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The presence of a new anomaly, in addition to the Adler-Bell-
Jackiw (ABJ) anomaly, is shown for gauge theories with Y5 couplings.

"The ABJ anomaly is disgussgd first by shifting variable of a linearly-

Using the

second method, the general non-abelian case.is considered, in the pre-
sence of an overlapping divergénce.. A new anomaly is discovered which
is not, in general cancelled by the uéual restrictions because fermion
massés are involved,v Assuming no caricellation between different Feynman
ﬁiagrams, and current-algebra quark masses, then leads to the conclusion that
the standard model of qﬁantum‘flavor &ynamics (i;e. that of Glashow,
Salam, Ward, Weinberg, Kobayashi an& ﬁéskaWa) is non-renormalizable.
Imposiéion of renormalizability dictateé that new dynamical éon—,
straints be met. Hence, only that part of the quark mass corresponding
to the lepton mass in the same quark-lepton génetation is generated by
_the electroweak interactions. The reﬁaiﬁing'mass comes presumably
from the strong interaétion for.Which the dynamical theory must there=
fore have at least some flavor dependence;.this is not the case for

e.g. quantum chromodynamics which is totaily*flavordblind.
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I. Introduction

-’The‘de,mon‘stration1 that Yang-Mills théory with spontaneous symmetry
breaking and the Higgs mechanism_is'renormalizable marked a major turning
point in weak interaction'theory. Aiunifiéd t;heory2 of electromagnetic and
weak interactions now esists and agrees3 remarkably'well with low-energy
data. Further experiments at high energy are needed to search for the
intermediate vector bosons and Higgs scalar particles; 1if these are
successfully foung and.ﬁave the predicted properties, the theory would be-
comelﬁell established.s.

4,5

In proving the renormalizability of gauge theory, it is crucial

that the renormalized lagrangian be itself locally gauge invariant under

a‘grouﬁ of transformations isomorphic to those leaving the bare lagrangian

invariant. This is necessary because gauge invariance must be preserved

_order by order in the renormalized perturbation series. This is a non-trivial

requirement because renormalization involves an infinite re-ordering of
the perturbation exp%nsion. It is necessary because otherwise perturbative
unitarity, and hence full unitarity, is violated.

To preserve gauge invariance, the most suitable method is to use
&imensional regﬁlarization6 which, in general, preserves the fo%m of the
relevant Ward identities while'réndefing divergent integrais finite in a
genericfspace-time dimension, n. The_countef-terms are separated off
as polgs ip (4-n)-1.

Without -fermions coupling to the gauge fields according to EY#stAp’
the procedure isyStraightférward. For gxamﬁle,'the perturbati&e renormaliz-
ability of qdaptum»chromgdynamics has no problem in this‘respect. |

" For weak interactions, however, such parity-violating coﬁplings are

inevitable and one must confront the triangle anomaly,7 of Adler, Bell




~and Jackiw (ABJ). This presents no difficulty for open fermion lines

which both enter and leave the diagram as external particles; for such
. a case, one Siﬁply defines8 an entity Y5 in arbitrary dimension which
anticommutes with all-yu. |

For closed fermion loopé in#olving’an'odd number of Ys couplings,
the handling of dimensipnal regularization is more problematic, and that
is our present subject. Sincea Dirac trace is involvéd, there is no réally
satisfaétory generalization of Ys to arbifrary dimension, despite several
.attempté.g For example, we may observe that the lowest-dimensional re-

[d/2]

presentation of the Dirac algebra has 'dimension 2 in d space-time
dimensions. An anélogue F7, P9,... etc. exists for Ys in 6, 8,... and

all even dimensionalities d. However, one then has the difficulty that e.g.

Tr(IT,TgT\Ty) = 0 (for d=6) e
whereas
Tr(YsYy¥aY¥yYs) = *Leppys (for d=4) | @

v;nd'this woﬁld lead to obvious ‘inconsistencies.

The conventional wisdom for a general Feynman diagram containing, say, .
-a small trianguiar loop (Fig.l) is to givg up any attempt to generalize Ys -
Instead,;the Bardeén prescription;O is to regularize dimensionally all meson
loops first, thgn to doAthe triangle Dirac trace in four dimensions. This
has been,checked11 for certain two-loob diagrams and leads to no inconsistency.
The typé of problem that we diécuss in thislpaper,ﬁbééwﬁot appear until at
‘least 3 loops, so it is technically difficult.

Concerning the ABJ anomaly, it is most easily obtained by considering
the translation of variable in the lineérly-divergent integral. It is

found in this way in Sec. II below. It is known12 that cancellation13




of this (AVV) triangle anomaly cancels the anomaly at the one-lgop level
in related graphs ‘Fig,z). Also, radiative corrections to the anomaly
have been considereq in the Adler-Bardeen theorem14 which, however, will
not be used here.
The ABJ anomaly is obtained by the dimensiona; reéularigation method
in Sec. III, since we wish to expand in (4-n) in Sec. IV which considers
the gengral non-abelian case and develops the new anom;ly, not cancelled
by the usual regtrictioﬁs‘on flavor. Finally, in Sec. V is a discussiqn
of thé status of rgnormalizability, and of the dynamical con;traints arising

from the imposition of renormalizability.

ITI. Shifting Integration Variable N
The shortest route to obtain the correct ABJ anomaly is to consider
the effect of translating the variable in the linearly divergent momentum

integral occurring in the triangle diagram.

We take the (abelian) interaction
£ = e, Ty YoVZ = e v VA (3
AV Ys¥a, T Syvvuia,

and- consider the case where the loop momentum ku'is defined as indicated in

Fig. 3(a). The Feynman rules then give the corresponding amplitude

= e : : . )
K VA | AV (2n)4 kz(k-pl)z(k-+p2)2

Here, we have set the fermion mass to zero since the linear divergence

is independent of this mass. Computation of T“vk reveals that it is

Bose symmetric under the interchange {Pl,u}“{Pz,v} so that addition of

the crossed diagram gives merely a factor 2. If we contract T with

MVA
qk==(p1-+?2)k and re-yrlte



then thuv is seen to be the sum of two terms, each of which is a

A
second-rank pseudotenS6r'depending on only one four-momentum and hence
vanishes.15

To examine the contractions of.plu_aqd p2v with Iuvl it is ﬁecesgary
to make the shifts in integration variable k' = (k+p,)  and k"LL = (k-p)),
respectively, wheréupon the result vanishes by an argument similgr to
that of the previous paragrgph. These two integration sﬂifts~qqrrespond

to the momenfum labellings of Figs. (3b)»and (3c) respectiyely.

Shifting the in;egra;ion variable in Tuvk
e 2
‘ reSults_ln the changg (deﬁining’Tuvh- eAthwvl)

by an amount k’ = (k +a
y @ p=(kta),

r = 4
G~ S T Cevad®a ’ (6)
where, after evaluating the'Dirac trace,15
BV 2m | k k4
1 ‘ . :
=-—3¢€ ‘ (8
. 8n2 *“““x
To ensure that the vector Ward identities are satisfied we choose
the contact term as
£ =t -l e  (p -p,) ©)
HVA VAV)N 8ﬂ2 w1l T2
which satisfies
(10)

r  _ v _
Pk = P2y = ©




and then gives for the axial anomaly

4 - ———
“HEw f 42 €vopP1aP 28 (11)

This estaﬁlishes notation and evaluates uniquely in lowest-order the

well-known ABJ anomaly.7 ' | C

III. Dimensional Regularization: Massless Case

Let us re~examine the quantity t of the previoué sub-section,

VA
now using thé techniqué of dimensional fegularization. This enablés

us to re;dérive the ABJ ;nomaly again, but the main mptivationvis

to set the stage for the genefal non-abg};an'case in the next.sdb-sectioﬁ.'
Unlike the ABJ anomaly, we are preéently able to derive the new results
given there only by the dimensional method. Nevertheless, éhis choice‘of
regularization method is only one of mafhematics not of pﬁysics; and the
results do not depend on it. For the non-abelian case, the &imensional
method is the only one available that is otherwise consistent, and”iché -

: 1
also the one involved in the Bardeen prescription.

With this motivation, we therefore re-write

o [

4 .
d*k
< T (k+p.) .k (k-p,) (12)
J (k2 +2k.q - M%) OeCshvA 28 & 1°¢

oc__ga

MY (zn)

where

Q, = xpzu-yplu . | (13)

2. 2 '
W’ = -pox-piy - o (14)
= -g_ g, +
Téeé,uvx epéve(gngCk o gplgug)

epﬂcl(gpﬁgve"gpvgéef+gpeg6v) ' : - (15)



: .of pm, Py, and q, With t

After dimensional regularization (putting dak-—dnk) one evaluates.

Eawn - 2] gx;yz)3 n/2 [F\B 2)% s ( ->('Q2'M2>Buvx]

Ao = AP TP € una (3P FA4P2)) €, 0sP10Pos

S+ (AsPy, FA6Py)) GunapPioP s T APy HAgPy) €uiopPioPap

Bun = B1P1oBoPoy) v

‘with

Ay = =p*p,y(L=y) (L=2%) +pox(l=x) (1 -y) -p2y° (L - )

2 2.2
Ay = =pyPy¥y (1l -2x) +x2 (1- X)p2 Xy Py

>
]
'
>
il

Ay = -A, = ~y(L-y)
A4=-’-A8=-xy

A =y(l=-2x-y)

A = -x(2-2x-y)

B, = 3y-1+3G-n)1-y)

o
]

1-5x+%@-ﬁﬁcuﬁ

With these algebraic results, we may then calculate the contractions

WV

The results are the vector Ward identities

(16)

17

(18)

(19)

(20)

(21)

(22)

(23)
(24)

(25)

(26)

S




are violated by ol as expeoted, and thus a contact term must be added

of the form'v

! _ . 1 2 . ' :
tHVK tuvk’FequJ(Y pla-+y p21). | . (27)‘

.The coefficients yl, Y are determined by - the requirement of Eq. (10)

above and hence the axial-vector anomaly is found with the unique answer '

(in n dimensions)

) dx dy

, l ’ . . ‘ | ' ) . .
N = 52 p.\aBplozPZﬁ J RN o7z r\3 ) @8
. 1 l-x-
= 72 “uwwopPioP2p l d"i dy

2m

[1 -3 -0) 0n(=Q2 = M%) #....]

[L+30/(1) (4 =n) +...] | :' - - | , (2'9).'

For n=4, we obtain the same result as in the previous subsection, namely
Eq. (11).

If we now insert a non-zero fermion mass m, there are two changes:

(i) in the propagator denominators, the value of Mz.ehanges'from its value

given in Eq. (14) by an amount

SR ST ¢ 10)
(ii) in the Dirac trace, there ere.terms proportionailto‘ng; however,

these contributions are the expected ones from the‘péeudqscalar source

current (?ysw) in the Ward identity.



The change represented by Eq. (30) has significance only when there

16,17 Then it is possible for a (4-n). factor

is an overlapping divergence.
to be cancelled45y a pole ln (lp-n)-1 and the non-leading term of Eq.‘(29)
becomes relevant. This term depends on tne fermlon maas. Thus, although
the ABJ amomaly is mass-independent,las itldepends only on the leading
. linear divergence, the term on tHe right-hand-side of Eq.A(29) proportional
" to (4-n) does involve m. Unlike tne ABJ anomaly, therefore, this new anomaly
cannot be cancelled by the simple device of adding an arbitrarily massive
additlonal fermion to the theory.

We do not persue this here, but study the only slightly more complicated

non~abelian case which is direetly relevant to the moré:realistic quantum o

flavor dynamics of the electroweak interactions.

IV. General Non-Abelian Case

In a non-abelian gauge theory, the situation concerning the fermion
masses in the triangle diagram is dlfferent from that discussed above.
. Because the group matrices. have non-diagonal elements, the nasses oecurring
on the three sides may be eqnalror unequal. The kinematlcs are illustrated
in Fig. 4. Tnere, the flavor matrices T;B are understood to lnclnde :

the relevant coupling constant as well as the sign corresponding to right-

or left-handed helicities. The amplitude'appropriate,to Fig. 4 is given by

abe _ a2 b ¢
. Tp‘vx TaB TBY Tw uv)\(PI:PZ’ a’ Bam ’n) . (31) R
with
c _ d4k 1
BN 4[ 2_ 22 270, \2_ z]
(2m) (k-+p2) myJ[k WJ,_(k Pl) mB .

e (Y5 (k4 ) v, (m)) v, (= by +m) (32)




'To include also the cfossed graph, we form the combination

abc( o m 3 n) abc( ' m ,m )
“‘\))\ Plapz, a,mBs .Ys = “‘\))\ Pl’Pn, ’mB ’ n

b |
aj{(pz,pl, sTgs 5 1) | 3y

Finally, we sum .over all flavors of quarks and lepton occurring

-in the' theory to obtain the full triangular vertex

abe . '
D I e (Propy3 Mypgomys - (3
O, By .

A necessary condition for renormalizability is then that

be _ ' .
a0, @

We can compute thé leift-hand-side of Eq. (35) by considering first

‘t! _ obtained from t _ of Eqs. (31), (32) by adding a contact term which

HVA _ : BV '
ensures the vector Ward identities. By steps parallel to those of the

- previous sub-section, we arrive at’

q.t’/ =—1—e ) < >jdxjdy A
A BV 2n2 w1t 28 2 2)2 -n/2 °

(36)

’

The only change for the present case lies in the formula for M2

which is given by Eq. (14) with the addition of

2 2, .2 2 )
AM = ma(l,-x-y) +mBy+me (37
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which is a generalization of Eq. (30). Expanding Eq. (36) in terms of (4-n)

now gives

1

’ = —— r;_-, _‘[ - 2_' 21 _ N .
q)\tu\))\ = 411-2 eu\aﬁPIGPZBl:l +le1"- ¢8) dx dy?xn(.Q M )J(4 n) +... J| . (38)
The 1 in the square backet of Eq. (38) is just the ABJ énomély again,
and it is cancelleq in Eq. (35) provided that
Cer@ b . ,
Tr(r°{1°,T°}) = 0 (39)

which is the usual cancellation condition.?3

' When there is an overlapping divergence, however, we must consider
the higher order terms in (4=-n), and the crucial point is that these do
depend on the flavors {a,B,y} through the fermion masses in Eq. (37). »
Thus the flavor sum in Eq. (34) does not simplify to a trace (as in Eq. (39)),
in general, unless further restrictioné are met. Since these extra terméA
.depgnd on the energies pi,pg,qz and since the cancellation must hold fpr
all such energies, the necessary and sufficient condition is that the masses
L mé, mY are degenerate within eaqh generation of fermions for which
Eq. (39) holds. For example, in,the'standard model2 of quantum flavor‘.
dénamics, the quarks cancel against leétons within tﬁe‘sequential genera-
tions (u,d,e), (q,s,u), (t,b,T). Thué these generations should be mass
degenerate18 to avoid the new'anomély.
: To conclqde.this.sub-section, we add two remarks
(1) We haVe chosen to employ dimensional regularization metﬁods but the
" new &nomaly arising-from the overlapping divergence is expeqted to be

| independent of thié choice.
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e

(2) The anomaly occurs in one particular Feynman diagram (or the sum
of two if we -include the’ crossed diagram)‘and it is still possible .
that there is a cancellation between different Feynman diagrams at the
same order of'perturbation theory. This logical possibility is the

first of two considered in the next sub-section.

V. Status of Renormalizability: Dynamical Constraints

Let us consider the standard model of quantum flavor dynamics.2 This
is thé'SU(Z)(8U(1) model of leptons and quarks with six flavors’in sequenfial
left-handed doublets. The ABJ anomaly is cancelled between quarks gnd leptons
within each quark-lepton generation, g, with'g1 = (u,d,e), gy = (c,s,1),
é3= (t,b,T). |

Concerning the new anomaly, fhéré are two distinct logical possibilities,
as follows:
(1) There may be cancellation of the new anomaly between Aifferent Feynman
diagrams at a fixed order of perturbation theory. In this case, there is
no new dynamicél constréint on the fermion‘masses. That such a cancellation
might take place is pefhaps suggested (though not, of course, demonstfated)
by the following considerations. . If we examine the SU(2) ®U(l) theory

at finite téﬁperatufé,lg using Green's functions defined by

-
) e-Ea/kT

G . (X,..X ) = éa'
T 1 n er-Ea/kT<a Ia>
a

@) .. .0 (x)) [
40)

then above a critical temperature Tc the symmetry is expected to be
restored, the stable vacuum has.o(¢(x))o==0, and the fermion masées
become degenerate'and equél to zero. The new anomaly is then.ébsent. When'

the theory is cooled through the phaSé transition at Tc, and down to T=0,




13

there might persist sufficient memoxry of the originél symnetry so that
the new anomaly'remains absent by inter-diagrammatic cancellations.

This appears technically difficult to check.directly, since 3~loop
diagrams are involved. However, in this case the quark masses can
achieve their current-algebra values through the Higgs mechanism.20
(2) 1If the cancellation described.in-(l) does not take place,  then
renormalizability imposes further dynamical constraints, in addition to

13

the usual ones. The constraints are that the electromagnetic and weak

contributions to the quark masses are such that m =m =m , m_=m =m','

u d e’ ¢ s W
and so on. The quark masses can now separate from the lepton mass in
each generation, through the color effect of Q.C.D.. However, it would
then appear that the strong interactions should not be completely

flavor-blind as in Q.C.D. in order that the (large) mass difference

muyfmd, m, %ms be explained.21
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Figure Captions

Fig.
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Fig.

1 General Feynman diagram containing triangle anomaly.

2 One loop diagrams affected by anomaly (c.f. Ref.12).

3 shifts of integration variable.

4 Kinematics in general non-abelian case,
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