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Abstract. In this paper, the relative multidimensional scaling method is investigated. This method is
designated to visualize large multidimensional data. The method encompasses application of mul-
tidimensional scaling (MDS) to the so-called basic vector set and further mapping of the remaining
vectors from the analyzed data set. In the original algorithm of relative MDS, the visualization pro-
cess is divided into three steps: the set of basis vectors is constructed using the k-means clustering
method; this set is projected onto the plane using the MDS algorithm; the set of remaining data is
visualized using the relative mapping algorithm. We propose a modification, which differs from the
original algorithm in the strategy of selecting the basis vectors. The experimental investigation has
shown that the modification exceeds the original algorithm in the visualization quality and com-
putational expenses. The conditions, where the relative MDS efficiency exceeds that of standard
MDS, are estimated.

Key words: multidimensional scaling, visualization, clustering, relative MDS, large data sets, data
mining.

1. Introduction

Nowadays, computer systems store large amounts of data. Due to the lack of abilities
to explore adequately the large amounts of collected data, even potentially valuable data
becomes useless and the data of databases dumps. Visual data exploration, which aims at
providing an insight by visualizing the data and information visualization techniques, can
help to solve this problem. Visual data exploration strives for integrating humans into the
data exploration process, by applying their perceptual abilities of large data sets, which
are available at present. The main idea is to present the data in some visual form, allowing
data analysts to gain the insight into it and draw conclusions, as well as to interact with it
(Keim, 2001). Therefore, a great attention has been paid to the analysis of large data sets
of late, particularly to their visual analysis (Bernatavičienė et al., 2006a).

A set of some numerical parameters x1, x2, ..., xn characterizes a real object; here
n is the number of parameters. These parameters compose a multidimensional vec-
tor, which corresponds to that object. The number of the analysed objects is m. De-
note the multidimensional vectors describing all m objects by X1, X2, ..., Xm. Xi =
(xi1, xi2, ..., xin), i = 1, ..., m. A human being can comprehend visual information eas-
ier and more quickly than the numerical one. Data visualization allows people to detect
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the presence of clusters, outliers or regularities in the analysed data. Various methods can
be used for this purpose. It is possible to divide them into a few groups: (1) direct visual-
ization methods (parallel coordinates, scatterplots, Chernoff faces, dimensional stacking,
etc. (Hoffman and Grinstein, 2002)); (2) dimension reduction methods (principal compo-
nent analysis (Taylor, 2003), projection pursuit (Brunsdon et al., 1998), multidimensional
scaling (Borg and Groenen, 1997), etc.). There are methods based on neural networks
(self-organizing maps (SOM) (Kohonen, 2001; Dzemyda and Kurasova, 2002), combi-
nation of the SOM and Sammon’s mapping (Dzemyda and Kurasova, 2006), etc.) that
may be allocated to the dimension reduction methods.

The multidimensional scaling method (MDS) (Borg and Groenen, 1997) is a popu-
lar method usable to visualize multidimensional data. It found a lot of applications in
technology, economy, medicine, etc. For example, a two-dimensional view in the breast
cancer data set (Bennett, 1992), where nine numerical parameters were measured on 683
patients, is presented in Fig. 1. We observe the interlocation of data on individual patients
on a plane. Benign (non-malignant) cases are dark-coloured, while the malignant ones
are light-coloured. Benign cases are concentrated in a small zone.

The problems with the standard MDS algorithm are faced when we have to project
(visualize) a large data set or a new data point among the previously mapped points has
to be projected. In the standard MDS, every iteration requires each point to be compared
with all other points and the iteration complexity is O(m2). Thus, the MDS method
is unsuitable for large data sets: it takes much computing time or there is not enough
computing memory. Furthermore, it is necessary to recalculate the projection of all data
points, when a point has to be mapped. Various methods have been proposed for mapping
of new points without recalculating all the previously mapped points: Sammon’s mapping
(a particular application of MDS) based on an artificial neural network (SAMANN) (Mao
and Jain, 1995), distance mapping (Pekalska et al., 1999), incremental scaling (Basalaj,
1999), relative mapping (Naud and Duch, 2000), and neuroscale (Tiping, 1996).

The paper (Bernatavičienė et al., 2006a) focuses on the relative MDS method. This
approach is to take a subset of initial data set (basis data set) and then map the basis data
set, using the standard multidimensional scaling (MDS). As a second step, the remaining

Fig. 1. Visualization of breast cancer data.
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vectors of initial data are added to the basis layout using relative mapping (Naud and
Duch, 2000). Strategies of selecting a set of basis vectors are analysed in (Bernatavičienė
et al., 2006a). One strategy has been proposed and analysed in (Naud, 2004; Naud, 2006),
that is based on the results of k-means algorithm. Two other superior strategies are pro-
posed in (Bernatavičienė et al., 2006a). It has been defined that when selecting basis
vectors at random from the initial set, one can get a similar result as that by using the
strategy selecting basis vectors by the k-means clustering algorithm.

The aim of this paper is to determine the optimal number of basis vectors and the
way of selecting them out of the whole set so that the calculation costs are low enough,
while the projection is rather precise and informative. It is also of great importance to
choose a proper way of two-dimensional vector initialization when using the relative
MDS algorithm, because that influences the accuracy of projection. Next problem, which
is examined in the paper, is to find out when it is reasonable to use the relative MDS
algorithm instead of the standard MDS.

2. Background for the Relative MDS

The multidimensional scaling (MDS) is a group of methods that project multidimen-
sional data onto a low- (usually two-) dimensional space and retain the interpoint dis-
tances among data as much as possible. Let us have vectors Xi = (xi1, xi2, ..., xin), i =
1, ..., m(Xi ∈ Rn). The pending problem is to get the projection of these n-
dimensional vectors Xi, i = 1, ..., m onto the plane R2. The two-dimensional vectors
Y1, Y2, ..., Ym ∈ R2 correspond to them. Here Yi = (yi1, yi2), i = 1, ..., m. Denote
the distance between the vectors Xi and Xj by d∗ij , and the distance between the cor-
responding vectors on the projected space (Yi and Yj) by dij . In our case, the initial
dimensionality is n, and the resulting one is 2. There exists a multitude of variants of
MDS with slightly different so-called stress functions. In our experiments, the raw stress
(1) is minimized.

EMDS =
m∑

i,j=1,i<j

(d∗ij − dij)2. (1)

Various types of minimization of the stress function are possible (Borg and Groenen,
1997; Mathar and Zilinskas, 1993). In the original relative MDS algorithm (Naud, 2004),
the minimization of the error EMDS is realized through the steepest descent procedure
that incorporates second order derivatives. We use here the SMACOF algorithm based
on iterative majorization. It is one of the best optimisation algorithms for this type of
minimization problem (Groenen and van de Vaelden, 2004). This method is simple and
powerful, because it guarantees a monotone convergence of the stress function (Borg and
Groenen, 1997; Groenen and van de Vaelden, 2004).

Relative mapping (Naud and Duch, 2000) is a part of the Relative MDS algorithm.
In classification tasks, it may be of interest to see where a new data point ”falls” among
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the known cases and discover the class topology of its neighbouring known cases to get
an insight on how a classifier would classify this new point. The realization of this pur-
pose requires a method that allows the mapping of one new point on a set of data points
previously mapped, using the topology-preserving mapping. The MDS is a topology pre-
serving mapping, but it does not offer a possibility to project new points on the existing
set of mapped points. To get a mapping that presents the previously mapped points to-
gether with the new ones requires a complete re-run of the MDS algorithm on the new
and the old data points. Let us denote the number of known data points by Nfixed, the
number of new data points by Nnew, the total number of points considered during the
mapping by Ntotal (Ntotal = Nfixed +Nnew), the set of known data points by F (it will
be called a set of basis vectors), the set of new data points by M . The algorithm scheme
is as follows:

1. Map set F using the MDS mapping (the number of fixed points is equal to Nfixed).
2. Map set M with respect to the mapped set F , using the relative mapping (the

number of new points is equal to Nnew).

The difference between the relative mapping and the standard MDS is that during the
minimization of the stress function, only the points from set M are allowed to move,
while the points from set F are kept fixed. This is achieved by modifying the stress func-
tion so that it sums only over the distances that change during iterations, i.e., the distances
between the fixed and the moving points, and interpoint distances between moving points.
The stress function (1) is rewritten as:

ERelative MDS =
Nnew∑

i,j=1,i<j

(d∗ij − dij)2 +
Nnew∑
i=1

Ntotal∑
j=Nnew+1

(d∗ij − dij)2. (2)

In the original relative MDS algorithm (Naud, 2004), the minimization of the projec-
tion error ERelative MDS is also realized through the steepest descent procedure. How-
ever it is not that effective as compared with the Quasi–Newton algorithm. Therefore, in
our experiments, we use the Quasi–Newton algorithm to minimize ERelative MDS .

The k-means method is an iterative clustering algorithm in which the analysed vectors
are moved among the sets of clusters until the desired set is reached (Dunham, 2003). Let
us map the set of vectors to the ith cluster be {Xi1, Xi2, ..., Xiμi}. Here μi is the number
of the objects in the ith cluster {Xj

i = (xj
i1, x

j
i2, ..., x

j
in), j = 1, ..., μi}. The squared

error is defined as:

Ek =
k∑

i=1

μi∑
j=1

||Xj
i − Ci||2. (3)

Here Ci = (ci1, ci2, ..., cin) is the centre of the cluster, (cik = 1
μi

∑μi

j=1 xj
ik, k =

1, ..., n). The above method will be employed in selecting basis vectors.



Conditions for Optimal Efficiency of Relative MDS 191

3. Data Sets for the Analysis

Five data sets were used in the experiments. Four of them are artificial, and the last one
is real, namely:

1. Ellipsoidal[m, n] set, where m = 1115 is the number of vectors, n = 50 is the
dimensionality; the set contains 20 overlapping ellipsoidal-type clusters.

2. Ellipsoidal[m, n] set , m = 3140, n = 50; the set contains 10 non overlapping
ellipsoidal-type clusters.

3. Gaussian[m, n] set, where m = 2729, n = 10; it contains 10 overlapping clusters.
4. Paraboloid[m, n] set, where m = 2583, n = 3; the data set contains 2 non over-

lapping clusters.
5. Abalone[m, n] set, where m = 4177, n = 8 with contains 29 clusters.

In the experiments two data sets, obtained using the ellipsoidal cluster generator
(Handl and Knowles, 2005) are used. This generator creates ellipsoidal clusters with
the major axis of an arbitrary orientation. The boundary of a cluster is defined by four
parameters:

• the origin (which is also the first focus);
• the interfocal distance, uniformly distributed in the range [1.0, 3.0];
• the orientation of the major axis, uniformly located amongst all orientations;
• the maximum sum of Euclidean distances to two foci, belonging to the range [1.05,

1.15] – equivalent to the eccentricity ranging from [0.870, 0.952].

For each cluster, data points are generated at a Gaussian-distributed distance from
a uniformly random point on the major axis, in a uniformly random direction, and are
rejected if they lie outside the boundary. Using this ellipsoidal generator two data sets are
generated: Ellipsoidal[1115, 50] and Ellipsoidal[3140, 50].

The Gaussian[2729, 10] data set has been generated using the Gaussian cluster gen-
erator. This generator is based on a standard cluster model using multivariate normal
distributions. See (Handl and Knowles, 2005) for more details.

The Paraboloid[2583, 3] data set is also an artificially created data set. There are two
classes in this data set. The vectors are generated as follows: the first two coordinates of
the vector are randomly generated in a predefined area (for the first class it is a circle with
radius 0.4, for the second class this area is a ring, limited by two circles with radii 0.7
and 1.2). Then the third coordinate is added using such a rule x3 = 1.8 ·

√
x2

1 + x2
2. The

created paraboloid is rotated to make the classification more difficult.
The Abalone[4177, 8] data set is taken from the UCI repository (Blake and Mertz,

1998). Each vector describes 8 parameters of abalone: x1 – length (the longest shell
measurement), x2 – diameter (perpendicular to the length), x3 – height (with meat in
the shell), x4 – the whole weight of abalone, x5 – shucked weight (the weight of meat),
x6 – viscera weight (gut weight after bleeding), x7 – shell weight after being dried, and
x8 – rings. The data set samples are highly overlapping. Since the scales of parameters
are different, it is necessary to normalize them: to calculate the average x̄j and variance
σ2

j of each parameter; the values of each parameter xij are normalized by the formula:
(xij − x̄j)/σj .
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4. Strategies for Selecting the Set of Basis Vectors

In the relative MDS, there a problem of selecting the set F of basis vectors arises. Some
strategies can be used:

I. Set F consists of the cluster centres, obtained by the k-means clustering algorithm
(Naud, 2004; Naud, 2006);

II. Set F consists of data set points that are the closest points to the cluster centres,
obtained by the k-means algorithm. Additional points of each cluster are added
to set F : these points are selected as most distant to the respective cluster centre
(Bernatavičienė et al., 2006a).

III. Set F consists of data set points, chosen randomly from the whole (Xi, i =
1, ..., m) data set (Bernatavičienė et al., 2006a).

The general scheme of the visualization process is presented in Fig. 2.
Using Strategy I for selecting basis vectors in (Bernatavičienė et al., 2006a), we have

obtained the poorest results; therefore we will not use it for the further research. It has
been demonstrated that the visualization results by means of Strategies II and III are quite
similar. However, clustering of the initial data and selection of basis vectors by Strategy
II takes much more calculating time. By increasing the number of basis vectors we can
get a more accurate projection error. According to (Naud, 2006) when using Strategy
I, it is reasonable to increase the number of basis vectors up to 500. If the number of
basis vectors is increasing even more, the clustering time is also increasing, while the
calculations become slower. We can avoid that using Strategy III and increase the number
of basis vectors up to 1000 or more, seeking for lower projection error. Due to these
reasons, we will apply Strategy III for selecting basis vectors in further experiments.

When using relative MDS algorithm for visualization of large sets, it is of utmost
importance to determine the optimal number of basis vectors, i.e., to establish how much
their amount can be increased so as to avoid great calculation costs, the error remaining
low enough and projection being informative.

Fig. 2. Scheme of the visualization process: (1) selection the set of basis vectors; (2) the set of basis vectors is
projected by standard MDS mapping; (3) the remaining points are projected by relative mapping.
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Fig. 3. Projections of two spheres: (a) using Strategy III, E = 0.118037, (b) using Strategy II, E = 0.12265.

In Fig. 3, the projections of two spheres (the data set comprised of the points of two
hyper-spheres with 100 10-dimensional points in each sphere) are presented to illustrate
these strategies. We do not present scales of variables in the figures with visualization
results, because we are interested in observing the interlocation of points on a plane. This
set is used to illustrate of strategies of selection of the basis vector set. First of all, set F

of basis vector is comprised. Afterwards, the points of the formed basis set F are mapped
on the plane, using the MDS algorithm. Using Strategy III, set F is made up out of 20
points from the data set chosen randomly (marked by unfilled circles in Fig. 3a). Using
Strategy II, set F consists of two subsets: (a) two points (marked by circled crosses in
Fig. 3b), which are closest to the centres of two clusters and (b) 9 points of each cluster
(marked by unfilled circles in Fig. 3b). The visualization results, using Strategy I, are
very similar to that of Fig 3a. The number of the basis vectors Nfixed is equal to 20 in
both cases (Strategies II, and III). Then the remaining vectors (set M ), marked by filled
circles, are mapped by the relative MDS algorithm.

To compare the obtained visualization results, the projection error is calculated:

E =

√√√√
m∑

i<j

(d∗ij − dij)2
/ m∑

i<j

(d∗ij)2. (4)

The projection error E in (4) is used here instead of EMDS in (1), because the in-
clusion of the normalized parameter

∑m
i<j(d

∗
ij)

2 gives a clear interpretation of the image
quality that does not depend on the scale and the number of distances in an n-dimensional
space. The reason for using E rather than the squared error E2 is that E2 is almost al-
ways very small in practice, so E values are easier to discriminate (Borg and Groenen,
1997). Of course, the error E in (4) may be used in the MDS. However, it is impossi-
ble to decompose and apply this error for the relative MDS. Therefore, EMDS in (1) is
minimized.

Using Strategy III, the projection error (4) is obtained smaller (E = 0.11803) than
using Strategy II (E = 0.12265) (Fig. 3).
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5. Results of Comparative Analysis

5.1. Investigation of Initialization

The visualization results strongly depend on the way of initializing the two-dimensional
vectors. Initialization is assigning the initial values to two-dimensional vectors Y1, Y2, ...,

Ym ∈ R2. With an aim to get as precise projection on the plane as possible, we have used
the principal component analysis (PCA) algorithm for the initialization in the standard
MDS algorithm (Bernatavičienė et al., 2006b). In the relative MDS, the basis vectors are
projected using the standard MDS algorithm with PCA-based initialization. However, we
have to find out which way of initialization to choose in order to project the remaining
vectors on the fixed two-dimensional map of basis vectors using the relative mapping.

We have chosen 6 different initialization ways:

(a) the matrix A[1 × n] of average and rotation matrix T [n × 2], obtained by using
PCA in basis vector initialization, are saved; two-dimensional coordinates of the
remaining vectors are initialized by the formula: Yi = (Xi − A)T, i = 1, ..., m;

(b) the initial coordinates of the vector from the remaining vector set is chosen as a
two-dimensional projection of the closest basis vector;

(c) a random two-dimensional vector, generated in the area of projection of the nearest
basis vector, is attributed to the initial coordinates of a vector from the remaining
vector set (radius of the area r = 0.01);

(d) and (e) are analogous to c), only with different radii: (d) r = 0.1 and (e) r = 1;
(f) a random two-dimensional vector, generated in the area covered by all the two-

dimensional projections of basis vectors, is attributed to the initial coordinates of a
vector from the remaining vector set.

The experiments have been done on two data sets: Ellipsoidal[1115, 50] and
Gaussian[2729, 10].

One experiment has been done with each (a) and (b) ways of initializing, 10 experi-
ments have been done with each (c), (d), (e), (f) ways of initializing by selecting a dif-
ferent data set of basis vectors each time. The averages of projection errors have been
calculated only for (c), (d), (e), (f) ways of initializing, because a certain randomness
factor influenced the result of initialization.

The number of basis vectors varied from 100 to 1000 (step 100). 10 different sets of
basis vectors of fixed size were formed (using Strategy III for selecting basis vectors).
The data were projected on the plane employing all the 6 ways of initializing the two-
dimensional vectors. The errors and their means have also been estimated. In fact, in the
case of (c), (d), (e), (f), the means of errors obtained from 10 experiments for fixed size
of basis vectors have been averaged. Tables 1 and 2 illustrate the results.

The experiments have shown that the worst way of initialization (f) is the random
selection of basis vectors in the projection area (way (f)). Other ways (c), (d), (e) demon-
strate similar results. Though the average of error is a little lower using the way (a) by
PCA than that obtained by other ways (b), (c), (d), (e), the difference between these av-
erages of projection errors is insignificant.
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Table 1

Experimental results for the ellipsoidal [1115, 50] data set

100 300 500 700 900

mean variance mean variance mean variance mean variance mean variance

(a) 0.24609 0.00184 0.24261 0.00171 0.24103 0.00048 0.24061 0.00049 0.24023 0.00018

(b) 0.24620 0.00193 0.2426 0.00163 0.24103 0.00038 0.24059 0.00049 0.24023 0.00017

(c) 0.24617 0.00185 0.24261 0.00156 0.24103 0.00036 0.24059 0.00047 0.24023 0.00016

(d) 0.24616 0.00185 0.24261 0.00156 0.24103 0.00036 0.24059 0.00048 0.24023 0.00016

(e) 0.24636 0.00179 0.24266 0.00157 0.24105 0.00036 0.2406 0.00047 0.24023 0.00016

(f) 0.26150 0.00553 0.25252 0.00481 0.24683 0.00218 0.24384 0.00151 0.24231 0.00150

Table 2

Experimental results for the Gausian[2729, 10] data set

100 300 500 700 900

mean variance mean variance mean variance mean variance mean variance

(a) 0.28253 0.00640 0.27783 0.00493 0.27652 0.00511 0.27368 0.00061 0.27350 0.00052

(b) 0.28283 0.00685 0.27843 0.00507 0.27693 0.00516 0.27394 0.00065 0.27371 0.00041

(c) 0.28281 0.00647 0.27842 0.00482 0.27693 0.00492 0.27394 0.00062 0.27371 0.00039

(d) 0.28281 0.00647 0.27841 0.00483 0.27693 0.00492 0.27394 0.00063 0.27371 0.00039

(e) 0.28282 0.00647 0.27842 0.00483 0.27693 0.00492 0.27394 0.00063 0.27371 0.00039

(f) 0.28707 0.00733 0.28079 0.00516 0.27957 0.00505 0.27562 0.00090 0.27533 0.00103

With an increase of the number of basis vectors the variance decreases, while the
variation of error is insignificant. This kind of regularity remains when using all the ways
of initialization.

5.2. Comparison of the Relative MDS and the Standard MDS

The target of another research was to determine when it was expedient to use the relative
MDS and when the standard one. We visualized 5 data sets of the different dimension
and number of vectors. In the standard MDS algorithm the calculation time and projection
error (4) were evaluated after each iteration. In the relative MDS algorithm, time and error
(4) were evaluated after visualizing the whole data set, with the number of basis vectors
varying from 100 to 1000 for small data sets, and from 100 to 1500 for large data sets
(step 100) (Fig. 4). The number of basis vectors exceeds the above mentioned, the time
for visualising basis vectors essentially increases, while the projection error diminishes
insignificantly.

While using Strategy III, the experiments are done with the following number of the
data set vectors chosen randomly: Nfixed = 100, 200, ..., 1500. Each experiment has
been repeated 10 times with a different set of basis vectors, the projection error and
calculating time being estimated each time. These errors and time, obtained in 10 exper-
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Fig. 4. Dependence of the projection error on the computing time: (a) ellipsoidal[1115, 50] data set;
(b) paraboloid[2583, 3] data set; (c) Gaussian[2729, 10] data set; (d) ellipsoidal[3140, 50] data set;
(e) abalone[4177, 8] data set.

iments, are averaged and presented in Fig. 4 (Relative MDS, grey line). The projection
error and calculation time in each iteration are presented in Fig. 4 (standard MDS, black
line) for each data set.

The results obtained confirm that it is reasonable to apply the relative MDS algo-
rithm (Fig. 4 c, d, e) when visualizing the data set with more than 3000 vectors whose
dimensionality exceeds 5. In these cases, given limited computing time the relative MDS
algorithm yields a more precise mapping than the standard one. However, the number of
visualizing vectors and dimension being small, the standard MDS is always better.

Fig. 5 illustrates the visualization results of the ellipsoidal[3140, 50] data set using
both algorithms. When all the vectors (m = 3140) of the data set are mapped by MDS,
the computing time is 7530 seconds, and E = 0.04174 (after 50 iterations). Using the
relative MDS, the projection error is lower, and the computing time is saved significantly
(842 seconds, E = 0.04161), The standard MDS takes 9 times more computing time.
As seen from the projection by the standard MDS algorithm (Fig. 5a), one cluster is not



Conditions for Optimal Efficiency of Relative MDS 197

Fig. 5. Projection of the ellipsoidal[3140, 50] non overlapping data: (a) obtained using MDS (b) obtained using
Relative MDS (number of basic vectors is equal to 1500).

Table 3

Error and computing time for both algorithms

Data set MDS_50 iteration Relative MDS

error time, s error time, s

ellipsoidal [1115, 50] 0.240134 102 0.240232 96

ellipsoidal [3140, 50] 0.041745 7530 0.041615 842

Gaussian [2729, 10] 0.272748 1389 0.273075 732

paraboloid[2583, 3] 0.209169 1079 0.212924 300

abalone [4177, 8] 0.043681 24071 0.042907 1445

completely formed.
Table 3 presents the computing results after visualizing 5 data sets: error and time

obtained by both algorithms. The standard MDS algorithm was terminated after 50 iter-
ations. The same number of iterations was applied in the standard MDS algorithm when
projecting basis vectors. The time in the relative algorithm was evaluated after all the pro-
jections of vectors of the whole data set have been obtained. The number of basis vectors
is fixed, namely: for the ellipsoidal [1115, 50], and paraboloid [2583, 3] data sets it was
equal to the 1000, while for others – 1500.

The results obtained confirm that with large datasets and limited computing time, the
relative MDS algorithm yields a sufficiently precise projection and more time is saved.

5.3. Selection of Basis Vectors

The dependence of the projection error on the number of the basis vectors Nfixed is
presented in Fig. 6. It shows that the averaged projection error E constantly decreases,
when Nfixed increases. The averaged projection error E stabilizes itself at Nfixed ≈ 700
for small data sets (from 1000 to 3000 vectors) (Fig. 6a) and at Nfixed ≈ 900 for large
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Fig. 6. Dependence of the projection error on the number of the basis vectors.

Table 4

Projection errors, obtained using Strategy II for the ellipsoidal[1115, 50] data set

p k

10 20 30 40 50

5 0.3039 0.2640 0.2532 0.2499 0.2468

10 0.3045 0.2572 0.2469 0.2482 0.2448

15 0.2991 0.2576 0.2459 0.2448 0.2430

20 0.3038 0.2555 0.2446 0.2434 0.2413

25 0.2982 0.2503 0.2436 0.2427 0.2408

data sets (more than 3000 vectors) (Fig. 6b). By increasing the number Nfixed even more
the projection error (4) changes insignificantly: its difference is observed only in the 4–5
th digit after a point.

The aim of the next experiment is to show how important it is to select the basis
vectors uniformly distributed all over the data set. We use Strategy II for selecting basis
vectors, in which the centres of clusters, obtained by the k-means algorithm, are rather
uniformly distributed throughout the data set. Meanwhile, when taking additional vectors
of each cluster, the uniformity of distribution of the basis vectors retains.

The projection errors, obtained by using a different number of Nfixed (the number
of clusters k = 10, 20, ..., 50, and the number of the data set vectors from each cluster
p = 5, 10, ..., 25), are presented in Table 4. When composing a data set of basis vectors,
it is better to take a large number of clusters and less additional vectors from each cluster.
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Fig. 7. Projection of the ellipsoidal[1115, 50] data set: (a) k = 20, p = 25, E = 0.2503,
(b) k = 50, p = 10, Nfixed = 500, E = 0.2448.

In this way, the computing time grows but we distribute the basis vectors all over the
whole data set more uniformly. For instance, if we take the fixed number of basis vec-
tors Nfixed = 200 (Table 4), as k = 10, and p = 20, then the projection error is equal
E = 0.3038, while for k = 20, and p = 10, E = 0.2572. Thus, the experiment demon-
strates that the more uniform the distribution of the basis vectors is, the more precise the
projection is. Fig. 7 illustrates these results.

In Fig. 7, the visualization results of the ellipsoidal[1115, 50] data set are presented
(number of basis vectors is equal Nfixed = 500): (a) k = 20, p = 25, (b) k = 50, p =
10. The lower projection error is obtained and the quality of visualization is better in case
(b) using the relative algorithm.

6. Conclusions

The visual analysis of large data sets is a topical problem. However, when a large data
set of multidimensional vectors is visualized by the standard MDS method, it takes much
computing time. In this paper, we have investigated a modification of the standard MDS
method for large data sets (the relative MDS): first of all, some basis vectors are projected
onto the plane, then the remaining points are projected among the previously mapped
vectors.

The investigation allows us to draw the following conclusions:

• The visualization results are very dependant on the selected set of the basis vectors.
• With an aim to obtain a more precise projection of whole data set, we propose to

apply the PCA algorithm for the initialization of two-dimensional vectors, corre-
sponding to the remaining n-dimensional points. However, the differences of vi-
sualization results obtained by all five investigated ways of initialization are not
so significant. The worst way of initialization is a generation of random two-
dimensional vectors in the area covered by all the two-dimensional projections of
basis vectors.
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• In visualizing data sets that dimensionality is larger than 5 and that contain more
than 3000 vectors, it is more reasonable to use the relative MDS algorithm. Under
the above mentioned conditions, the relative MDS algorithm gives precise mapping
and saves much computing time as compared with the standard MDS algorithm.
Therefore, in the case of limited computing time, the projection by the relative
MDS algorithm will be better than that by the standard MDS algorithm.

• The larger dimensionality of visualized vectors needs the larger number of the basis
vectors.

• When the number of the basis vectors increases, a more precise projection is ob-
tained. However, too large number of the visualized basis vectors extends the com-
puting time. The optimal number of basis vectors ranges from 700 to 1000 for small
data sets (up to 3000), while for larger than 3000 data sets it ranges from 900 to
1500.

• With an increase of number of basis vectors, the mean value of the projection error
decreases; the variance of the projection error decreases significantly.

• The basis vectors should be selected so that the basis vectors were distributed as
uniformly as possible all over the data set, which shows better results of obtained
visualization.
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Reliatyvaus daugiamači ↪u skali ↪u algoritmo efektyvaus veikimo s ↪alygos

Jolita BERNATAVIČIENĖ, Gintautas DZEMYDA, Virginijus MARCINKEVIČIUS

Šiame straipsnyje tiriamas reliatyvus daugiamači ↪u skali ↪u algoritmas, skirtas dideli ↪u dau-
giamači ↪u duomen ↪u aibi ↪u vizualizavimui. Šis algoritmas sudarytas iš keli ↪u dali ↪u: daugiamačiai
duomenys dalijami ↪i dvi aibes (bazini ↪u vektori ↪u aib ↪e ir likusi ↪u tašk ↪u aib ↪e); baziniai vektoriai, nau-
dojant standartin↪i daugiamači ↪u skali ↪u algoritm ↪a, projektuojami ↪i plokštum ↪a, o likusi ↪u vektori ↪u aibė
projektuojama ↪i plokštum ↪a, atsižvelgiant tik ↪i bazini ↪u vektori ↪u projekcijas. Vizualizavimo kokybė,
naudojant š↪i algoritm ↪a, labai priklauso nuo dvimači ↪u vektori ↪u inicijavimo būdo, nuo bazini ↪u vek-
tori ↪u skaičiaus bei j ↪u parinkimo strategij ↪u. Straipsnyje tiriamos trys bazini ↪u vektori ↪u parinkimo
strategijos, ieškoma optimalaus bazini ↪u vektori ↪u skaičiaus, lyginami skirtingi dvimači ↪u vektori ↪u
inicijavimo būdai. Eksperimentai parodė, kad straipsnyje siūlomi sprendimai pagerina vizualizavi-
mo kokyb ↪e realiatyvaus daugiamači ↪u skali ↪u algoritmu ir taupo skaičiavimo laik ↪a.


