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CONDITIONS FOR CONTINUITY OF CERTAIN
OPEN MONOTONE FUNCTIONS

MELVIN R. HAGAN

Abstract. In this paper continuity of certain open monotone

functions is obtained by assuming for the domain and/or range

various combinations of the properties of a metric continuum,

regular metric continuum, semilocal connectedness, and hereditary

local connectedness. An open monotone connected function from a

hereditarily locally connected separable metric continuum onto a

separable metric continuum is continuous. If the domain is a regular

separable metric continuum, an upper semicontinuous decomposi-

tion and resulting monotone-light factorization yield continuity of

an open monotone function with closed point inverses.

By a continuum is meant a compact connected space. A function

/ is monotone if point inverses are connected. If / is a function from

X onto F, the component decomposition X' of X induced by/ is the

collection of all components of sets of the form/_1(y), where y varies

over Y. A function is connected if it takes connected sets onto con-

nected sets. A continuum is regular provided every point has ar-

bitrarily small open neighborhoods with finite boundaries [4]. It

should be noted that this is not the same as a regular topological

space as usually defined.

Theorem 1. If f is an open monotone connected function from the

1st countable space X onto the 1st countable semilocally connected space

Y, then f is continuous.

Proof. If/ is not continuous there exists an open set U in Y such

that/_1(P) is not open in X. Hence there is a point xEf~liU) and a

sequence {xn} of distinct points in X —f"1(U) such that x„—>x. Since

Y is semilocally connected there exists an open set FC U such that

Y—V has only a finite number of components. Since f(xn)E V for

all n it follows that some component C of Y— V contains f(xn) lor

infinitely many n. By Theorem 2 of [l],/_1(Q is connected, and x

is a limit point of /_1(C).  Hence /_1(QU{x}   is connected  but
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f(f~ï(Q^{x}) = C^{f(x)} is not connected since C is closed and

/(x)GG. This contradicts/ being connected. Thus/ is continuous.

Corollary 1. If f is an open monotone connected function from the

1st countable space X onto the hereditarily locally connected separable

metric continuum Y, then f is continuous.

Proof. By Theorem 13.21, p. 20 of [4], Fis semilocally connected.

Theorem 2. If fis an open monotone connected function from X onto

Y, where X and Y are separable metric continua and X is hereditarily

locally connected, then f is continuous.

Proof. By Theorem 4 of [l], F is hereditarily locally connected.

Hence by Corollary 1,/ is continuous.

Theorem 3. Let f be a function from the Pi space X onto the semi-

locally connected Pi space Y with the following properties:

(a) / is finite-to-l onto Y,
(b) the inverse image f~l(H) of a closed set H in Y has closed com-

ponents, and

(c) if C is a connected subset of Y, then every component of /_1(C)

maps onto all of C.

Then f is continuous.

Proof. If / is not continuous at a point p in X, then there is an

open set V containing f(p) such that if U is any open set containing

p,f(U) is not a subset of V. Since Y is semilocally connected, there

is an open set WEV and containing/(£) such that Y—W has a

finite number of components, &,•••, C„. Now Y—W closed implies

that the C,- are closed, and / finite-to-l implies that /-1(C¿) has a

finite number of components Ki¡, since each component maps onto

all of Ci. The point p is a limit point of at least one component of

/_1(C.) for some i. For if for every i, p is not a limit point of any

component of/_1(C¿), then there is an open set Ua containing p and

disjoint from Kn for all i and /. If U denotes the intersection of all

the Un, then U is an open set containing p such that f(U)C\(Y— W)

= 0. Thusf(U)EWEV. This contradicts the hypothesis that f(U)
is not contained in V for any open set U. Thus p is a limit point of

some component of some/-1(C,). But p is not in/_1(C¿) contradicting

the hypothesis that /_1(C.) has closed components. Therefore / is

continuous.

Theorem 4. If X is a regular separable metric continuum and G is a

decomposition of X into disjoint continua, then G is upper semicon-

tinuous.
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Proof. Let {Dn} be a sequence of sets from G and P = lim sup P„.

If \Dn} is not a null sequence, then there is a positive number ô and

a positive integer N such that n>N implies that diam(P„) >8. Since

X is compact, L9£0. Let pEL. Since X is regular at p there is an

open set R with diameter less than 5 such that F(R), the boundary

of R, is finite. Since diam(P„)>ô for n>N, Dn — R and R — Dn are

nonempty. If F(R)(~\Dn = 0, then Dn — R and R — Dn form a separa-

tion for the connected set P„. Thus F(R)í\Dn9í0 for all n>N.

Since the P„ are disjoint, P(P) must contain infinitely many points.

But F(R) is finite. Hence {Dn} must be a null sequence and L is a

singleton. Thus P is contained in a single element of G and hence G

is upper semicontinuous [4, p. 122].

Theorem 5. If f is a function from X onto Y, where X and Y are

separable metric continua, X is regular, and components of sets f~1(y),

yEY, are closed, then f can be factored into the composite f =f2fi, where

/i from X onto X' is monotone and continuous and f2 from X' onto Y

is light.

Proof. Since X is compact, X' is a collection of disjoint continua

filling up X. Thus, by Theorem 4, X' is upper semicontinuous. Define

/i from X onto X' by/i(x) = C if and only if xEC, and define f2 from

X' onto Fby/2(C) =y if and only if C is a component of/_1(y)- That

/i and/2 have the desired properties follows as in the proof of Theorem

5 of [1].

Theorem 6. If f is an open monotone function from X onto Y,

where X and Y are separable metric continua, X is regular, andf~l(y)

is closed for all yEY, then f is continuous.

Proof. Let/=/2/i be the factorization given in Theorem 5. Since

/ is monotone, /_1(y) is a continuum and thus has only one com-

ponent. Therefore f2 is a one-to-one function from X' onto Y. The

function f2 is also open since if A is an open set in X', then A* (the

point set union of elements in A) is open in X. Thus/(^4*) =/2(/iG4*))

=ft(A) is open in Y since/ is an open function. Hence f2 is an open

function. Since f2 is an open one-to-one function,/2_1 is a continuous

function from Y onto X'. But X' is a compact metric space. There-

fore (J21)~1=f2 is continuous [4, p. 25]. Hence/ is the composite of

two continuous functions and thus is continuous.

Corollary 2.7// is an open monotone function from X onto Y,

where X and Y are separable metric continua, X is regular and f is

either a connected, connectivity, or peripherally continuous function,

then f is continuous.
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Proof. For connected, connectivity, and peripherally continuous

functions, point inverses have closed components [2], [3]. Thus if/

is monotone,/_1(y) is closed for each y G Y.

Theorem 7. If f is an open monotone connected function from the

space X onto the semilocally connected 1st countable space Y, and if X'

is upper semicontinuous, then f is continuous.

Proof. Just as in the proof of Theorem 6, / can be factored into

the composite f=f2fi, where /i is monotone and continuous from X

onto X' and/2 is one-to-one and open from X' onto Y. Just as in the

proof of Theorem 5 of [l], f2 is a connected function since/ is con-

nected. By Theorem 2 of [l],/2_1 is a connected function. Therefore

f2 is a biconnected function and by Theorem 3.7 of [3] is continuous.

Thus, / is continuous.
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