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Abstract                                               

The presence of a new anomaly, in addition to the Adler-Bell-

Jackiw (ABJ) anomaly, is shown for gauge theories with YS couplings.

The AbJ anomaly is discussed first by shifting variable of a linearly-

divergent integral, then by dimensional regularization.  Using the

second method, the general non-abelian case is considered, in the pre-

sence of an overlapping divergence.  A new anomaly is discovered which

is not, in general cancelled by the usual restrictions because fermion

masses are involved,  Assuming no cancellation between different Feynman

Biagrams, and current-algebra quark masses, then leads to the conclusion that

the standard model of quantum flavor dynamics (i.e. that of Glashow,

Salam, Ward, Weinberg, Kobayashi and Maskawa) is non-renormalizable.

Imposition of renormalizability dictates that new dynamical con-

straints be met.  Hence, only that part of the quark mass corresponding

to the lepton mass in the same quark-lepton generation is generated by

the electroweak interactions.  The remaining mass comes presumably

from the strong interaction for which the dynamical theory must there-

fore have at least some flavor dependence; this is not the case for

e.g. quantum chromodynamics which is totally' flavor-blind.
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I.   Introduction

' The. demonstrationl that Yang-Mills theory with spontaneous symmetry

breaking and the Higgs mechanism is renormalizable marked a major turning

point in weak interaction theory.  A unified theory2 of electromagnetic and

3
weak interactions now esists and agrees  remarkably well with low-energy

data.  Further experiments at high energy are needed to search for the

intermediate vector bosons and Higgs scalar particles; if these are

successfully found and have the predicted properties, the theory would be-

come well established.

45In proving the renormalizability ' of gauge theory, it is crucial
that the renormalized lagrangian be itself locally gauge invariant under

a group of transformations isomorphic to those leaving the bare lagrangian

invariant.  This is necessary because gauge invariance must be preserved

order by order  in the renormalized perturbation series.     This  is a non-trivial                         '

requirement because renormalization involves an infinite re-ordering of

the perturbation expansion.  It is necessary because otherwise perturbative

unitarity, and hence full unitarity, is violated.

To preserve gauge invariance, the most suitable method is to use

6
dimensional regularization  which, in general, preserves the form of the

relevant Ward identities while rendering divergent integrals finite in a

generic ,space-time dimension,   n. The counter-terms are separated  off

as poles  in (4-n)-1.

Without fermions coupling to the gauge fields according to Qy Y5$A ,

the procedure is straightforward.  For example, the perturbative renormaliz-

ability of quantum chromodynamics has no problem in this respect.

For weak interactions, however, such parity-violating couplings are

7inevitable and one must confront the triangle anomaly,  of Adler, Bell
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and Jackiw (ABJ).  This presents no difficulty for open fermion lines

which both enter and leave the diagram as external particles; for such

8
a case, one simply defines  an entity Y5 in arbitrary dimension which·

anticommutes with all y .
11

For closed fermion loops involving an odd number of Y5 couplings,

the handling of dimensional regularization is more problematic, and that

is our present subject. Since a Dirac trace is involved, there  is no raally

satisfactory generalization of Y5 to arbitrary dimension, despite several

9
attempts.   For example, we may observe that the lowest-dimensional re-

[d/2]presentation of the Dirac algebra.has'dimension 2 in d space-time

dimensions. An analogue rl, I'9,... etc. exists for Y5 in 6, 8,... and
all even dimensionalities d.  However, one then has the difficulty that e.g.

7Tr(r  r r r r)  =  0    (for d=6)                                             (1)a B y 6

whereas

Tr (Y5YaYBYYY6)   =  4i %13ya (for d =4)             (2)

and this would lead to obvious inconsistencies.

The conventional wisdom for a general Feynman diagram containing, say,

a small triangular   loop   (Fig.1)   is   to  give  up any attempt to generalize   Y5
10

Instead, the Bardeen prescription is to regularize dimensionally all meson

loops first, then to do the triangle Dirac trace in four dimensions.  This

11
has been checked for certain two-loop diagrams and leads to no inconsistency.

The type of problem that we discuss in this paper,does not appear until at

least 3 loops, so it is technically difficult.

Concerning the ABJ anomaly, it is most easily obtained by considering

the translation of variable in the linearly-divergent integral.  It is

12                   13
found in this way in Sec. II below.  It is known that cancellation
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of this (AVV) triangle anomaly cancels the anomaly at the one-loop level,

in related graphs (Fig.2).  Also, radiative corrections to the anomaly

14
have been considered in the Adler-Bardeen theorem which, however, will

not be used here.

The ABJ anomaly is obtained by the dimensional regularization method

in Sec. III, since we wish to expand in (4-n) in Sec. IV which considers

the general non-abelian case and develops the new anomaly, not cancelled

by the usual restrictions on flavor.  Finally, in Sec. V is a discussion

of the status of renormalizability, and of the dynamical constraints arising

from the imposition of renormalizability.

II.  Shifting Integration Variable

The shortest route to obtain the correct ABJ anomaly is to consider

the effect of translating the variable in the linearly divergent momentum

integral occurring in the triangle diagram.

We take the (abelian) interaction

2 = -eAiTYBYst'Z: - ev'FY»'1 AB (3)

and consider the case where the loop momentum k  is defined as indicated in
B

Fig. 3(a).  The Feynman rules then give the corresponding amplitude

T    = -e
2 F  (14k Tr[lly'1(16 - 01)YAY5(li+02)Y\,]

Bvk    Aev J (2Tr)4   k2(k-pl)2(k+P2)2       .        (4)

Here, we have set the fermion mass to zero since the linear divergence

is independent of this mass.  Computation of T reveals that it is
BVX

Bose symmetric under the interchange {Pl'B} "{P2'v} so that addition of

the crossed diagram gives merely a factor 2.  If we contract T vk with

qk = CP]. + P2) X and re-write
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C ].  2)Y5 = -(li- ].)Y5-Y5(K  2)                   (5)

then q T is seen to be the sum of two terms, each of which is a
1    11 VA

second-rank pseudotensor depending on only one four-momentum and hence

15
vanishes.

To examine the contractions of p and p with T it is necessary111          2v           Bvk
to make the shifts in integration variable k' 6= (k+P2)16 and k"B= (k- pl)B
respectively, whereupon the result vanishes by an argument similar to

that of the previous paragraph.  These two integration shifts correspond

to the momentum labellings  of  Figs.   (3b)  and (3c) respectively.

Shifting the integration variable in T    by an amount
k' =(kta)%B \IX

results  in the change (defining
TFvk = -eAe2 t11\IA)

t'      =  t        +  c        a                                                                       (6)
11VX Bvk Bvka a

where, after evaluating the Dirac trace, 15

4i   r.4  3   ewv,BkB,
cw vxa =

-
4'1"  32     4                             (7)

(2TT)              k

1

-             2     611 vka
(8)

81"r

To ensure that the vector Ward identities are satisfied we choose

the contact term as

t'1vx =  tB\,A- '8 2  611\1*(Pl - P2)a                                              (9)
which satisfies

PlBtBvx = P2vt vk =
0 (10)
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and then gives for the axial anomaly

1q. t
A BVA = 0   2 6X vQOP laP 20 (11)

41'r

This esta6lishes notation and evaluates uniquely in lowest-order the

7
well-known ABJ anomaly.

III. Dimensional Regularization:  Massless Case

Let us re-examine the quantity t of the previous sub-section,
IJ,VA

now using the technique of dimensional regularization.  This enables

us to re-derive the ABJ anomaly again, but the main motivation is

to set the stage for the general non-abelian case in the next sub-section.

Unlike the ABJ anomaly, we are presently able to derive the new results

given there only by the dimensional method.  Nevertheless, this choice of

regularization method is only one of mathematics not of physics, and the

results do not depend on it.  For the non-abelian case, the dimensional

method is the only one available that is otherwise consistent, and it is
10

also the one involved in the Bardeen prescription.

With this motivation, we therefore re-write

Bi     11 L j-"dy .1'    2   d,k
txvi

=
4J 2. 3 TOcc,Bvk(k +p2) 8ke(k- Pl) C      (12)

(2=)  O 0 (k   +2 k•Q-M  )

where

Q   =xp -vo (13)
B            2P     ' . 1F

222
(14)M   =  -p2x -Ply

To€C'Bux -  646vg( PB CA - gpc& 1   pk igc 

-  ept',ck(gpogvg I gpvg66 +gpegov, (15)
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After dimensional regularization (putting  d4k - dnk) one evaluates.

t»,1 - -1 f dx dy  D<3-8'|A +I' 2-  (-Q2-M2)B 1  (16)4N2     (-Q2.-M2)3 - n/2     \     2/--Bvk \ BVXJ

A VA =  (A].Pla +APP 22) sfvkx + (3Plk +Al,P21) GB apPlaP2B

.
.  +   (A5Pl v +A6 '2v) epkaBPloP2B    (AlP].11 + ABP211) evkaBP]aP2A (17)

B    = (B p +B D )€ (18)
B VX 1  la     22a 11\'Aa .$

with ..

22Al=  -Pl 'Pf(1-y)(1 -2x)+p x(1-x)(1-y)-ply (1-y) (19)
3;

2   2 22 i.3

A2  =  -pl 'P2xy(1-2x) tx (1 -x)P2 -xy Pl (20)

't

-:

A3   =   -A7   =   -Y (1
-y) (21)

A4 = -A8 =
-xy (22)

A5   =   y (1-2x -y) (23)

46   =   -x (2  -  2x - y) (24)

Bl  =  3 y-1+ *(4 -n) (1-y) (25)

82 = 1-3x +*(4-n)x (26)

With these algebraic results, we may then calculate the contractions

of plF, p2v and qx with tFvA
The results are the vector Ward identities
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are violated by t ,  as  expected,  and  thus a contact · term must be added
11 Vk

of the form

tfv)' =  tt'vA +€1'vkv(Ylpla ty2P2(x) . (27)

The coefficients Yl, 92 are determined by the requirement of Eq. (10)

above and hence the axial-vector anomaly is found, with the unique answer

(in n dimensions)

'llt;,l =  -3  '»,oB'lop:B  .1           t  2../2  1.(3 -  ) (28)

21T                           (-Q  -M)

X

= -12 ,»vaB,1'9,2B t  di= - dy
2Tr

[l - 1(4 -n) 2,1 (-Q2 - M2)  + . . . . ]

[l + r'(1) (4 - n) +...]. (29)

For n = 4, we obtain  the same result as  in the previous subsection, namely

Eq. (11).

If we now insert.a non-zero fermion mass m, there are two changes:

(i)   in the propagator denominators, the value  of  M2. ch*nges  from its value

given in Eq. (14) by an amount

2     2
8, =,m (30)

2
(ii) in the Dirac trace, there are.terms proportional to m ; however,

these contributions are the expected ones from the pseudoscalar source

current
(9Y59) in the Ward identity.
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The change represented by Eq. (30) has significance only when there

16.17
is an overlapping divergence.

' Then it is possible for a (4-n) factor

to be cancelled by a pole in (4-n)-1 and the non-leading term of Eq. (29)

becomes relevant.  This term depends on the fermion mass.  Thus, although

the ABJ amomaly is mass-independent, as it depends only on the leading

linear divergence, the term on the right-hand-side of Eq. (29) proportional

to (4-n) does involve m.  Unlike the ABJ anomaly, therefore, this new anomaly

cannot be cancelled by the simple device of adding an arbitrarily massive

additional fermion to the theory.

We do not persue this here, but study the only slightly more complicated

non-abelian case which is directly relevant to the moraf.realistic quantum

flavor dynamics of the electroweak interactions.

IV. General Non-Abelian Case

In a non-abelian gauge theory, the situation concerning the fermion

masses in the triangle diagram is different from that discussed above.

Because the group matrices have non--diagonal elements,    the   mas ses occurring

on the three sides may be equal or unequal.  The kinematics are illustrated

in Fig.4. There, the flavor matrices   T  are unders tood to include

the relevant coupling constant as well as the sign corresponding to right-

or left-handed helicities.  The amplitude appropriate to Fig. 4 is given by

abc    a   b   c
Tfvk = TaB TOY T*X t'*vA(pl'P2;ma'mB'my;n) (31)

with

tfvl = ff)4 ICk +P2)2 .mylEk2 -m21ECk- pl)2 -mBl

Tr[75(lt +02 +my) yv(li +ma) YX(% - 01 +mB) Yx] (32)
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To include also the crossed graph, we form the combination

abc abc
Ifvx(Pl,P2; ma'mB,my; n) = Tfvk(pl'P2; ma'mB,my; n)

bac
+ T\BA(P2'Pl;  ma'mB,my; It). (33)

Firially,  we sum  over all flavors of quarks and lepton occurring

in the· theory to obtain the full triangular vertex

abc S abc
1                   Ii,VA =.l.   Il,VA (pl,P2; ma'53'my; n). (34)

a, BY

A necessary condition for renormalizability is then that

q I#bc = 0 (35)1 11VX

We can compute the left-hand-side of Eq. (35)  by considering first

t'    obtained from t of Eqs. (31), (32) by adding a contact term which
Elvi 11 vk

ensures the vector Ward identities.  By steps parallel to those of the

previous sub-section, we arrive at

1             /n\F   F       1
qltpyl = --2 6BWBPlap20 I'(3 -Y,1 Jdx jdy   2  2 2-n/2 ' (36)

21'r                                                      (-Q  -M )

2
The only change for the present case iies in the formula for M

which is given by Eq. (14) with the addition of

AM:   =   mt (1..  x.  y)  + '4" * ' * (37)

/
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which is a generalization of Eq. (30).  Expanding Eq. (36) in terms of (4-n)

now gives

qlt vA = -12  €u applap2B 1 + *r'(1) -  'dx dyqnt(-Q  -M ) 1-(4 - n) t...   .        (38)
2 2 1

4TT    "

The 1 in the square backet of Eq. (38) is just the ABJ anomaly again,

and it is cancelled in Eq. (35) provided that

*

Tr (Tc{Ta,Tb   ) =
0 (39)

13
which is the usual cancellation condition.

When there is an overlapping divergence, however, we must consider

the higher order terms in (4-n), and the crucial point is that these do

depend on the flavors {a, B,y} through.the fermion masses in Eq. (37).

Thus the flavor sum in Eq. (34) does not simplify to a trace (as in Eq. (39)),

in general, unless further restrictions are met.  Since these extra terms

depend on the energies pl,p2,q2 and since the cancellation must hold for

all such energies, the necessary and sufficient condition is that the masses

mc) ' m , m  are degenerate within each generation of fermions for which

Eq. (39) holds.  For example, in the standard mode12 of quantum flavor

dynamics, the quarks cancel against leptons within the sequential genera-

tions (u,d,e), (c,s,B), (t,b,7).  Thus these generations should be mass

18
degenerate to avoid the new anomaly.

To conclude this sub-section, we add two remarks

(1)  We have chosen to employ dimensional regularization methods but the

new anomaly arising from the overlapping divergence is expected to be

independent of this choice.

A
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(2)  The anomaly occurs in one particular Feynman diagram (or the sum

of two if we .include the' crossed diagram)  and it is still possible

that there is a cancellation between different Feynman diagrams at the

same order of perturbation theory.  This logical possibility is the

first of two considered in the next sub-section.

V.   Status of Renormalizability:  Dynamical Constraints

Let us consider the standard model of quantum flavor dynamics.2  This

is the SU(2) ®U(1) model of leptons and quarks with six flavors in sequential

left-handed doublets.  The ABJ anomaly is cancelled between quarks and leptons

within each quark-lepton generation, g, with gl = (u,d,e), g2 = (C,s,11),

g3=   (t,b,T)
Concerning the new anomaly, there are two distinct logical possibilities,

as follows:

(1)  There may be cancellation of the new anomaly between different Feynman

diagrams at a fixed order of perturbation theory.  In this case, there is

no new dynamical constraint on the fermion masses.  That such a cancellation

might take place is perhaps suggested (though not, of course, demonstrated)

by the following considerations.  ,  If we examine  the  SU(2) ®U(1) theory

19
at finite temperature, using Green's functions defined by

  e-Ea/kT<aIT(0(xl)" .0(Xn))la>
(40)

GT(xl"xn)  =      I.e-Ea/kT<ala>
a                                                  -

then above a critical temperature Tc the symmetry is expected to be

restored, the stable vacuum has 0<0 (x) >0 = 0, and the fermion masses

become degenerate and equal to zero.  The new anomaly is then absent.  When

the   theory is cooled through the phase transition  at   T   ,   and   down   to   T= 0,C                                           -

k,
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there might persist sufficient memory  of the original symmetry so that

the new anomaly remains absent by inter-diagrammatic cancellations.

This appears technically difficult to check directly, since 3-loop

diagrams are involved.  However, in this case the quark masses can

achieve their  current-algebra values through the Higgs mechanism.
20

(2)  If the cancellation described in (1) does not take place, then

renormalizability imposes further dynamical constraints, in addition to

13
the usual ones. The constraints are that the electromagnetic and weak

contributions  to the quark
masses  are  such  that  mu =md =me'  mc =ms = mlb,

and so on.  The quark masses can now separate from the lepton mass in                   :

each generation, through the color effect of Q.C.D.. However, it would

then appear that the strong interactions should not be completely

flavor-blind as in Q.C.D. in order that the (large) mass difference

21
mu #md'  mc 0ms be explained.
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Figure Captions

Fig. 1  General Feynman diagram containing triangle anomaly.

Fig. 2  One loop diagrams affected by anomaly (c.f. Ref.12).

Fig. 3  Shifts of integration vari,ble.
.

Fig. 4  Kinematics in general non-abelian case.
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