisms underlying the model dynamics. As infection
prevalence grows, support for closure rises and eventually crosses
the 50% threshold by t = 80 days. After this, infection
prevalence peaks and begins to decline. Support remains at
a high plateau for a period of 2 months. After this period,
infection prevalence remains small while the socio-economic
impacts of lockdown continued to mount. This causes waning
of support for lockdown, and hence restrictions are lifted by
t = 160 days. Shortly thereafter, prevalence begins to rise
again. Support for closure correspondingly rises again, but not
quickly enough to prevent a second wave of COVID-19 with
a peak at t = 240 days that is higher than the peak of the
first wave.
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3.2. Epidemiological Conditions for a
Second Wave
Our goal was to gain insight into the conditions that generate
a second wave of COVID-19, and to test the robustness of
the predicted result at our baseline parameter values illustrate
in Figure 1. Hence we explored the model dynamics in the
neighborhood of our baseline parameter values (Table 1) using
parameter planes that show how the dynamical regimes of the
model vary with changes in two model parameters (one on each
axis) around the baseline values. We explored two dynamical
outcomes: the number of waves in the course of the entire
pandemic, and the ratio of the peak height of the second wave
to the peak height of the first wave.

We start by exploring the effects of variation in the
epidemiological parameters β (transmission rate) and γ (inverse
of the average duration of infectiousness) in Figure 2, while
keeping the rest of the parameters at baseline values. The results
show that one, two, or three waves are possible under variation
in these parameter values. A second wave characterizes most of

FIGURE 1 | Second wave of COVID-19: time series plot of the number of

infected individuals (left) and proportion of individuals practicing physical

distancing (right). The results are obtained for C0 = 0.63, R0 = 2.675,

1/σ = 2.5, γ = 1/5, κ = 5, ǫ = 0.008, α = 1.0 ∗ 24/365, and

δ = 0.05 ∗ 24.0/365 and initial conditions S(0) = 1− 1/1000000, E(0) =

0, I(0) = 1/1000000, R(0) = 0, x(0) = 0.25, L(0) = 0, and H(0) = 0.

the β − γ plane, however. A third wave appears when 1/γ is
between 5 and 7 days and β is up to 0.4/day, corresponding to
R0 < 2 (we note that most estimates place R0 > 2 for SARS-CoV-
2 [47, 48]). The second peak may be higher or lower than the first
peak, depending on the β and γ parameter combinations. For
R0 > 2.4, the second peak tends to be lower than the first, while
for R0 < 2.4 is higher.

The increase in the number of waves with a decrease in β

(or equivalently, a decrease in the basic reproduction number
R0) is notable and surprising. The classical SEIR model without
behavior shows the opposite effect: increasing R0 when the
endemic equilibrium is stable causes damped oscillations to be
sustained for a longer period before the oscillations die down.
Our model shows different dynamics than the classical SEIR
model on account of strong behavioral feedback. When R0 is
sufficiently high, the infection can pass through the population
rapidly and cause a large amount of herd immunity to build up
before the population response causes a late dampening of the
epidemic curve. As a result of herd immunity, a second wave
is not possible. But when R0 is smaller, the spread of SARS-
CoV-2 is slow enough to allow a timely population response that
flattens the curve and ends the first wave. After the first wave,
cases are low, but so is herd immunity. In the meantime, the
economic consequences of lockdown continue to build, causing a
waning of support for continued lockdown, which in turns sparks
a second wave among the remaining susceptible individuals. This
process can be repeated in third and subsequent waves for some
parameter values. But we emphasize that multiple waves do not
necessarily correspond to more COVID-19 cases overall.

Changes in the duration of infectiousness 1/γ and the
duration of the latent stage 1/σ around baseline values do not
change the number of peaks: a secondwave is still observed across
the range we explored (Supplementary Figure 2). However, the
second peak is higher than the first when 1/γ is between 3 to 5
days, while out of this range the second peak is lower. The lack
of dependence of dynamics on σ is expected. When 1/γ < 3
days, the second peak is less severe because R0 drops below levels

FIGURE 2 | Parameter plane showing model dynamics as they vary with changes in the transmission rate β and the rate γ at which the infectious period ends, for the

number of COVID-19 waves (A) and the ratio of peak height of the second wave to the first wave peak (B). Other parameters are at baseline values (Table 1).
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that are feasible for continued transmission in the population.
In contrast, when 1/γ > 5 days the second peak is less severe
because a heightened R0 causes rapid build-up of herd immunity
in the first wave of infection.

3.3. Socio-Economic and Intervention
Conditions for a Second Wave
Next we explored the effect of variation in intervention,
economic and social parameters. The parameter plane for α, the
rate at which economic losses due to closure accumulate, and
δ, the discounting rate for losses, shows little variation in these
values across the ranges we explored (Supplementary Figure 3).
Two waves are predicted and the peak of the second wave is
higher than the first wave for almost all parameter combinations.
The only exception is that when α is very small, only a single wave
occurs because the population is willing to tolerate economic
losses indefinitely. As a result, x remains high over the entire time

horizon of the simulation and COVID-19 is effectively controlled
throughout this period.

The behavioral parameter κ is a measure of how quickly novel

social behavior spreads through a population as disease cases
are reported. It has a large influence on the model dynamics,

as represented in the κ − α, κ − ǫ, and κ − C0 parameter

planes (Figures 3–5). Higher values of κ indicate that individuals
imitate more quickly. At our baseline value κ = 5/day, we
observe a second wave. As the value of κ increases from this
baseline value, the number of waves increases from two to six
or seven in all three parameter planes, unless the effectiveness
of closure (C0) is so low that the population experiences a
single large epidemic that rapidly confers herd immunity to
everyone (Figures 3–5). As κ is reduced sufficiently from its
baseline value, the second wave is lost as expected, since we
enter a parameter regime where the population responds with
an unrealistic slowness to the presence of COVID-19, and it

FIGURE 3 | Parameter plane showing model dynamics as they vary with changes in the rate α at which socio-economic losses accrue and the rate κ that controls the

social learning rate, for the number of COVID-19 waves (A) and the ratio of peak height of the second wave to the first wave peak (B). Other parameters are at

baseline values (Table 1).

FIGURE 4 | Parameter plane showing model dynamics as they vary with changes in the rate κ that controls the social learning rate and the parameter ǫ which

controls how sensitive the population is to economic losses relative to infection prevalence, for the number of COVID-19 waves (A) and the ratio of peak height of the

second wave to the first wave peak (B). Other parameters are at baseline values (Table 1).

Frontiers in Physics | www.frontiersin.org 6 October 2020 | Volume 8 | Article 574514

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Pedro et al. Conditions for Second COVID-19 Wave

FIGURE 5 | Parameter plane showing model dynamics as they vary with changes in the rate κ that controls the social learning rate and the parameter C0 which

controls how effective closure is, for the number of COVID-19 waves (A) and the ratio of peak height of the second wave to the first wave peak (B). Other parameters

are at baseline values (Table 1).

experiences a single, rapid pandemic wave that rapidly confers
herd immunity. The second peak is higher than the first peak in
all three parameter planes, except again when C0 is too low to
effectively flatten the curve, and a single large outbreak results.
Some examples of model outcomes for three or more waves are
shown in Supplementary Figure 4. In these extreme scenarios,
the second wave can either dominate the first and third waves,
or it is also possible that the peaks of successive epidemic waves
increase over time until it reaches a maximum peak in the
fourth wave.

4. DISCUSSION

A second wave of COVID-19 is widely feared in 2020 as many
jurisdictions around the world begin lifting restrictions that
have held viral transmission in check. To address this issue, we
analyzed a simple theoretical model of the interplay between
SARS-CoV-2 transmission dynamics and social dynamics
concerning public support for physical distancing and school and
workplace closure. We found that a second wave of COVID-19
(and sometimes also a third wave) was likely across a broad range
of epidemiological and behavioral parameters. In some cases,
the second peak was higher than the first peak, while for other
parameter combinations it was lower.

Our prediction of a second wave driven by behavior-disease
interactions is plausible, given past and recent experience with
novel emerging pathogens. One of the first affected countries
in the COVID-19 pandemic (Iran) is now experiencing a large
second wave on account of lifting restrictions in April 2020 [49].
During the 2003 SARS-CoV-1 epidemic in Toronto, premature
relaxation of control measures resulted in a second outbreak
that was as large as the first outbreak [50]. Finally, behavioral
responses to disease dynamics appear to have played a role
in shaping the three waves that some populations experienced
during the “Spanish flu” pandemic in 1918 [51].

Our model makes simplifying assumptions that could
influence its projections. For instance, our model assumes that

populations respond to infection prevalence I(t) but in fact,
populations observe reported cases and deaths, both of which are
delayed compared to time of actual infection. Time delays tend
to destabilize dynamics in epidemic models [31] and hence we
suspect that a model extension including a response to lagged
outcomes like reported cases and deaths would exacerbate the
severity of second waves in our model.

On the other hand, adding real-world spatial and
demographic heterogeneities to our model could stabilize
the dynamics and make the predicted oscillations less extreme,
even if they do not remove them completely [52–56]. Similarly,
on the behavioral modeling side, we suggest that the extreme
oscillations observed in this model could also be stabilized
if individuals use past and/or projected future states in their
decision-making, instead of just the current prevalence, as we
assumed [57, 58]. Alternatively, if individuals learn socially from
other populations at differing stages of COVID-19 outbreaks
[28], and not just their local population, this might also dampen
the oscillations we observed in the model.

In summary, we speculate that incorporating social and spatial
heterogeneities into the model would not completely remove
the possibility of a second wave, although it could dampen the
cycles [52–56] and give rise to epidemic curves more closely
resembling that observed in the second wave in Iran [49].
Moreover, our prediction of a second wave was relatively robust
across parameter space. Hence, we conclude that a secondwave of
COVID-19 on account of the coupled behavior-disease feedbacks
we explore in this model will characterize many populations.
Because interactions between the dynamics of disease spread and
social processes will play a major role in shaping the pandemic,
more effort in transmission modeling of COVID-19 should be
devoted to accounting for them.
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