1.6 CONDITIONS FOR FACTOR (IN)DETERMINACY IN FACTOR ANALYSI

Wim P. Krijnen!, Theo K. Dijkstra? and Richard D. Gill®

L2University of Groningen
3University of Utrecht

!The first author is obliged to the Department of Economics for their post-doc grant. The
current address of Wim Krijnen is Lisdodde 1, 9679 MC Scheemda, The Netherlands.

?Department of Econometrics, University of Groningen, P.O. Box 800, 9700 AV Groningen, The
Netherlands.

3Department of Mathematics, University of Utrecht, P.O. Box 80010, 3508 TA Utrecht, The
Netherlands.
The authors are obliged to Willem Schaafsma and the reviewers for useful comments.



CONDITIONS FOR FACTOR (IN)DETERMINACY IN FACTOR ANALYSIS

Abstract

The subject of factor indeterminacy has a vast history in factor analysis (Wil-
son, 1928; Lederman, 1938, Guttman, 1955). It has lead to strong differences in
opinion (Steiger, 1979). The current paper gives necessary and sufficient conditions
for observability of factors in terms of the parameter matrices and a finite number
of variables. Five conditions are given which rigorously define indeterminacy. It
is shown that (un)observable factors are (in)determinate. Specifically, the indeter-
minacy proof by Guttman (1955) is extended to Heywood cases. The results are
illustrated by two examples and implications for indeterminacy are discussed.
Keywords: Indeterminacy, Heywood cases, mean squared error, factor score predic-
tion.

After Spearman (1904) proposed the model for factor analysis, it was shown
under the assumption of positive definite error variance that a certain indeterminacy
exists (Wilson, 1928; Lederman, 1938; Guttman, 1955). Guttman (1955) proposed
a measure for factor indeterminacy which was criticized by McDonald (1974) and
defended by Elffers, Bethlehem, and Gill (1978). This may illustrate that the subject
of factor indeterminacy has lead to strong differences in opinion (Schéonemann &
Wang, 1972; McDonald, 1977; Steiger, 1979). The conjecture (Spearman, 1933)
that factor indeterminacy vanishes when the number of loadings (bounded away from
zero) per factor goes to infinity was proven by Guttman (1955). Similar sufficient
conditions for the least squares predictor to converge in quadratic mean to the unique
common factor were given by Williams (1978) and Kano (1986). An extension of
such conditions to multiple-factor factor analysis is given by Schneeweiss and Mathes
(1995). McDonald (1974) has pointed out that it is unclear which sampling process is
implied by the indeterminate factor model. Thomson (1950, p. 372) conjectured that
zero error variances are part of a sufficient condition for factors to be determinate.

(In)determinacy has not been shown to exist under the condition that an er-
ror variance equals zero. We briefly review some of the issues associated with zero
estimates for error variances. It has been empirically demonstrated by Joreskog
(1967) that such “Heywood” (1931), “improper”, or “boundary” cases occur fre-
quently when constrained factor analysis is applied to prevent negative error vari-
ances. Other procedures for constrained factor analysis have been proposed on the
basis of Gauss-Seidel iteration (Howe, 1955; Bargmann, 1957; Browne, 1968), mod-
ified Gauss-Newton (Lee, 1980), and alternating least squares (Ten Berge & Nevels,
1977; Krijnen, 1996).

If a solution exists (cf. Krijnen, 1997a), estimates of the parameters can generally
be obtained as solutions which optimize certain functionals. Unconstrained solutions
with negative error variances, however, are “inadmissible” in the sense of not being
a member of the parameter set. The inadmissibility may be caused by sampling
fluctuations (Browne, 1968; van Driel, 1978) or by a zero population error variance.
Furthermore, problems of non-convergence have been reported for unconstrained
factor analysis (Joreskog, 1967; Boomsma, 1985) but not for constrained factor



analysis. Obviously, statistical inference is impossible on the basis of non-convergent,
suboptimal, or inadmissible solutions. Moreover, an estimate which optimizes a
functional for constrained factor analysis violates standard regularity conditions for
statistical inference if it is not an internal point of the parameter set (Ferguson,
1958; Browne, 1984). Hence, when in an application the constraints appear to be
active in yielding a Heywood case, nonstandard estimation theory is required (cf.
Shapiro, 1986; Dijkstra, 1992).

The purpose of the current paper is to give necessary and sufficient conditions for
the factors to be observable, to give conditions for indeterminacy, and to show that
(un)observable factors are (in)determinate. The latter extends Guttman’s (1955)
proof for indeterminacy to Heywood cases. Two sampling processes are given and
the implications of indeterminacy are discussed.

Definitions
The model for factor analysis assumes that the observations are generated by

X = pto + AF + E, (1)

where X is the random vector of order p with observed scores on the variables,
E[X] = p, its expectation, I the random vector with factor scores of order m, F
the unobservable random error vector of order p, and A, the loadings matrix of
order p by m. Without loss of generality it will be assumed that p, = o and that
the factors are standardized such that Var[F] = @, is the factor correlations matrix.
It will furthermore be assumed that E[F] = o, E[E] = o, Cov[F, E] = O, and
E[EE'] = ¥, diagonal. It follows that

3o = Ag®,A! + U, (2)

where ¥, = Var[X] (Lawley & Maxwell, 1971). Throughout it will be assumed
that rank(A,) = m and @, positive definite, so that rank(X,) > m. For notational
brevity, the population matrices A,, ®,, ¥, and their estimates /A\, CT), U will be
denoted by the mathematical variables A, ®, ¥ when distinctions between these do
not matter.

It may be noted that (2) implies that A and ¥ are in the column space of ¥ so
that we have XX (A, ¥) = (A, ¥) (e.g. Magnus & Neudecker, 1991, p. 58), where

* denotes the unique Moore-Penrose inverse (Penrose, 1955).

Prediction by Projection
The existence of the various (co)variances allows us to define the inner product
as the covariance between two random variables. Consequently, for the purpose of
predicting F' by F from X we have

|F — F|]> = Var[F — F] = MSE[F] = € (F — F)(F — F)|. (3

From the classical projection theorem (Luenberger, 1969, p. 51) it follows that for
F to satisty |F' — F|| < |[|[F — A’X]|| for all A’X it is necessary and sufficient that



F—Fis orthogonal to the space spanned by X. The latter condition is equivalent
to O = Cov[X, F — ﬁ] = A® — X A, which is, due to XXTA = A, equivalent to
A=YtA®+ N, where N is orthogonal to ¥. For notational brevity we set N = O.
Thus by taking F = ®A’STX we have obtained the orthogonal projection F — F
of F' onto the space spanned by X. When the dimension, rank(X), of the space
spanned by X equals p, then N = O and the representation of F in terms of X
is unique (Luenberger, 1969, p. 51). A predictor F may be called best linear, in
the sense of Lowner’s (1934) partial matrix order, when MSE[F] < MSE[A’X] for
all linear predictors A’X, which means that MSE[A’X] — MSE[F] is positive semi
definite (cf. Krijnen, Wansbeek, & Ten Berge, 1996). For the error of prediction
F — F we have

Var[F — F] = ® — ®A'STAD. (4)

Obviously, the right hand side is non-negative definite since it is a variance matrix.
It will be said that the jth factor F; is observable if F; :a;-X almost surely (a.s.),
where a; is column j of A. Obviously, the condition in this definition is equivalent to

o

the condition that the jth diagonal element of Var[F — F'] is equal to zero. However,
what the definition means in terms of the parameter matrices is far from transparent.
Below we will characterize observability via conditions on the parameter matrices
being of finite order.

Conditions for Observable Factors

By multiplications with permutations matrices it follows without loss of gener-
ality that any order in the elements of F' and in those of F can be arranged for.
Hence, when W contains p; zero diagonal elements, it will be understood that its
first p; diagonal elements are zero and that its remaining diagonal elements are pos-
itive. Consider the partitions X = { %% }, A= { ﬁ% }, E = { E% }, such that
Var[Fi] = Uy; = O and Var[F;] = Uy, positive definite. Let A; be column j of A4
and let A_; have its jth column equal to zero and its other columns equal to those
of A1. Thus A; not in span(A_;) is equivalent to rank(A_;)+1=rank(A;).

Result 1. The factors I1,.., I, are observable if and only if the first py > my
diagonal elements in W are zero and A; is not in span(A_;), for j = 1,..,m;.
Proof. (Necessity) Consider the partitions F = { Fé } and A = [A; Ay], where
F| and A; have m; columns. Assume A} X = F|. Let ®,; be the m; by my
left upper submatrix of ®. Because ® positive definite, rank(®,,) =m;. Then
¢, = Var[F|] = Var[A| X] = A|¥A,, and rank(X) >m implies that rank(A,) =m;.
From A/X = F|, E[F] = o, E[E] = o, and Cov[F, E] = O, it follows upon
Equation (1) that O = Cov[E, Fy] = Cov[E, A} X] = WA, (a.s.). Hence, A, is
in the nullspace of ¥. Thus rank(¥) <p —my. From this and ¥ diagonal, it follows
that W has at least m; zero diagonal elements is necessary for the factors Iy, .., I},
to be observable.

Let column j of A be partitioned by a; = { 845 }, where a,; is of order p;. It
will be useful to prove that a,; = o when Fj is observable. From the partition of F,

E[Er] = o, Var[E1] = O, it follows that Fy, = o (a.s.). Hence, F; =a}X (as.), F



uncorrelated with £, and Equation (1), implies that

Covla; X, E] = a;Cov[AF + E, E] = a; l 0 0 ] = o.

O ¥y

Hence, a,; = o follows from Var[F,] = Wy, positive definite.

Assume a,; = o, the first py > m; diagonal elements of W zero, and A; €
span(A_;), for a j (1 <7 < my). From the partition of E, £[F1] = o, Var[E] = O,
it follows that £y = o (a.s.). Hence, (1) implies that X; = A F = )\ij —I—A_jF.
Obviously, a,; = o implies ¢’X = a{;X,. From A, € span(A_;), it follows that
A; = A_;AT;)\;. Hence, there is no vector ay; such that a{;A_; = o and af; A, = 1.
This completes the proof for the necessity of the condition for the factors Fi, .., I,
to be observable.

(Sufficiency) Assume that the first p; > m; diagonal elements of U are zero and
that A, is not an element of span(A_;), fora j (1 <j <my). f M, =1 — A_jAfj,
then it is the orthogonal projection matrix that projects vectors onto the ortho-
complement column subspace of A_.. It follows immediately that M; = M} and
Mj/\_j = (. Because )\j is not an element of span(A_j), there is no vector bj such

that )\j = A b Hence, M,)\, = )\4 _A_,Aj)\, # o. Then by taking a,, =
()\;-Mj)\ ) M X, using the properties for M;, we obtain /X = aj;A Fi= F

iy
Because the reasoning holds for 5 = 1,.., my, the suﬂiaency of the condition follows

This completes the proof.

Some remarks seem in order. The condition in Result 1 is general in the sense that
it holds for Heywood cases and for singular > matrices. The necessary condition is
new. The condition in Result 1 relates observable factors to the parameter matrices
for a finite number of variables. Provided that the first p; > m; diagonal elements in
U are zero, a simpler but stronger condition is rank(A;)= m. When this stronger
condition holds, it also holds for all rotations of A. Finally, A; is not a member of

span(A_;) when N;A_; = o.

Conditions for Indeterminacy
To give conditions under which indeterminacy exists, let F, E be a factor, error
vector, respectively. We have
Condition 1: E[F’, E] 0.
Condition 2: Var[F] = ® and Var =Wv.
Condition 3: Cov E F
Condition 4: Tﬁ

Condition 5: F 7E F and E

Conditions 1 through 3 hold for [ E ] as defined previously. Condition 4 ensures

that the basic model equation holds for the same observable variables as those in
Equation (1). Condition 4 implies that the loadings are fixed, so that F' cannot be

a rotation of F. This distingyishes indeterminacy from rotational indeterminacy.
Condition 5 ensures that ﬁj differs from Ej



Random Variables for which the Conditions Hold
It will now be shown that there are random variables which satisfy the five
conditions. Let L
and

E=93tX — AY, (6)

where the random variable Y satisfies £[Y] = o, Var[Y] = ® — ®A'ETA®, and
Cov[X, Y] = O. We will start by showing that Condition 1 through 4 hold without
further specifying ¥ for the moment.

It is clear that Condition 1 holds. Using that Var[F] = ®A'STA®, and

Var[F| = Var[F] + Var[Y], it follows that Var[F] = ®, so that the first part
of Condition 2 holds. From Cov[X, Y] = O it follows that

Var[E] = Var[€Xt X] + Var[AY]
=UXTW L+ APA — APA'TTADA. (7)
From YX4H(A, ) = (A, U), ¥XTY = ¥ (Penrose, 1955), and ¥ = ¥ — ADA’, it

follows that
PYTY =3 — 2APA + APA'TTADA’.

Using this in (7) shows that Var[E] = ®. Hence, Condition 2 holds.
From (5), (6), Cov[X, Y] = O, Var[Y] = ® — ®A'ZTA®, F' = A’ X and
YUY = ¥, it follows that

Cov[E, F] = UZTA® — A® + APA'STAD. (8)
Using that ¥ = ¥ — A®A’ and ¥XTA = A, it follows that the right hand side of (8)

is zero. Hence, Condition 3 holds.

To show that Condition 4 holds we shall use $WtE = E. To see this let ;/)]"; be
element 77 of UT. Then ¥* is uniquely defined by ;/)]"; =0if ¢;; =0 and ;/)]"; = 1/}7
if ;;, >0,7=1,..,p. From E[E] = o and ;; = 0, it follows that F; = 0 (a.s.), so
that £ = WU*E. Furthermore, from (5) and (6), it is immediate that

[ A I][ﬁ]:EEJrX. (9)

From this, substitution of AF +WWU*E for X, using that XX+ (A, ¥) = (A, ¥), and
VU+E = E, it follows that Condition 4 holds.
The orthogonal projection F'— F' of F' onto the space spanned by X suggests two

choices for Y which are in the space spanned by [ E ] Suppose that ¥ = F — F
(cf. Guttman, 1955; Elffers, Bethlehem, & Gill, 1978). Then Equation (5) implies

F = F. Equation (6) implies
E=93tX —AF 4+ APA'STX = IXtX — AF. (10)

But, X = [A $@t ]| &
This and Equation (10), imp

,and VUTE = F, implies that XXTX = AF + E.
ies that I/ = F. Hence, Condition 5 does not hold

6



when Y = F — F. Nevertheless, this shows that the model, as it is formulated in
(1), can be formulated in terms of F and E. This will be useful in deriving the key
property for Guttman’s (1955) measure for factor indeterminacy. At this place it
may also be noted that for an observable factor F} it holds that Y; = F; — ﬁj =0,
so that (5) implies F; = ﬁj = ﬁj. Hence, Condition 5 does not hold for observable
factors. Therefore, observable factors are not indeterminate and may thus be called
determinate.

Suppose F' unobservable and Y = F — F. The supposition F' = F leads to a
contradiction, as follows. Using I = I, substitution of F—FforYin (5) implies
F = F. That is, F' observable, which is contradictory.

Similarly, £ = E implies that O = COV[E, F]. This, ¥ = ¥ — A®A’, and
(6), implies that O = ® — PA'ETA'® = Var[F — F]. This contradicts the
supposition F' unobservable. We conclude that Condition 1 through 5 hold when
Y = F—F. This generalizes Guttman’s (1955) sufficient condition for indeterminacy
to Heywood cases.

Sampling

It will now be shown how the model equations can be used to sample observable

variables from a distribution, in particular, from the normal distribution. The sam-

pling process indicates how “Nature” may proceed when observable variables are
constructed according to the model for factor analysis.

Before going into these processes it will be convenient to note that_since, ﬁ,

Y =F-— F, and_X are in the columnspace of E T, it follows that [t ﬁ ] is in the

Columnspace of E . More specifically, it can be verified that

F (2®A'TTA — 1) 2BA' ST
E (BN — ABA'ST + DA (¥ — ABA)ST

g] (11)

The first process is according to the factor model as it is given by Equation
(1). In particular, let n independent vectors [( ,fl ), ,( gn )} be drawn from the
normal distribution N(( 9 ), { 8 % D Then take ;= A i +e,fore=1,.n.

The second process can be based on the sample [( é ),.., gg )J, just obtained.

Premultiplication of ( & , for i = 1,..,n, with the matrix in Equation (11) yields
the sample [( é ),..,( gﬁ )} Now take, according to Condition 4, z; = Afi + &,

fore=1,...n.

VAR
It follows from Kolmogorov’s theorem that = >, x;x/ converges to X with prob-

ability 1 as n — oo (Serfling, 1980, p. 27, Th. B)

Issues of Prediction
It is well-known that if E( £ ) = N({ 9 }, { & q’z‘}, D, then
L(FIX =2) = N(<I>A'§]+a3, P — <I>A'§]+A<I>) (12)

e.g. Anderson(1984, p. 37). Thus ® — ®A'YTAd is the dispersion of the prediction
error F — F. Obviously, E( E ) = E( E ), implies that exactly the same result

holds for indeterminate factors.



In case two researchers have a different opinion on which of the sampling proce-
sess is the correct one, their degree of disagreement can be measured by the correla-
tion between the factors F +Y;; and F + Y2 (Guttman, 1955). A lower bound for
the correlation between these can be obtamed as follows. Let u; be column j from
the identity matrix. The Cauchy-Schwarz inequality implies

Cov[Fj 4 Y1, Fj + Yjo] = w;®A'STA®u; + Cov[Vj1, ¥jo] >

w/ ®A'STAPu; — (Var[Yiu]Var[¥ja])F.

Thus the minimum correlation occurs when Y, = —Y2 Taking Y; = Y, using that
F=FwhenY = F— F leads to, F' and F=2F— F'. so that the minimum value

equals

Cov[F, F] = Var[F] — Var[F — F]. (13)
Obviously, F' observable, implies F' = I and Cov[F, F] =&

Two Examples
To illustrate, at first glance counterintuitive facts, two examples will be given.
The first shows that the factors may be indeterminate (unobservable) for singular
¥, and the second shows that the factors may be determinate (observable) for non-
singular Y. The matrices ¥ in the examples are correlation matrices.

Example 1. Let ¢ be the vector with unit elements having suitable order, ® = I,
/U = (0,0,0,%,1), so that p =5 and p; = 3. Furthermore let

7272
A= s

Then, the condition in Result 1 does not hold since the two columns of A; are
dependent, hence both factors are not observable. The matrix ¥ has rank 3, so
that it is singular. For completeness we mention that by (4) it is found that

Var[F — F] = i{ -1 -1 }

Example 2. Let & = [, and

g/g _43/55 0 1.00 0.00 0.57 0.57 —0.42
/ / 0 0.00 1.00 0.42 0.42 0.57
A= Vv1/2 0 , o= | 1/2 |, ¥ = 0.57 0.42 1.00 0.50 0.00
\/1/2 0 1/2 0.57 0.42 0.50 1.00 0.00

0 12 1/2 —0.42 0.57 0.00 0.00 1.00

so that p =5 and p; = 2. Then, the condition in Result 1 holds since the first two
diagonal elements of W are zero and the columns of A; are independent. Hence,
both factors are observable. All eigenvalues of Y are larger than zero, so that it is
non-singular. It may be noted that the correlations in ¥ seem realistic with respect
to empirical applications of the factor model. For completeness we mention that by

(4) it is found that Var[F — F] = O.

Conclusions and Discussion



Result 1 gives necessary and sufficient conditions in terms of the parameter
matrices for the factors to be observable. The five conditions define indetermi-
nacy rigorously and distinguish issues of indeterminacy from rotational indeter-
minacy. By extending Guttman’s(1955) proof to Heywood cases, it follows that
(un)observable factors are (in)determinate. The examples illustrate that Result 1
contains a construction device for population matrices useful for Monte Carlo Re-
search. More specifically, Result 1 shows how to construct factors arbitrarily close
to being (in)determinate. The latter can be accomplished for parameter points on
or arbitrarily close to the boundary of the parameter set. In particular, this can be
arranged for by choosing population error variances arbitrarily close to zero.

We have stressed that from well-known dimensionality type of conditions with
respect to projection, the uniqueness of the best linear predictor is implied. Hence,
the criterion in Equation (3) allows the predictor to be unique. There are various cri-
teria in the literature on factor prediction which do not allow uniqueness. Examples
are “reliability” (Joreskog, 1971) or “validity” or multiple correlation (McDonald &
Burr, 1967; Lord & Novick, 1968, p. 261; Muirhead, 1982, p. 165). Furthermore,
there are factor score predictors in the literature which satisfy a certain constraint
(Thurstone, 1935; Bartlett, 1937; Anderson & Rubin, 1956; Ten Berge, Krijnen,
Wansbeek & Shapiro, 1997). These are, however, not best linear (Krijnen, Wans-
beek, & Ten Berge, 1996).

Under certain regularity conditions, estimation procedures based on maximum
likelihood or general method of moments yield estimates A, ®, U that converge
with probability 1 to A,, ®,, ¥, (Cramér, 1946, p. 500; Ferguson, 1958; Browne,
1984; Sen & Singer, 1993, p. 205). This implies that continuous functions of these,
such as Var[F — ﬁ], can be estimated with probability 1 (Serfling, 1980, p. 24).
Furthermore, because functions such as Var[F — F ], are continuously differentiable
with respect to the parameters (e.g. Magnus & Neudecker, 1991, p. 154), their
asymptotic normality is obtainable (Serfling, 1980, p. 122). It may happen, in
practice, that a diagonal element of Var[F — F] does not differ significantly from
zero and that the estimated point does not differ significantly from a point for which
the conditions of Result 1 hold. Such empirical cases exist for single-factor factor
analysis (Krijnen, 1997b).

Condition 4 says that the observable variables are a weighted sum of the loadings
and the error vector. The random variable Y, however, is orthogonal to the space
spanned by the obseryvable variables X, although it does correlate with its consti-
tuting variables | r] In addition, it can be seen from (5) and (6) that observable
variables are used to define observable variables. These properties complicate the
understanding of the model in which indeterminate factors are involved. Most scien-
tists are willing to consider a more complicated model when there is some evidence
in favor for it. However, the orthogonality of ¥ to the observable variables X implies
that its linear prediction is useless. It is thus impossible to empirically investigate
Y in the sense of relating it to the observable variables. For these reasons the pos-
sibility of providing evidence in favor of the indeterminate factor model is at least
questionable.

Finally, it may be noted that Guttman’s (1955) measure for factor indeterminacy



is closely related to other measures (cf. Elffers, Bethlehem, & Gill, 1978). That is,
(12) shows that Var[F — F] is the dispersion matrix which reveals the degree of
uncertainty with respect to making valid inferences to cases. Hence, for the latter
purpose it is desirable that the entries of the dispersion matrix are small. When
this is the case, however, the entries of Var[ﬁ] are large, so that the entries of
Guttman’s (1955) measure are large, see (13). Possible means to obtain this in

practice are decreasing the number of factors or increasing the number of variables

with large loadings (Schneeweiss & Mathes, 1995).
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