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CONDITIONS FOR EXPONENTIAL ERGODICITY 

AND BOUNDS FOR THE DECAY PARAMETER 

OF A BIRTH-DEATH PROCESS 

ERIK A. VAN DOORN, *Centre for Mathematics and Computer Science, Amsterdam 

Abstract 

This paper is concerned with two problems in connection with exponential 

ergodicity for birth-death processes on a semi-infinite lattice of integers. The 

first is to determine from the birth and death rates whether exponential 

ergodicity prevails. We give some necessary and some sufficient conditions 

which suffice to settle the question for most processes encountered in practice. 
In particular, a complete solution is obtained for processes where, from some 

finite state n onwards, the birth and death rates are rational functions of n. 

The second, more difficult, problem is to evaluate the decay parameter of an 

exponentially ergodic birth-death process. Our contribution to the solution of 

this problem consists of a number of upper and lower bounds. 

DUAL BIRTH-DEATH PROCESSES; ORTHOGONAL POLYNOMIALS; SPECTRAL REP- 

RESENTATION; TRANSITION PROBABILITIES 

1. Introduction 

Consider a standard, conservative Markov process in continuous time, whose 

state space E - {0, 1, 2, - 
- -} constitutes an irreducible class. Let its (stationary) 

transition probabilities be denoted by pgi(t) (i, je E, t ? 0). The transition i -> j 
is then said to be exponentially ergodic if pii(t) tends to its ergodic limit pi 

(independent of i because of the irreducibility of E) exponentially fast, i.e., if 

there exists an a > 0 such that 

(1.1) pgi(t) - Pi = O(exp (-at)) 

as t -- -o. We shall study the phenomenon of exponential ergodicity in the 

context of birth-death processes and thus continue the works of Callaert 

(1971), (1974) and Callaert and Keilson (1973a), (1973b). Our main tool will 

be Karlin and McGregor's (1957a) spectral representation for the transition 

probabilities of a birth-death process, which says that for this type of Markov 
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The decay parameter of a birth-death process 515 

process 

(1.2) pi1(t)= IJ exp (-xt)Q (x)Q,(x) dq(x) 

(i, je E, t> 0). Here 'rr are constants and {Q,} is a system of polynomials 

properly normalized and orthogonal with respect to the mass distribution dq 

which has its support S(d4q) on the non-negative real axis. 

In view of (1.2), the basic results of Kingman (1963a), (1963b) on exponen- 
tial ergodicity for Markov processes become transparent for birth-death pro- 

cesses. Let us first consider Kingman's (1963a) solidarity theorem for the 

transition probabilities of a transient or null-recurrent Markov process, which 

states that the supremum of the a's satisfying (1.1) is the same for each pair i, j, 
so that in particular either all or none of the pi(t) go to their (zero) limits 

exponentially fast. This common supremal value is then called the decay 

parameter of the process; if it is positive the process itself is called exponentially 

ergodic. Now let y = y(d4i), where 

(1.3) y(d') inf {x I x > 0 and xE S(d4)}, 

and d4q the mass distribution associated with a transient or null-recurrent 

birth-death process. Then it is not difficult to show with (1.2) that for each pair 

i, j 

(1.4) pii(t) = O(exp (-yt)) 

as t -> 
o0. To establish that for any pair i, j the factor y in (1.4) cannot be 

improved (i.e., enlarged) is somewhat more troublesome. Callaert (1971), 

(1974) uses a rather complicated argument involving theorems of Widder's on 

Stieltjes transforms and Laplace-Stieltjes transforms, but less sophisticated 
methods lead to the same conclusion. For it is clear that dlq cannot have an 

isolated point mass at 0, so that y must be the smallest point in S(dq). A 

well-known theorem on zeros of orthogonal polynomials then tells us that 

Q,(y) * 0 for all n. Subsequently using a straightforward argument of the type 
on p. 105 of Van Doorn (1981) yields Callaert's result. Thus y(dql) is 

Kingman's decay parameter for a birth-death process with mass distribution dq 
if the process is transient or null-recurrent. 

If a birth-death process is positive recurrent, then the associated mass 

distribution dt has positive mass at 0. Indeed, we have (Karlin and McGregor 

(1957b)) 

(1.5) p, = r d4,(0) 
> 0 
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516 ERIK A. VAN DOORN 

(jE E). Since the Q,(x) are normalized such that Q,(0) = 1 for all n in this 

case, it follows that instead of (1.2) we can write 

(1.6) pi (t)-pi = vi1J exp (-xt)iQ(x) Q(x) dqfr(x). 

A small complication now arises, which is also reflected in Kingman's (1963b) 

result for positive recurrent Markov processes. For again we have 

(1.7) Pii(t) - pi = O(exp (-yt)) 

as t -> oo, where y= y(dq/), but there may be pairs i, j for which the factor y in 

(1.7) can be improved. This contingency is brought about when df has an 

isolated point mass at -y and Qi(y)= 0 or Q1(y)= 0. This being an exceptional 

case (there is at most one n such that Q,(y) = 0), it is quite natural, indeed 

common practice, to call y the decay parameter of the process and the process 

exponentially ergodic if y >0. Proofs for the above statements (which are 

essentially Callaert's) may be given along the alternative lines sketched for the 

transient or null-recurrent case. 

Summarizing, birth-death processes provide an illustrative example of King- 

man's solidarity theorems for Markov processes in view of Karlin and 

McGregor's spectral representation (1.2) and Callaert's fundamental result 

(which can be given a relatively simple proof) that the decay parameter of a 

birth-death process equals y(dq/), where dq/ is the associated mass distribution. 

Two obvious problems now arise in the context of birth-death processes, 

viz., (i) to give criteria for y(dq) to be positive in terms of the parameters 

which usually define a birth-death process (the birth and death rates), and 

more specifically (ii) to determine the value of y(dqj) or at least bounds for 

y(dfr) in terms of the rates. These are the problems to which this paper is 

addressed. 

The plan of the paper is as follows. In Section 2 we formally introduce the 

necessary concepts and results related to birth-death processes and, in particu- 

lar, to the spectral representation for their transition probabilities. In Section 3, 

which is the core of the paper, we give a characterization for the decay 

parameter of a birth-death process. Then, in Section 4, we shall obtain bounds 

for the decay parameter which are based on this characterization. Most of the 

preparatory work in this respect is done in a separate paper (Van Doorn 

(1984)) in which the more abstract terminology of orthogonal polynomials is 

used. Finally, problem (i) above will be tackled in Section 5. That is, we give 

conditions for a birth-death process to be exponentially ergodic. In particular 

we give the precise conditions for exponential ergodicity when, from some 

finite state n onwards, the birth and death rates are rational functions of n. 
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The decay parameter of a birth-death process 517 

2. Properties of birth-death processes 

2.1. Preliminaries. A birth-death process on the set E' {-1, 0, 1,...}, 
where -1 is an absorbing barrier and E {0, 1, } ... constitutes an irreducible 

class, is faithfully represented by an array of functions {pti(t) I i, j E', t 9 0} 

(the transition probabilities), satisfying the conditions 

(2.1) pi(t)-< 1, 

(2.2) pW(t) >O, 

(2.3) pii(0) = 8,, 

(2.4) 
piJ(t + s) = X Pik(t)Pk (S), 

k 

(2.5) 
Pli(t) 

= E aikPki(t), 
k 

(2.6) p'i(t) = X 
Pik(t)aki, 

k 

for i, je E' and t, s 0. Here a-1,i = 0 for all j, and, for ie E, 

t i if j=i-1 

(2.7) aii= 
-(ti+?PLi) if i=i 

lAi if j=i+l 

0 otherwise, 

where Ai and 
/pt, 

the birth and death rates, respectively, are positive with the 

exception 0 ?oi0. The backward equations (2.5) are equivalent to the more 

usual postulates 
Pi,i+1(t) = Ait + o(t) 

(2.8) Pii (t) = 1 - (Ai + pi)t + o (t) 

Pi,i-1(t) = 
tit + o(t) 

as t 1 0, for i e E. The forward equations (2.6) are not always encountered as a 

postulate. However, it has been shown by Karlin and McGregor (1959) that 
these equations must be satisfied in order that the sample paths of the process 
are continuous except for simple discontinuities with jump +1, which we 
consider desirable. 

It is well known that any set 
{A., tL}•}=o of birth and death rates corresponds 

to at least one process {pij(t)} satisfying (2.1)-(2.7). Karlin and McGregor 
(1957a) have shown that a set of rates 

{A., .}, determines a process uniquely 
if and only if 

(2.9) C { 

r. 

+ (hXi)-)} = o, 
n=O 



518 ERIK A. VAN DOORN 

where 

hoA1 
i . 

?"n-1 (2.10) no= 1; = , n > 0. 

Throughout this paper we shall only consider birth-death processes which are 

uniquely determined by their rates; it will be convenient to describe such 

processes as simple. 
The initial condition (2.3) and the forward equations (2.6) imply 

(2.11) pi,1(t)= 0oJ pio(') dr 

(i e E), while p_1,i(t) 
= 

_-1 for all j and t> 0 by (2.3) and the backward 

equations (2.5). Otherwise the transition probabilities involving the absorbing 
state -1 do not enter in an essential way in (2.2)-(2.7). Therefore, we might as 

well forget about -1 and represent a birth-death process by an array of 

functions 
{pji(t) I i, j E, t - 0} satisfying (2.2)-(2.7) and 

(2.12) loJt Po(() dr? + p+ 
.(t)<- 

1 

for i, j e E and t, s - 0, where all summations extend over E intead of E'. This 

representation will be our starting point. 

We should mention that Karlin and McGregor (1957a) postulate 

(2.13) pii(t) 1 

instead of (2.12). However, by adapting Karlin and McGregor's Theorem 7, it 

can be shown that the set of postulates (2.2)-(2.7) and (2.12) is equivalent to 

the set (2.2)-(2.7) and (2.13), so that Karlin and McGregor's results carry over 

to the present context. 

Karlin and McGregor (1957a) (for g o=0) and Kemperman (1962) (for 

t0o-- 
0) have shown that a simple birth-death process is honest, i.e., equality 

holds in (2.12) for all t, if and only if the series 

(2.14) E (,knn)-1 
I1i n=O i=O 

diverges. 

2.2. The spectral representation. We shall now properly introduce Karlin and 

McGregor's (1957a) representation formula for the transition probabilities of a 

birth-death process. For a set {Ah,, 4,}, of birth and death rates the polynomials 
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Q,(x) are defined by 

(2.15) A.Q.,,(x) 
= (A, + t.L - x)Q,(x)- 

pQ>n1(x), 
n> 0O 

Ao0Q(x) 
= Ao + o- x, Qo(X) 

= 1. 

A set of polynomials satisfying a recurrence relation of this type is orthogonal 
with respect to a mass distribution dei on [0, oo), viz., 

(2.16) i (x)Qi(x) df(x)= 
Tri8Ti-j. 

Here iri is as in (2.10), and the distribution di is of total mass 1, has infinite 

support, and satisfies 

(2.17) > o x d(x) 

<- 
Our standard assumption is that we are dealing with a simple birth-death 

process, i.e., (2.9) is fulfilled, which makes that d4 is uniquely determined by 
the above-mentioned properties. The transition probabilities pj(t) of the birth- 

death process with rates IA, and PI, can now be represented as 

(2.18) pii(t)= 

iri 

f exp (-xt)QO(x)Qi(x) di(x) 

(i, jE E, t 0), which is Karlin and McGregor's representation formula. 

The following can also be observed from Karlin and McGregor (1957a). 
Consider a pair (go, de4), where 

to- 
0 and dei is a mass distribution on [0, oo) 

of total mass 1, with infinite support and finite moments of all orders, satisfying 

(2.17), and uniquely determined by the polynomials Q,(x) which are or- 

thogonal with respect to de (or, equivalently, by its moments). Then the Q,(x) 

satisfy, if properly normalized, a recurrence relation of the type (2.15) with 

A,, n,+1 >0 (n ?0). Since to is fixed, all parameters A, and EP, are uniquely 
determined and satisfy, in fact, (2.9), so that they are the birth and death rates 

of a simple birth-death process. Conversely, the mass distribution arising in the 

representation formula (2.18) for this latter birth-death process is of course the 

original distribution dif. Summarizing, we see that a simple birth-death process 
can be represented by its rates as well as by the pair (p00, dq), where Ito is the 

death rate in state 0, and di the mass distribution in the representation 
formula (2.18). 

2.3. The spectrum. We consider a simple birth-death process with rates A, 
and p,. {Q,(x)}, denotes the set of polynomials and df the mass distribution 

associated with {A,, 4,}, through (2.15)-(2.17). We will state some properties 
of the spectrum S of the process, which is defined as the support of the 
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distribution d@q, i.e., 

(2.19) S = S(d)- x dt() > 0 for all e >0 
. 

Starting off with some preliminaries, we write Po(x) = Qo(x) = 1 and 

(2.20) P.(x) 
= (- 1)n• A1, An-1Qn(x), n>O, 

and note that the sequence {P,(x)} satisfies the relations 

(2.21) Pn+1(x) 
= (x - 

An- tn)Pn(x)- An1tnPn-(x), 

n >O 

P(x) = x 
o-X 

o-00, Po(x)= 1. 

The following properties of the zeros of Q,(x) can now be obtained from 

Chihara's (1978) book on orthogonal polynomials. For all positive n, Q,(x) has 
n positive, distinct zeros x,~1 <x< x .2 < xn. These quantities satisfy 

(2.22) 
Xn+l,i 

< Xni < 
Xt+l,i+l 

(i = 1, 2, . , n; n = 1, 2, 
? 

), whence 

(2.23) 
-lim 

x, and rj lim 

xn,n,-+l 

(i, j = 1, 
2,. ? 

) exist (possibly, r, = oo). Also, 

(2.24) 0!5O & :+ < 
lt+1,= 

+ h 
< o, 

so that both 

(2.25) orlim 5 and T- lim rlj i-->oo i-->oo 

exist and 0 := a 
- 

' 
-oo. Furthermore, we have 

(2.26) 5+?= f C = 

(i = 1, 2, . . .), and 

(2.27) rl +1= T=j 
T = Tji 

(j = 0, 1, 2, ), where rI - m. From the preceding results and, e.g., Theorems 

IV.3.1 and IV.3.3 of Chihara (1978), it is easy to see that 

(2.28) 'q1<0< 
T< 0 4 sup {A,+J,}<oO. 

We next define 

(2.29) e-{1, 52, 
}3," 

} and H{rl 1, 2r3, 
' "}Y 

and note that both sets may be finite. 

Theorem 2.1. The spectrum S of a simple birth-death process with rates A, 
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and pt, has the following properties: 

(i) If r = oo, then S=E. 

(ii) If ao <oo and sup {,+?p,} = o, then S= UUS, (a bar denoting closure), 

where S, is an unbounded subset of (o, oo); also, a is the smallest limit point 
of S. 

(iii) If ar 
< o and sup {A,+pt,}< oo, then S = U S, U HI, where S, is a (possibly 

empty) subset of (C, 7); also, oa is the smallest and 7 is the largest limit point 
of S. 

Proof. The problem of finding a mass distribution dir of total mass 1, with 

infinite support and finite moments of all orders, and with respect to which the 

polynomials QO,(x) of (2.15) are orthogonal, may be formulated as a Ham- 

burger moment problem (HMP). If this moment problem is determined, i.e., has 

a unique solution, then the statements in (i), (ii) and (iii) concerning the support 
of this solution are known (Chihara (1978), Section 11.4). Now if ar <, then 

(Chihara (1978), Van Doorn (1985)) the HMP is determined, which settles (ii) 
and (iii). 

Next suppose o-=oo and the HMP is indeterminate, i.e., has more than one 

solution. By Theorem 5 of Chihara (1968), there exists a solution d4 of the 

HMP whose support equals . On the other hand, since we are dealing with a 

simple birth-death process, there is only one solution of the HMP with support 
on [0, o) and satisfying the additional condition (2.17). Therefore, we are done 

if we can show that Chihara's 'natural' solution d4 fulfills condition (2.17). 

Indeed, from the results of Sections 3 and 5 of Chihara (1982a), it is readily 
verified that 

x-1 do(x) = {(A + 
to)M}-1, 

where Mo is the maximal initial parameter for the chain sequence 

n--1 -- 
+ 

,-n_1 )tn- 
+ I,n 

1 

(for definitions, see Chihara (1978), (1982a)). It follows that 
0o/(0 

+ 
?o) <Mo, 

so that 
fo 

x-1 do(x) < t0.0 

2.4. Duality. As a final and essential prerequisite we must mention the 

duality concept for birth-death processes that was introduced by Karlin and 

McGregor (1957a), (1957b) and some of its consequences. For a set 9 = 

{1A,, ,}, of birth and dea t rates, the dual set d = {Af, 
d 

}, is defined by 

(2.30) Po= 0 n 
)tn= 

,.+l, 

IA= X. 

' 
-=, n X=pCn, 

14+17 = 
+ 

n 
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(n = 0, 1, ). Clearly, this duality concept establishes a one-to-one correspon- 
dence between the sets of rates where to 

= 0 and those where to> 0. The 

relations between the polynomials corresponding to ? and !d are readily 
found to be 

(2.31) = 0 OQ()) = Xnn(Qn+1(X)- Qn(x))/(-x) (2.31) 
fio>0 O Q.+l(x) = ,?r,(Qn+1(x)- QO(x))/tIo. 

For pt 
= 0, the polynomials Q' are known as the kernel polynomials with 

parameter 0 corresponding to the polynomials Q, (cf. Chihara (1978)). There 

exists a separation theorem for the zeros of kernel polynomials (Chihara 

(1978), Theorem 1.7.2) which is easily seen to lead to 

(2.32) o = 0 

(cf. (2.23); see Van Doorn (1985) for more detailed results). 

Regarding the parameters w and rV associated with 9 and d, respectively, 
we clearly have 

(2.33) p'OO= 0 
1=nAO(,r= 

) 

Io > 0 0 => 
1Trd 

g( 
t•,n r)- . 

Since nhTr 
= 

fLn+1,Tn+1, it follows that 

(2.34) {, 
+ 
,(Ar,)-1} 

= 00o { 
1r7 + (Tn 

)-I = 
00 

n=o n=O 

i.e., a birth-death process is simple if and only if its dual process is simple. 

Finally turning to the mass distributions dqi and dqld 
associated with P and 

pd, respectively, we obtain from the preceding result and Lemmas 2 and 3 of 

Karlin and McGregor (1957a) that for a simple birth-death process 

o0 

= 0 dq4d(x) = olXdq,(x), x O 0 

(2.35) ILo>O 
dqd(x)= 

1- O x-1 

dl(x) 
x=O 

Pox- dqi(x) x>O. 

3. Representations for the decay parameter 

Consider a simple birth-death process {pi (t) I i, j e E, t 
= 

0} and let p1 denote 

the limit as t 
--- 

of p1j(t). The decay parameter a* of this process is formally 
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defined as 

(3.1) a* sup {a _O pii(t)-pi= O(e-"') as t -- oo for all i, jeE}, 

and the process is said to be exponentially ergodic if a*> 0. 

We have seen in Section 2.2 that the process {pii(t)} can be represented by a 

pair (go, d4i), where go is the death rate in state 0 and dqi the mass distribution 

appearing in Karlin and McGregor's representation formula for pii(t). With 

y(d4) defined as in (1.3), we now have the following theorem, which, as 

mentioned in the introduction, is essentially due to Callaert (1971), (1974). 

Theorem 3.1. The decay parameter of a simple birth-death process rep- 
resented by (go, di) equals y(dip). 

A birth-death process is usually not defined in terms of a pair (go, d4l), but 

in terms of a set of birth and death rates 
{An, An},. 

nWhat we seek, therefore, is 

to express y(dqi) in the corresponding rates 
,n 

and 
An. 

An intermediate step 
towards this goal is to relate y(dqi) to the limit points &, of (2.23), which are 

uniquely determined by the birth and death rates via the polynomials On of 

(2.15). 

Lemma 3.2. Let dq and ?i, i- 1, correspond to the same simple birth--death 

process, then y(d4q)= 2 if 2> { 1= 0, and y(dqi)= 5= otherwise. 

Proof. The cases 
?1 

> 0 and ?2 >1= 0 follow immediately from Theorem 2.1. 

If 
?1 

= ?2 = 0, then, by (2.26), a = 0. Since, by Theorem 2.1, a is the first limit 

point of the support of di, it follows that y(dqi)= 0. 

Although characterizations for ?2 can be given, it is much easier to work with 

?1. This consideration leads us to bringing dual processes into our analysis as 
follows. First note that 

(3.2) 0Lo>0 => 1>0 or 
oa=0. 

For, by (2.17), dq has a finite moment of order -1 if gFo>0, so that there 
cannot be positive mass at 0; (3.2) then follows by Theorem 2.1. Consequently, 
by Lemma 3.2, 

(3.3) g 
o> 

0 ' y(dq)= -1. 

On the other hand, from (2.35) we have 

(3.4) 
y/(dqi) 

= y(dqd), 

so that, by combining (3.3) in terms of the dual process and (3.4), we get 

(3.5) Po= 0 
y Y(dq) = 

=1. 

Thus from the preceding results and Theorem 3.1 we conclude the following. 
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524 ERIK A. VAN DOORN 

Theorem 3.3. The decay parameter of a simple birth-death process equals ?j 

if t >o 0 and : if ko= 0, where a superscript d indicates the dual process. 

We have now transformed the problem of finding the decay parameter of a 

simple birth-death process, given the birth and death rates, into that of finding 
the first limit point of the set of zeros of a sequence of orthogonal polynomials, 

given their recurrence relations. For the latter problem a substantial body of 

results (representations and bounds) is available (see Chihara (1978), (1982b), 

Van Doorn (1984) and references therein). In the next sections we shall apply 

some of these results. 

4. Bounds for the decay parameter 

We shall collect some bounds for the decay parameter a * of a simple 

birth-death process with rates A, and g,. Throughout this section we shall 

assumet ko= 0, which covers the most interesting case. It will be clear from the 

results of the previous section that bounds for the decay parameter of a process 

where 
/o 

> 0 may be obtained from the expressions given below by considering 

the dual process. 
From Theorem 3.3 we see that a* equals (', the first limit point of the set of 

zeros of the sequence of orthogonal polynomials Q,(x). By analogy with 

(2.20)-(2.21), we write 
Po(x) 

= Qo(x) = 1 and 

(4.1) P(x) = (-1)"L12 ,QA(), 

n > 0, and find that 

P(4.2)l(x) = (x - A, - 
An.1)P.(x) 

- AjgP 1(x), n > 0, 
(4.2) 

Pd(x) = x - Ao - 
/1, 

Pd(x) = 1, 

which brings us in a position to apply the results of Van Doorn (1984). The 

most general bounds for 
5l 

given in that paper involve an infinite number of 

free parameters. Here we shall mention the bounds that result from some 

obvious choices for these parameter sequences. Thus from Theorem 7 (X, = 

/ktTn) and Theorem 8 (o,3 = 1) of the aforementioned paper we obtain the 

following lower bounds. 

Theorem 4.1. The decay parameter a* of a simple birth-death process with 

rates An and gA (go = 0) satisfies 

(i) i a*i 1 inf 
{An-1 

+ Pn - 
VAn-l+ 

n-1- 
XAnl-n), n:l 

(ii) a*> inf ?{A _ +A + 
.+/.+-/(A,+.+1-A_-1 

)2+ 16Ang }. 

nal 
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We also mention two upper bounds for a*, which follow from Theorem 4 

(X, = 1) and Corollary 4.3 of the said paper. 

Theorem 4.2. The decay parameter a* of a simple birth-death process with 

rates A, and A, (go = 0) satisfies 

n+k 
- 

( 
+ 

+ 
-1i+l 

(i) a*< 1+ 1-2 i=n+l 

Oti--1+ 
"-i)(ti 

+ 
AJi+l i=n Xi"+ Ai+1 

n, k = 0, 1, -, 

(ii) a* < 
i{An, + A, + 

A, 
+ 
,+L1- S(A, + In+An- + ,_- Lxn)2+ 4Akn,}, 

n=1, 2, - 

We illustrate the potency of these theorems with two examples. 

Example 1. Lindvall (1979) considers a birth-death process with rates 

satisfying 

(4.3) inf 
{A, 

+ p,}= Co>0, sup {AJ(A, + 
,)} 

= 
c1> 

and states that the decay parameter of this process is at least as large as that of 

the birth-death process with rates 

(4.4) A0= Co; A, = coc1, An = co(1- c1), n>O. 

To obtain a lower bound for the decay parameter of the original process he 

then calculates the decay parameter a* of the process with rates (4.4). With the 

previous results this calculation becomes very simple, for by Theorem 4.1(i) 

and Theorem 4.2(i) (n = 0, k -- co) it follows that 
c=co(1 

-2 ci(1 - c)) is both 

a lower bound and an upper bound for a*, whence a* = c. 

Example 2. Consider the queue-length process of the MIMIs queue, which 

is a birth-death process with rates 

(4.5) A. 
= A, An = g min {n, s, s}, n 0, 

where A, g > 0 and s is a positive integer. The decay parameter a* of this 

process can be calculated as follows (Van Doorn (1981), Theorem 6.2.13). Let 

p =Al/si denote the traffic intensity and define 

(4.6) C(x) = 1(1 - x + p - (1- x + p )2- 4p-), 
and 

(4.7) Rn+(x, 
y)= 1- x + n(sy)-1- n(syR,(x, y))-l, n = 1, 2, - , s - 1 

R1(x, y) = 1 - x. 

Also, let p* be the largest root <1 of the equation 

(4.8) R, (1 - y -, y)= y - 
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if s > 1, and p* = if s = . Then, if p p*, 

(4.9) a S = (4 -- )2 

whereas for p < p*, a* equals A times the smallest positive root of the equation 

(4.10) R,(x, p) = C(x). 

If, instead of executing this complicated scheme, one chooses the relatively 

simple approach of calculating lower and upper bounds as given in Theorems 

4.1 and 4.2, one can often find satisfactory and even exact results. This can be 

seen from Table 1, where we have given the results of all calculations for 

s = 10, g = 1 and various values for the traffic intensity. 
We finally notice that for p = 0-05 we can apply Lindvall's argument of the 

previous example. The lower bound thus obtained is, however, inferior to those 

given in Table 1. 

In closing this section we remark that Bordes and Roehner (1983) give a 

lower bound for the decay parameter of a birth-death process in the case that 

either the series (2.14) or the series 

(4.11) E (A,1n)-1 
n 

n=O i=n+l 

converges. (Note that convergence of both series is equivalent to convergence 

TABLE 1 

The exact value and bounds for the decay parameter 
a* of the queue-length process of the M/M/10 queue 
with service intensity 1 and arrival intensity A (p* = 

0-498) 

lower bounds upper bounds 

(Theorem 4.1) (Theorem 4.2) 

p = A/10 a* (i) (ii) (i) (ii) 

0-05 1-000 0-793 0-500 1-178 1-134 

0-1 1-000 0-586 0-438 1-241 1-382 

0-2 1-000 0-551 0-469 1-377 2-000 

0-3 0-998 0-536 0-479 1-515 2-697 

0-4 0-984 0-528 0-484 1-351 3-438 

0-5 0-858 0-523 0-488 0-858 4-209 

0-6 0-508 0-508 0-490 0-508 5-000 

0-7 0-267 0-267 0-267 0-267 5-752 

0-8 0-111 0-111 0-111 0-111 6-469 

0.9 0-026 0-026 0-026 0-026 7-228 

1-0 0-000 <0 0-000 0.000 8-000 

1.1 0-024 <0 0-024 0-024 8-734 

1-2 0-091 <0 0-091 0-091 9-497 

1-3 0-196 <0 0.196 0-196 10-235 

1-4 0-336 <0 0-336 0-336 11-000 

1-5 0-505 0-134 0-505 0-505 11-738 
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of the series in (2.9).) It is easy to see that the simple birth-death processes to 

which Bordes and Roehner's bounds apply can be identified as those which are 

not honest themselves or' have dishonest duals. 

5. Conditions for exponential ergodicity 

A birth-death process is called exponentially ergodic if and only if its decay 

parameter is positive. Hence, by Theorem 3.1, a process represented by the 

pair (go, d4i) is exponentially ergodic if and only if y(d4) > 0. An equivalent 

definition is given in the following simple but useful theorem, where O is the 

quantity defined in (2.25). 

Theorem 5.1. A simple birth-death process with rates A, and g, is exponen- 

tially ergodic if and only if o > 0. 

Proof. Follows immediately from Theorem 2.1. 

Of course, the question of whether a process is exponentially ergodic can be 

phrased in terms of ?, and ?', cf. Theorem 3.3. However, formulating it in 

terms of a has certain advantages. First, we need not distinguish between the 

cases 0o=0 and go> 0. Secondly, representations and bounds for o are 

generally simpler and more powerful than those for ?1, the reason being the 

following. Consider a set of rates {A,, i ,}, and define new sets {A',, 
) 

},, 

k=l1, 2,---, by 

(5.1) () 
= 
'k=+k, 

~ ) W= Pn+k- 

From Theorem 111.4.2 of Chihara (1978) we then obtain 

(5.2) (k)= 
, 

k = 1, L2,- where the notation should be clear. It follows that any finite 

number of changes in the rates of a simple birth-death process does not affect 

the value of o, i.e., o (and hence the prevalence of exponential ergodicity) is 

determined only by the limiting behaviour of the birth and death rates. 

In view of Theorem 5.1, necessary and/or sufficient conditions for exponen- 
tial ergodicity of a process, given its rates, can be obtained from representa- 
tions and bounds for o. By using (2.20)-(2.21) a large number of such results 

follow from Chihara (1978), (1982b) and Van Doorn (1984). Here we shall 

just mention two bounds from the latter paper that will be of use later on. 

Theorem 5.2. Let X, and g, be the birth and death rates for a simple birth- 
death process. Then we have 

(i) 
r >- 

lim inf {A, + p, - 

_An-1Cp- 

1A,1,n+l), It--o 
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(ii) o- lim inf 

(An 

+ - 2 
nln)}. 

k- >oo k n=o 

We next show that by using the above bounds and some other results from 

the literature, it is possible to calculate ar exactly for a large class of processes, 
which includes the processes which have asymptotically rational birth and 

death rates. Thus, in view of Theorem 5.1, we can decide on the prevalence of 

exponential ergodicity for the vast majority of processes encountered in 

practice. 

Theorem 5.3. Let A, and An be the birth and death rates for a simple 

birth-death process. 

(i) If A- -t 
- 

1 
, oo, --->A 

_ 

5 o as n -- oo, then 

T-=(N-/X)2 if A<oo and 
/<oo and 

or=O if A <O, = or A =o, <oo. 

(ii) If A, = an + o(nP), ,n 
= dnI + o(n1) as n-->oo, where p, q>0, then 

or=o0 if p #q or af d. 

(iii) If A, = anP + bnP- + o(nP-), = an + enP-1+ o(nP-l) as n -- c, 
where p is a natural number, then 

oa=0 if p=1 

anda=00 if p-_3. 

(iv) If A,= an2+bn+c+o(1), n,= an2+en+f+o(1) as n--oo, then 

1 
=- (a + e - b)2. 

4a 

Proof. The bounds given in the previous theorem readily yield (i) and (ii). 

Using (2.20)-(2.21) and after some algebra, the remaining cases can be 

reduced to situations analysed by Chihara (1982b). 

Remarks. The first assertion in (i) follows also from a classical result known 

as Blumenthal's theorem (Chihara (1978)). Statement (ii) was proven earlier by 
Maki (1976) for natural p and q. 

Processes of the type described in (iv) have recently been studied in some 

detail by Roehner and Valent (1982) and Letessier and Valent (1984). 

We conclude with some miscellaneous conditions for exponential ergodicity. 
First we cite Callaert and Keilson's (1973b) result to the effect that a birth- 

death process with rates An and go is exponentially ergodic if 

(5.3) lim inf {A, + ,} > 0 and lim sup( 

- 

+ L,-(n + ,) 
< 

n- n"I- (,_+Ao)(,+, 4 
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This criterion provides an alternative proof for the fact that the processes of 

Theorem 5.3(i) (with A # g) and (ii) (with p q or a d) are exponentially 

ergodic. 

Another result of Callaert and Keilson's (1973b) (see also Tweedie (1981)) is 

that convergence of one of the series (2.14) and (4.11) is sufficient for 

exponential ergodicity. Indeed, it can be shown (cf. Van Doorn (1985)) that 

convergence of one (or both) of these series is equivalent to convergence of the 

series Z=2 
z?-1, 

which, of course, implies that a = 
oo. 

Finally, it can be shown from results of Karlin and McGregor (1957a), 

(1957b) and Theorem 2.1 that 

(5.4) 
'.r, = = 

(A, rf,)-1 = o a = 0, 
n=O n=0 

while the first statement in (5.4) is equivalent to null-recurrence of the 

pertinent process. It follows that a necessary condition for exponential ergodic- 

ity of a birth-death process is that it is either transient or positive recurrent. 
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