
A&A 368, 527–560 (2001)
DOI: 10.1051/0004-6361:20010012
c© ESO 2001

Astronomy
&

Astrophysics

Conditions for shock revival by neutrino heating
in core-collapse supernovae

H.-Th. Janka

Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, 85741 Garching, Germany

Received 30 August 2000 / Accepted 12 December 2000

Abstract. Energy deposition by neutrinos can rejuvenate the stalled bounce shock and can provide the energy for
the supernova explosion of a massive star. This neutrino-heating mechanism, though investigated by numerical
simulations and analytic studies, is not finally accepted or proven as the trigger of the explosion. Part of the
problem is that different groups have obtained seemingly discrepant results, and the complexity of the hydrody-
namic models often hampers a clear and simple interpretation of the results. This demands a deeper theoretical
understanding of the requirements of a successful shock revival. A toy model is developed here for discussing the
neutrino heating phase analytically. The neutron star atmosphere between the neutrinosphere and the supernova
shock can well be considered to be in hydrostatic equilibrium, with a layer of net neutrino cooling below the gain
radius and a layer of net neutrino heating above. Since the mass infall rate to the shock is in general different from
the rate at which gas is advected into the neutron star, the mass in the gain layer varies with time. Moreover,
the gain layer receives additional energy input by neutrinos emitted from the neutrinosphere and the cooling
layer. Therefore the determination of the shock evolution requires a time-dependent treatment. To this end the
hydrodynamical equations of continuity and energy are integrated over the volume of the gain layer to obtain
conservation laws for the total mass and energy in this layer. The radius and velocity of the supernova shock
can then be calculated from global properties of the gain layer as solutions of an initial value problem, which
expresses the fact that the behavior of the shock is controlled by the cumulative effects of neutrino heating and
mass accumulation in the gain layer. The described toy model produces steady-state accretion and mass outflow
from the nascent neutron star as special cases. The approach is useful to illuminate the conditions that can lead
to delayed explosions and in this sense supplements detailed numerical simulations. On grounds of the model de-
veloped here, a criterion is derived for the requirements of shock revival. It confirms the existence of a minimum
neutrino luminosity that is needed for shock expansion, but also demonstrates the importance of a sufficiently
large mass infall rate to the shock. If the neutrinospheric luminosity or accretion rate by the shock are too low, the
shock is weakened because the gain layer loses more mass than is resupplied by inflow. On the other hand, very
high infall rates damp the shock expansion and above some threshold, the development of positive total energy
in the neutrino-heating layer is prevented. Time-dependent solutions for the evolution of the gain layer show that
the total specific energy transferred to nucleons by neutrinos is limited by about 1052 ergM−1

� (∼5 MeV per
nucleon). This excludes the possibility of very energetic explosions by the neutrino-heating mechanism, because
the typical mass in the gain layer is about 0.1 M� and does not exceed a few tenths of a solar mass. The toy
model also allows for a crude discussion of the global effects of convective energy transport in the neutrino-heating
layer. Transfer of energy from the region of maximum heating to radii closer behind the shock mainly reduces the
loss of energy by the inward flow of neutrino-heated matter through the gain radius.
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1. Introduction

Neutrinos dominate the energetics of core-collapse super-
novae. Only about one percent or ∼1051 erg of the gravi-
tational binding energy released in the formation process
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of the compact remnant, usually a neutron star, end up
as kinetic energy of the expanding ejecta, whereas 99%
of this energy are radiated away in neutrinos. Electron
captures on protons and nuclei trigger the gravitational
instability of the iron core of an evolved massive star,
because the electron number and thus the pressure are
reduced by the escape of electron neutrinos (see, e.g.,
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Bruenn 1986a). Later the loss of energy by the diffusion of
neutrinos and antineutrinos of all flavors drives the evo-
lution of the nascent neutron star from a hot, inflated
configuration to the compact and very dense final state
(Burrows & Lattimer 1986).

Colgate & White (1966) were the first to suggest that
neutrinos may also play a crucial role for the explosion
by taking up the gravitational binding energy of the col-
lapsing core and depositing it in the rest of the star.
Subsequent improvements and more realistic treatments
of the microphysics, like equation of state (EoS) and neu-
trino transport, have changed our modern picture of stel-
lar core collapse dramatically compared to the pioneering
simulations by Colgate & White (1966). Because of the
discovery of weak neutral currents and the correspond-
ing importance of neutrino scattering off nucleons and nu-
clei, the forming neutron star was recognized to be highly
opaque to neutrinos. Therefore the neutrino luminosities
turned out to be too low, and the energy transfer rate
by neutrinos not large enough to invert the infall of the
surrounding gas into an explosion. For many years, hopes
and efforts therefore concentrated on the prompt bounce-
shock mechanism: the energy given to the hydrodynamical
shock wave in the moment of core bounce was thought to
lead directly to the ejection of the stellar mantle and en-
velope. Detailed models, however, showed that the shock
experiences such severe energy losses by photodisintegra-
tion of iron nuclei and additional neutrino emission, that
its outward propagation stops still well inside the iron core
(e.g., Bruenn 1985, 1989a,b, 1993; Baron & Cooperstein
1990; Hillebrandt 1987; Myra et al. 1987, 1989).

Wilson (1985), however, discovered that neutrinos can
indeed cause an explosion on a timescale much longer
than previously thought. More than 100 milliseconds af-
ter core bounce the conditions for neutrino energy depo-
sition have significantly improved (Bethe & Wilson 1985),
and the mass infall rate and thus the ram pressure of the
shock have decreased, making an explosion at later times
easier than right after bounce (Burrows & Goshy 1993;
Bethe 1995). Although Wilson et al. (1986) obtained such
“delayed” explosions via the neutrino-heating mechanism,
their simulations gave rather low explosion energies, and
their successes could not be confirmed by independent
models with supposedly superior treatment of the neutrino
physics and EoS (Bruenn 1986b, 1989a,b). Later simula-
tions by Wilson & Mayle (1988, 1993) and Mayle & Wilson
(1988) included neutron-finger convection in the nascent
neutron star, which boosts the neutrino luminosities and
thus increases the neutrino heating and the explosion en-
ergy. But whether neutron-finger convection actually oc-
curs in the hot neutron star, or Ledoux-type convection
(Burrows 1987; Keil et al. 1996; Pons et al. 1999), or none
(Bruenn et al. 1995; Mezzacappa et al. 1998a) seems to
depend on the properties of the nuclear EoS and possibly
also on the treatment of the neutrino physics.

More recently, multi-dimensional simulations showed
that convective overturn in the region of net neutrino
heating between shock and gain radius (that is the po-

sition outside the neutrinosphere where neutrino cooling
is balanced by neutrino heating; Bethe & Wilson 1985)
can aid the explosion (Herant et al. 1994; Janka & Müller
1995, 1996; Burrows et al. 1995) and can produce successes
even when spherically symmetric models fail. This “con-
vective engine” (Herant et al. 1994) or “boiling” (Burrows
et al. 1995) transports cool gas into the region of strongest
heating while at the same time hot gas rises towards the
shock. Both effects increase the efficiency of neutrino en-
ergy transfer, reduce the energy loss by the reemission of
neutrinos from the heated gas, and raise the postshock
pressure, thus leading to more favorable conditions for
shock expansion. While the existence and importance of
postshock convection is not questioned, simulations with
the most advanced treatment of the neutrino transport
applied to multi-dimensional supernova calculations so far
(Mezzacappa et al. 1998b; Lichtenstadt et al. 1999) nour-
ished doubts whether the effects of convection are suffi-
ciently strong to cause explosions.

Therefore scepticism about the viability of the delayed
explosion mechanism by neutrino heating still remains
(Thompson 2000), and seems justified even more because
of recent observations which indicate a possible connec-
tion between gamma-ray bursts and at least some super-
novae (e.g., Galama et al. 1998; Bloom et al. 1999). If
confirmed, this discovery would require to consider large
energies and/or asphericities of the explosions (Iwamoto
et al. 1998; Woosley et al. 1999; Höflich et al. 1999) which
might be hard to explain by the neutrino-driven mech-
anism. Therefore, despite the fact that the observations
are still far from being conclusive, theorists feel tempted
to speculate about alternative ways to power stellar ex-
plosions, e.g., by invoking magnetically driven jets (Wang
& Wheeler 1998; Khokhlov et al. 1999). However, while
we know about the crucial role of neutrinos, we have
no observational evidence or convincing theoretical argu-
ment in support of a dynamically important strength of
magnetic fields in combination with a significant degree
of rotation in the iron cores of all massive stars. Rather
than in ordinary core-collapse supernovae, jets and a mag-
netohydrodynamic mechanism may be at work in cases
where the neutrino-driven mechanism definitely fails, e.g.,
for progenitor main sequence masses above about 25M�
(Fryer 1999) and when a black hole forms at the center of
a rapidly spinning massive star (MacFadyen & Woosley
1999; MacFadyen et al. 1999).

When judging about the viability of the neutrino-
driven mechanism, one must, however, keep in mind the
enormous complexity of the problem. Because of this
complexity a number of approximations and simplifica-
tions had to be made in even the currently most refined
hydrodynamical calculations. Some of these deficiencies
have probably disadvantageous consequences for the ef-
ficiency of neutrino energy deposition in the postshock
layers. Until very recently, all published hydrodynami-
cal models employed, for example, a still unsatisfactory
treatment of the neutrino transport. Instead of solving
the Boltzmann transport equation, they used flux-limited
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diffusion schemes, a fact which underestimates the neu-
trino heating above the gain radius and overestimates the
energy loss by neutrino emission below it (Janka 1991a,
1992; Messer et al. 1998; Yamada et al. 1999). Moreover,
multidimensional supernova simulations have so far not
been able to resolve the convective processes inside the
nascent neutron star, although cooling models of neu-
tron stars show their potential importance (Burrows 1987;
Keil et al. 1996; Pons et al. 1999). Even more, recent
investigations (e.g., Raffelt & Seckel 1995; Janka et al.
1996; Burrows & Sawyer 1998, 1999; Reddy et al. 1998,
1999; Yamada 2000; Yamada & Toki 2000, and references
therein) suggest that neutrino interaction rates in hot
nuclear matter are suppressed compared to the standard
description used in the numerical codes. Both the latter
effects imply that the neutrino luminosities from the post-
collapse core are most likely underestimated in current
supernova models.

The neutrino-driven mechanism is by its nature sensi-
tive to the neutrino-matter coupling in the heating region,
which depends on the properties, i.e., spectra and lumi-
nosities, of the neutrino emission from the neutrinosphere
and on the angular distribution of the neutrinos exterior
to the neutrinosphere (Messer et al. 1998; Yamada et al.
1999; Burrows et al. 2000). These issues require not only
the best possible technical treatment of the neutrino trans-
port (cf. Mezzacappa et al. 2000; Liebendörfer et al. 2000;
Rampp & Janka 2000) and of the description of the neu-
trino opacities, but they can vary with the structure of
the progenitor star, with general relativity, and with the
nuclear EoS and therefore the compactness of the nascent
neutron star. Differences of the simulations by different
groups may be associated with one or more of these issues.
Unfortunately, a detailed analysis and direct comparison
is essentially impossible because of largely different nu-
merical approaches and a complicated interdependence of
effects.

In this unclear and extremely unsatisfactory situa-
tion a better fundamental understanding of the conditions
and requirements for shock revival by neutrino heating is
highly desirable. Several attempts were made for a discus-
sion by analytic means (Bruenn 1993; Bethe 1993, 1995,
1997; Shigeyama 1995; Thompson 2000) or on grounds
of simplified numerical analysis (Burrows & Goshy 1993).
While each of them contains interesting aspects and can
shed light on certain results of simulations, they have led
to contradictory conclusions, and none is general enough
to be finally convincing. For example, assuming steady-
state conditions (Burrows & Goshy 1993) cannot explain
how accretion is reversed into expansion, and why an ac-
cretion shock should contract again after moving outward
for some while, a possibility which was in fact observed
in many hydrodynamical simulations. The beginning of
the reexpansion of the stalled shock and the phase when
most of the explosion energy is deposited can also not be
described by a stationary neutrino-driven baryonic wind
(Qian & Woosley 1996). Bethe (1990, 1993, 1995, 1997)
gave a very useful and detailed discussion of the physics

of neutrino heating, the structure and composition of the
heating region, and the shock energetics and nucleosynthe-
sis, using observational constraints from Supernova 1987A
and numerical results provided mainly by Jim Wilson.
Although addressing the question of the start of the shock,
his analysis does not really reveal the requirements for
a successful shock revival. Moreover, aspects were disre-
garded which have been recognized to be important for the
outcome of simulations, for example the fact that rapid
neutrino losses in the cooling region can weaken or even
prevent an explosion (Woosley & Weaver 1994; Janka &
Müller 1996; Messer et al. 1998). Bethe arrived at the con-
clusion that the explosion energy is delivered by neutrinos,
whereas Bruenn (1993) and Thompson (2000) argued that
neutrino heating is insufficient to cause an explosion be-
cause the advection timescale of the gas between shock
and gain radius is too short for large energy deposition.
Shigeyama (1995), on the other hand, performed a quasi-
stationary analysis by expanding the physical variables in
a power series of a small parameter, but his approach ob-
scures the essential physics of shock revival rather than
illuminating them.

The work presented here is a new approach for an an-
alytic discussion of the conditions which can lead to the
reexpansion of the supernova shock. The analysis is based
on a simplified model for the post-bounce structure of the
collapsed stellar core and generalizes the treatment of neu-
tron star accretion by Chevalier (1989; see also Brown &
Weingartner 1994; Fryer et al. 1996). It is not meant to
yield quantitative results or to be able to compete with
detailed hydrodynamical simulations, but it should allow
one to reproduce the basic features of the shock stagna-
tion, accretion, and shock revival phases. It is therefore a
supplementary tool which helps one getting a qualitative
understanding of the processes that determine the post-
bounce evolution of the collapsed stellar core. In partic-
ular, the relative strength of competing effects that play
a role in the neutrino-heating mechanism and their in-
fluence on the behavior of the supernova shock, i.e., its
radial position and velocity as a function of time, can be
estimated. This should help explaining why some models
fail to produce explosions while others succeed.

The paper is organized in the following way. In Sect. 2
the physics of the post-bounce accretion phase will be de-
scribed, in Sect. 3 the basic equations and correspond-
ing assumptions used in the simplified analytic model will
be introduced, in Sect. 4 the characteristic radii of the
problem and their properties will be formally defined, in
Sect. 5 the structure of the collapsed stellar core behind
the stalled supernova shock will be discussed, in Sect. 6
expressions for the neutrino heating and cooling will be
derived, in Sect. 7 the mass accretion rate of the nascent
neutron star will be estimated, and in Sect. 8 the equa-
tions of mass and energy conservation will be applied to
the neutrino heating layer, which leads to a criterion for
the revival of a stalled supernova shock in Sect. 9. The
equations derived in this paper will then be combined to
an analytic toy model which allows one to integrate the
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Fig. 1. Sketch which summarizes the processes that determine
the evolution of the stalled supernova shock after core bounce.
Stellar matter falls into the shock at radius Rs with a mass ac-
cretion rate Ṁ and a velocity near free fall. After deceleration
in the shock, the gas is much more slowly advected towards the
nascent neutron star through the regions of net neutrino heat-
ing and cooling, respectively. The radius Rns of the neutron
star is defined by a steep decline of the density over several or-
ders of magnitude outside the neutrinosphere at Rν . Heating
balances cooling at the gain radius Rg. The dominant processes
of energy deposition and loss are absorption of electron neutri-
nos onto neutrons and electron antineutrinos onto protons as
indicated in the figure. Convective overturn mixes the layer be-
tween gain radius and shock, and convection inside the neutron
star helps the explosion by boosting the neutrino luminosities

shock position, shock radius, and properties of the gain
layer as functions of time by solving an initial value prob-
lem. A summary and conclusions will follow in Sect. 10.

2. Physical picture

Right after core bounce the hydrodynamic shock propa-
gates outward in mass as well as in radius, being strongly
damped by energy losses due to the photodisintegration
of iron-group nuclei and neutrinos. The neutrino emis-
sion rises significantly when the shock breaks out into the
neutrino-transparent regime. As a consequence, the pres-
sure behind the shock is reduced and the velocities of the
shock and of the fluid behind the shock, both of which
were positive initially, decrease. Finally, the outward ex-
pansion of the shock stagnates, and the shock transforms
into a standing accretion shock with negative gas velocity
in the postshock region. The gas of the progenitor star,
which continues to fall into the shock at a velocity near
free fall, is decelerated abruptly within the shock. Below
the shock it moves much more slowly towards the center,
where it settles onto the surface of the nascent neutron
star.

Figure 1 displays the most important physical elements
which determine this evolutionary stage. Around the neu-
trinosphere at radiusRν , which is close to the radiusRns of
the proto-neutron star (PNS), the hot and comparatively
dense gas loses energy by radiating neutrinos. If this en-
ergy sink were absent, the gas that is accreted through the
shock at a rate Ṁ would pile up in a growing, high-entropy

atmosphere on top of the compact remnant (Colgate et al.
1993; Colgate & Fryer 1995; Fryer et al. 1996). But since
neutrinos are emitted efficiently at the thermodynami-
cal conditions around the neutrinosphere, the entropy of
the gas is reduced so that the gas can be absorbed into
the surface of the neutron star. The mass flow through the
neutrinospheric region is therefore triggered by the neu-
trino energy loss and allows more gas to be advected in-
ward from larger radii. In case of stationary accretion the
temperature at the base of the atmosphere ensures that
the emitted neutrinos carry away the gravitational binding
energy of the matter which is added to the neutron star at
a given accretion rate. In fact, this requirement closes the
set of equations that determines the steady state of the
accretion system and allows one to determine the radius
Rs of the accretion shock (see, e.g., Chevalier 1989; Brown
& Weingartner 1994; Fryer et al. 1996).

At the so-called gain radius Rg (Bethe & Wilson 1985)
between neutrinosphere Rν and shock position Rs, the
temperature of the atmosphere becomes so low that the
absorption of high-energy electron neutrinos and antineu-
trinos starts to exceed the neutrino emission. This radius
therefore separates the region of net neutrino cooling be-
low from a layer of net heating above. Since the neutrino
heating is strongest just outside the gain radius and the
propagation of the shock has weakened before stagnation,
a negative entropy gradient is built up in the postshock
region. This leads to convective overturn roughly between
Rg and Rs, which transports hot matter outward in rising
high-entropy bubbles. At the same time cooler material is
mixed inward in narrow, low-entropy downflows (Herant
et al. 1994; Burrows et al. 1995; Janka & Müller 1996).
Inside the nascent neutron star, below the neutrinosphere,
convective motions can enhance the neutrino emission by
carrying energy faster to the surface than neutrino diffu-
sion does (Keil et al. 1996).

Between neutrinosphere and the supernova shock a
number of approximations apply to a high degree of accu-
racy, which help one developing a simple analytic under-
standing of the effects that influence the evolution of the
supernova shock. Figure 2 shows schematically the pro-
files of density, temperature and mass accretion rate in
that region. A formal discussion follows in the subsequent
sections. Outside the neutrinosphere (typically at about
1011 g/cm3) the temperature drops slowly compared to
the density decline, which is steep. When nonrelativistic
nucleons dominate the pressure, the decrease of the den-
sity yields the pressure gradient which ensures hydrostatic
equilibrium in the gravitational field of the neutron star.
Assuming a temperature equal to the neutrinospheric tem-
perature in this region is a reasonably good approximation
for the following reasons. On the one hand, the cooling
rate depends sensitively both on density and temperature,
and the density drops rapidly. Therefore the total energy
loss is determined in the immediate vicinity of the neutri-
nosphere and the details of the temperature profile do not
matter very much. On the other hand, efficient neutrino
heating prevents that the temperature can drop much
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Fig. 2. Schematic profiles of density, temperature, and mass
accretion rate between neutrinosphere at radius Rν and shock
at Rs some time after core bounce. Rg denotes the position of
the gain radius. At the shock, ρ and T jump discontinuously
from their preshock values ρp and Tp to the postshock val-
ues ρs and Ts, respectively. For r < Reos the density declines
steeply because the pressure is mainly caused by the nonrela-
tivistic Boltzmann gases of free neutrons and protons. Outside
of Reos the gas is radiation dominated and the density decrease
much flatter. In general, some of the gas falling into the shock
at rate Ṁ may stay in the region of neutrino heating while
another part (rate Ṁ ′) is advected into the nascent neutron
star. Note that Ṁ(r) is continuous at the shock in the rest
frame of the star only in case of a stalled shock front. Between
Rν and Reos the temperature can be considered roughly as
constant, whereas its negative gradient in the radiation domi-
nated region ensures hydrostatic equilibrium. There is net en-
ergy loss between Rν and Rg where T (r) exceeds the temper-
ature TH=C ∼ Tν(Rν/r)

1/3, for which neutrino heating equals
cooling. Net energy deposition occurs between Rg and Rs

below the neutrinospheric value. If, instead, the temper-
ature would rise significantly above this latter value, the

matter would become optically thick to the energetic neu-
trinos produced in the hot gas (the opacity increases
roughly with the square of the neutrino energy) and the
neutrinosphere would move farther out to a lower density
(and thus typically a lower temperature).

Below a density between 109 g/cm3 and 1010 g/cm3,
relativistic electron-positron pairs and radiation deter-
mine the pressure, provided the temperature is suffi-
ciently high, typically around 1 MeV or more (see Woosley
et al. 1986). Exterior to the corresponding radius Reos,
where this transition from the baryon-dominated to the
radiation-dominated regime takes place, the temperature
must therefore decrease so that the negative temperature
gradient can yield the force which balances gravity.

The gain radius Rg is located at the radial position
where the temperature profile T (r) intersects with the
curve of temperature values, TH=C(r), for which heating
is equal to cooling by neutrinos, roughly given by

TH=C(r) ∼ Tν ·
(
Rν
r

)1
3

(1)

(Bethe & Wilson 1985). In Eq. (1) Tν means the temper-
ature at the radius Rν of the neutrinosphere. The shock
at Rs is taken to be infinitesimally thin compared to the
scales considered. Within the shock the density and tem-
perature therefore jump from their preshock values ρp and
Tp, to the postshock values ρs and Ts, respectively. A part
of the gas which falls into the shock with a mass accretion
rate Ṁ can stay in the region of neutrino heating, whereas
another part is advected with rate Ṁ ′ through the cooling
region to be added to the neutron star inside Rν .

The approach to the problem of shock revival taken
in this paper is considerably different from the discussion
of steady-state accretion or winds. Steady-state assump-
tions, for example, were also used by Burrows & Goshy
(1993) in their theoretical analysis of the explosion mecha-
nism. Having realized the fact, however, that the mass and
energy in the gain layer vary because of different rates of
mass flow through the boundaries and additional neutrino
heating, one is forced to the following conclusions. Firstly,
the discussion has to be time-dependent, which means that
the time derivatives in the continuity and energy equations
cannot be ignored. (Dropping the total time-derivative in
the momentum equation by assuming hydrostatic equi-
librium is less problematic and yields a reasonably good
approximation.) Secondly, the properties of the shock and
of the gain layer must be determined as solutions of an
initial value problem rather than from a steady-state pic-
ture. This reflects essential physics, namely that the shock
behavior is controlled by the cumulative effects of neutrino
heating and mass accumulation in the gain layer. For these
reasons conservation laws for the total mass and energy
in the gain layer will be derived by integrating the hy-
drodynamic equations of continuity and energy, including
the terms with time derivatives, over the volume of the
gain layer. The treatment will therefore retain the time-
dependence of the problem.



532 H.-Th. Janka: Conditions for shock revival by neutrino heating in core-collapse supernovae

In this paper the discussion will be restricted to an
idealized, spherically symmetric situation and possible
convective mixing will be assumed to lead to efficient
homogenization of the unstable layer. Certainly, this is
not a good assumption for the convective overturn that
takes place in the region between gain radius and shock
front, where prominent, large-scale inhomogeneities de-
velop (Herant et al. 1994; Burrows et al. 1995; Janka &
Müller 1996). Bethe (1995) has made attempts to discuss
the physical implications of the simultaneous presence of
low-entropy downstreams and high-entropy rising bubbles.
For this purpose he introduced free parameters, e.g., to
quantify the fraction of neutrinos that hits the cold down-
flows and is effective for their heating, or to account for
the part of the matter that is added to the neutron star in-
stead of being pushed outward in the expanding bubbles.
This procedure is not really satisfactory and will not be
copied here. Instead, an admittedly simplified and ideal-
ized spherical situation will be considered to highlight the
conditions needed for shock revival and to develop a qual-
itative understanding of the influence of different effects.
One-dimensional analysis can help developing a better un-
derstanding of the delayed explosion mechanism, because
simulations in spherical symmetry have produced success-
ful explosions (Wilson 1985; Wilson et al. 1986; Janka &
Müller 1995, 1996). Thus they have demonstrated that
convection behind the shock is not an indispensable re-
quirement for an explosion, although it may be an es-
sential (Herant et al. 1994; Burrows et al. 1995; Janka
& Müller 1996) – yet not necessarily sufficient (Janka &
Müller 1996; Mezzacappa et al. 1998b; Lichtenstadt et al.
1999) – ingredient to obtain explosions, or to raise the ex-
plosion energy in cases which fail or nearly fail in spherical
symmetry.

3. Basic equations and assumptions

The hydrodynamic equations are considered in Eulerian
form for spherical symmetry with source terms for
Newtonian gravity and neutrino energy and momentum
exchange with the stellar medium. The equations of con-
tinuity, momentum, and energy are:

∂ρ

∂t
+

1
r2

∂

∂r
(r2ρv) = 0 , (2)

∂(ρv)
∂t

+
1
r2

∂

∂r
(r2ρv2) = −∂P

∂r
− ρ∂Φ

∂r
, (3)

∂e

∂t
+

1
r2

∂

∂r

[
r2v(e+ P )

]
= −ρv∂Φ

∂r
+Qν . (4)

Here r, v, ρ, P , t are radius, fluid velocity, density, pres-
sure, and time, respectively, and e is defined as the sum
of internal energy density, ε, and kinetic energy density of
the gas:

e =
1
2
ρv2 + ε . (5)

The term Qν denotes the rate of energy gain or loss per
unit volume by neutrino heating and cooling. Φ(r) is an
effective potential which contains contributions from the
gravitational potential and from the momentum transfer
to the stellar gas by neutrinos. Neglecting self-gravity of
the gas in the region between neutrinosphere and super-
nova shock, it can be written as

Φ = − GM̃
r

= − G
r

(
M − 〈κt〉Lν

4πGcρ

)
· (6)

Here G is the gravitational constant, c the speed of light,
M the mass inside Rν and M̃ means an effective mass
that includes the momentum transfer term and is defined
by the term in brackets on the right side of Eq. (6). When
self-gravity is disregarded, the mass of the gas betweenRν
and Rs must be negligible compared to the neutron star
mass M , i.e.,

∆M =
∫ Rs

Rν

dr 4πr2ρ(r)�M . (7)

In Eq. (6) Lν =
∑
νi
Lνi is the total neutrino luminosity

and 〈κt〉 the mean total opacity calculated as an average
of the total opacities of neutrinos νi and antineutrinos ν̄i
of all flavors according to

〈κt〉Lν ≡
∑
νi

κt,νiLνi +
∑
ν̄i

κt,ν̄iLν̄i . (8)

The total opacity κt,νi of neutrino νi is considered to be
averaged over the spectrum of the corresponding energy
flux. Note that in this paper, opacities are defined as in-
verse mean free paths and are thus measured in units of
1/cm. Equations (3), (4), and (6) imply that the momen-
tum transfer rate from neutrinos to the stellar gas is writ-
ten as 〈κt〉Lν/(4πc r2) with Lν and 〈κt〉/ρ not depending
on r. This is approximately fulfilled in the optically thin
regime for neutrinos, i.e., exterior to the neutrinosphere
where the neutrino luminosities and spectra are roughly
constant. Yet it is not exactly true, because the concept of
“the” neutrinosphere is fuzzy and neutrino emission and
absorption continue even outside the neutrinosphere. In
addition, the opacity depends on the composition which
varies with the radius. During all of the post-bounce evo-
lution, however, the typical total neutrino luminosity is
only a few per cent of the Eddington luminosity,

LEdd,ν ≡
4πGMcρ

〈κt〉
· (9)

Therefore the neutrino source terms for momentum in
Eq. (3) and for kinetic energy in Eq. (4), which are carried
by the potential Φ, are always small and the approximate
treatment following below is justified.

Neutrinos transfer momentum to the stellar medium
by neutral-current scatterings off neutrons and protons.
The corresponding transport opacity for these scattering
processes is

κsc ≈
5α2 + 1

24
σ0〈ε2ν〉

(mec2)2

ρ

mu
(Yn + Yp) . (10)
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Here mu ≈ 1.66 10−24 g is the atomic mass unit,
mec

2 = 0.511 MeV the rest-mass energy of the electron,
σ0 = 1.76 10−44 cm2, and Yn = nn/nb and Yp = np/nb

are the number fractions of free neutrons and protons, i.e.,
their particle densities normalized to the number density
nb of nucleons. A minor difference between the neutrino-
proton and the neutrino-neutron scattering cross section
due to different vector coupling constants is ignored, and
also the axial-vector couplings are assumed to be the same
and to be equal to the charged-current axial-vector cou-
pling constant in vacuum, α = −1.26. Additional scatter-
ing reactions with electrons and positrons can be neglected
because of their much smaller cross sections, and neu-
trino scattering off nuclei is unimportant because the post-
bounce medium exterior to the neutrinosphere is nearly
completely disintegrated into free nucleons.

In case of νe and ν̄e also the charged-current absorp-
tions on neutrons and protons, respectively, need to be
taken into account due to their large cross sections. The
absorption opacity is

κa ≈
3α2 + 1

4
σ0〈ε2ν〉

(mec2)2

ρ

mu

{
Yn

Yp

}
· (11)

In Eqs. (10) and (11) the recoil of the nucleon and phase
space blocking effects for the fermions are neglected, which
is very good at the conditions considered in this paper. In
both neutral-current and charged-current processes only
the leading terms depending on the squared neutrino en-
ergy, ε2ν , are taken into account. Averaging over the spec-
trum of the neutrino energy flux yields the factor 〈ε2ν〉,
for which Eq. (25) provides a suitable definition, if minor
differences between the spectra of neutrino energy density
and flux density are disregarded.

The total opacity includes the contributions from scat-
tering and absorption and is given as κt,νi = κsc,νi +κa,νi .
With typical values Lνe = Lν̄e = Lνx = 1

6Lν (with
νx ∈ {νµ, ν̄µ, ντ , ν̄τ} and Lνx being the luminosity of each
individual type of νx), 〈ε2ν̄e

〉 ≈ 2〈ε2νe
〉 and 〈ε2ν̄x〉 ≈ 4〈ε2νe

〉,
the total opacity averaged for all neutrinos and antineu-
trinos can be estimated from Eq. (8) as

〈κt〉 ≈
113α2 + 25

144
σ0〈ε2νe

〉
(mec2)2

ρ

mu
(Yn + Yp)

≈ 1.9 10−7ρ10

(
kTνe

4 MeV

)2 [
1

cm

]
· (12)

For deriving the first expression, the factor Yn + 2Yp in
the absorption term was replaced by Yn + Yp. This is a
reasonably good approximation because Yp <∼ Yn between
the neutrinosphere and the shock, and the corresponding
change of the absorption opacity of electron antineutri-
nos implies only a minor error in the total opacity. In
the second equation use was made of Yn + Yp ≈ 1. If
the neutrino flux spectrum has Fermi-Dirac shape with
vanishing degeneracy, the neutrino temperature Tν is re-
lated to the mean squared neutrino energy by 〈ε2ν〉 ≈
21 (kTν)2. k is the Boltzmann constant and ρ10 the density
measured in 1010 g/cm3. For a total neutrino luminosity

Lν = 1053 erg/s, neutrino momentum transfer reduces M̃
in Eq. (6) relative to M by about 3.8 10−2 M�, which is
indeed a small correction.

4. The characteristic radii

The neutrinospheric radius Rν , the gain radius Rg and
the transition radius of the EoS properties, Reos, will be
formally defined below. They are characteristic of the at-
mospheric structure in the postshock region, which deter-
mines, together with the infall region ahead of the shock,
the shock radius Rs and the shock velocity Us ≡ Ṙs.

4.1. The neutrinosphere

The neutrinosphere relevant for the discussion in the fol-
lowing sections is the “energy-sphere”, where neutrinos
decouple energetically from the stellar background. It usu-
ally does not coincide with the sphere of last scatter-
ing, the so-called “transport-sphere”, outside of which the
neutrino distribution becomes strongly forward peaked
(for a detailed discussion, see Janka 1995). Only inside
their energy-sphere neutrinos can be considered to be
roughly in thermodynamic equilibrium with the stellar
medium. Besides neutrino-nucleon scattering, which is
important for all neutrinos, electron neutrinos νe and
electron antineutrinos ν̄e interact via frequent charged-
current absorption and emission reactions with nucleons,
whereas muon and tau neutrinos and antineutrinos do not.
Therefore the energy-spheres of electron neutrinos and an-
tineutrinos are typically located farther out in the star at
larger radii than those of muon and tau neutrinos.

The energy deposition in the gain region, however,
is clearly dominated by νe and ν̄e. For this reason one
can concentrate on their transport properties and neglect
muon and tau neutrinos and antineutrinos in the discus-
sion. Scattering off nucleons acts on all neutrinos equally.
The charged-current absorption reactions of νe and ν̄e on
neutrons and protons, respectively, yield an even larger
contribution to the total opacity. The opacities of νe and
ν̄e are nearly equal, because ν̄e absorption and emission
(Eq. (18)) is similarly frequent as νe absorption and emis-
sion (Eq. (17)) as long as positrons are abundant, i.e., the
stellar atmosphere is hot and electrons are not very degen-
erate. Therefore the transport-spheres and energy-spheres
of electron neutrinos and antineutrinos are all close to-
gether and it is justified to consider only one, “the”, neu-
trinosphere at radius Rν . Of course, the real situation is
more complex and there is no definite radius interior to
which neutrinos are in equilibrium at the local thermody-
namical conditions and diffuse, and exterior to which they
are decoupled from the background and stream freely. The
transition between these two limits is continuous and in
case of neutrinos, whose reaction rates are strongly energy
dependent, it is also a function of the neutrino energy.

The spectral temperature of electron neutrinos will
be taken equal to the gas temperature at the assumed
neutrinosphere, kTνe = kT (Rν). Detailed simulations of
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neutrino transport show that electron antineutrinos have
somewhat more energetic spectra. A typical result (e.g.,
Bruenn 1993; Janka 1991a) is kTν̄e ≈ 1.5 kTνe, which will
be used below. The fact that νe and ν̄e spectra are found
to be different in detailed models is an indication that the
picture drawn above is overly simplified. Nevertheless it
is sufficiently accurate for the analysis in this paper. Note
that in general the neutrino luminosity Lν can not be
related to the neutrinospheric temperature by the Stefan-
Boltzmann law for blackbody emission of a sphere with
radius Rν , Lν = πR2

ν
7
8ac(kTν)4. This formula is fre-

quently taken for the combined luminosity of neutrinos
plus antineutrinos, assuming their chemical potentials to
be zero. However, the effective temperature kTeff , which
should be used in the Stefan-Boltzmann law, is typically
not equal to the spectral temperature kTν (for a discus-
sion, see Janka 1995). Transport simulations show that
due to non-equilibrium effects the difference can be quite
significant. For this reason two parameters, Tν and Lν , will
be retained here to describe the spectrum and the lumi-
nosity of the neutrinos emitted from the neutrinosphere.
Moreover, the radius of the neutrinosphere will be consid-
ered as the position in the star where the mean value of
the cosine of the neutrino propagation angle relative to
the radial direction has a value of 0.25 (see Eq. (26) and
Janka 1991a,b, 1995).

Keeping in mind the simplifications associated with
the concept of the neutrinosphere, the radius Rν can be
defined by the requirement that the effective optical depth
to energy exchange for neutrinos with average energy is

τeff =
∫ ∞
Rν

dr κeff(r) =
2
3

(13)

(Suzuki 1989). The effective opacity κeff in case of νe and
ν̄e is defined from the scattering opacity κsc and the ab-
sorption opacity κa as

κeff =
√
κa (κa + κsc) (14)

(Rybicki & Lightman 1979; Shapiro & Teukolsky 1983;
Suzuki 1989). Using Eqs. (10) and (11) one obtains for
the effective opacity, again averaged over the spectrum
of the energy flux which is supposed to have Fermi-Dirac
shape with zero degeneracy, in case of electron neutrinos
the expression

κeff,νe = 1.62
σ0〈ε2νe

〉
(mec2)2

ρ

mu
Yn

√
1 + 0.21

Yp

Yn
(15)

= 2.2 10−7ρ10

(
kTνe

4 MeV

)2

Yn

√
1 + 0.21

Yp

Yn
,

and in case of electron antineutrinos the analogue
result with Yn

√
1 + 0.21Yp/Yn being replaced by

Yp

√
1 + 0.21Yn/Yp. Since nuclei are nearly completely

dissociated into free nucleons and Yn is larger than Yp,
i.e., Yn ∼ 0.8 and Yp ∼ 0.2, but kTνe is usually somewhat
lower than kTν̄e , i.e., kTνe ≈ 4 MeV and kTν̄e ≈ 6 MeV,
we verify the above statement that the effective opaci-
ties of νe and ν̄e are approximately equal. Assuming equal

luminosities, Lνe = Lν̄e , a suitable average value for the
effective opacity therefore is

〈κeff〉 =
1
2
κeff,νe +

1
2
κeff,ν̄e

≈ 1.5 10−7ρ10

(
kTνe

4 MeV

)2

, (16)

where the composition dependent term in the weighted
average has been approximated by

√
2. Knowing the den-

sity profile ρ(r), the density ρν at the neutrinosphere can
be determined by using Eqs. (16) in (13).

4.2. The gain radius

Heating and cooling of the gas outside the neutrinosphere
mainly proceed via the charged-current absorption and
emission processes of νe and ν̄e (Bethe & Wilson 1985;
Bethe 1993, 1995, 1997):

νe + n ←→ p + e− , (17)
ν̄e + p ←→ n + e+ . (18)

To leading order in the particle energies, the cross sec-
tions for neutrino and electron/positron absorption, re-
spectively, are

σa,νe ≈ σa,ν̄e ≈
3α2 + 1

4
σ0

(
εν
mec2

)2

, (19)

σa,e− ≈ σa,e+ ≈ 3α2 + 1
8

σ0

(
εe

mec2

)2

· (20)

At the considered densities and temperatures, fermion
phase space blocking and dense-medium effects can be
safely ignored, and electrons are relativistic (kT >∼ mec

2).
The heating rate Q+

νi of the stellar medium by neutrinos
νi is given by

Q+
νi =

3α2 + 1
4

σ0c nj
(mec2)2

∞∫
0

dεν

+1∫
−1

dµ
d2nνi
dενdµ

ε3ν , (21)

where nj is the number density of the target nucleons
(j = p, n), and d2nνi/(dενdµ) the neutrino distribution,

d2nνi
dενdµ

=
2π

(hc)3
fνi(εν , µ) ε2ν , (22)

with fνi(εν , µ) being the neutrino phase space occupation
function at some radius r, which depends on the neu-
trino energy εν and the cosine of the angle of neutrino
propagation relative to the radial direction, µ = cos θ. In
Eq. (22) the factor h in the denominator is Planck’s con-
stant. Introducing Eq. (22) into Eq. (21) and performing
the phase space integration over all energies and angles
yields

Q+
νi =

3α2 + 1
4

σ0 nj
〈ε2νi〉

(mec2)2

Lνi
4πr2〈µνi〉

· (23)

Here the neutrino luminosity Lνi , the average squared
neutrino energy 〈ε2νi〉, and the mean value of the cosine
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of the propagation angle, 〈µνi〉, are calculated from the
neutrino phase space occupation function fνi(εν , µ) by

Lνi = 4πr2c
2π

(hc)3

∞∫
0

dεν

+1∫
−1

dµµ ε3ν fνi(εν , µ) , (24)

〈ε2νi〉 =

∞∫
0

dεν

+1∫
−1

dµ ε5ν fνi

 ∞∫
0

dεν

+1∫
−1

dµ ε3ν fνi

−1

, (25)

〈µνi〉 =

∞∫
0

dεν

+1∫
−1

dµµ ε3ν fνi

 ∞∫
0

dεν

+1∫
−1

dµ ε3ν fνi

−1

. (26)

The quantity 〈µν〉 is also called flux factor and can
be understood as the ratio of the neutrino energy
flux, Lν/(4πr2), to the neutrino energy density times c.
Typically, it is close to 0.25 near the neutrinosphere of
νe and ν̄e and approaches unity when the neutrino dis-
tribution get more and more forward peaked in the limit
of free streaming with increasing distance from the neu-
trinosphere (Janka 1991b, 1992, 1995). The total heating
rate Q+

ν is the sum of the contributions from νe and ν̄e:

Q+
ν = Q+

νe
+Q+

ν̄e
. (27)

To derive a simple expression, one can again assume that
Lνe ≈ Lν̄e , 〈ε2ν̄e

〉 ≈ 2〈ε2νe
〉, and that the νe spectrum

has Fermi-Dirac shape with zero degeneracy, i.e., 〈ε2νe
〉 ≈

21(kTνe)2. In addition, the equality 〈µνe〉 = 〈µν̄e〉 ≡ 〈µν〉
is reasonably well fulfilled because the opacities of electron
neutrinos and antineutrinos are very similar and therefore
the neutrinospheres of both of them are nearly at the same
radius. Putting everything together, the heating rate per
unit volume is derived as

Q+
ν =

3α2 + 1
4

σ0〈ε2νe
〉

(mec2)2

ρ

mu

Lνe

4πr2〈µν〉
(Yn + 2Yp)

≈ 160
ρ

mu

Lνe,52

r2
7〈µν〉

(
kTνe

4 MeV

)2 [
MeV

s

]
· (28)

The numerical factor gives the rate in MeV per baryon, r7
is the radius in 107 cm, and Lνe,52 the νe luminosity nor-
malized to 1052 erg/s. In the layers where most of the heat-
ing and cooling between neutrinosphere and shock take
place, nuclei are nearly fully dissociated into free nucleons
(Bethe 1993, 1995, 1997; Thompson 2000) and Yp < Yn,
therefore using Yn + 2Yp ≈ 1 in the last expression is a
reasonable approximation.

The cooling rate of the stellar gas by emission of νe

and ν̄e is calculated as

Q−ν =
3α2+1

8
σ0 c

(mec2)2

∞∫
0

dε ε3
(
np

dne−

dε
+ nn

dne+

dε

)
, (29)

where use was made of Eq. (20), and the distributions of
relativistic electrons and positrons are given by

dne±

dε
=

8π
(hc)3

ε2

1 + exp(ε/kT − ηe±)
· (30)

T (r) is the local gas temperature and ηe± the degeneracy
parameter of electrons or positrons, defined as the ratio of
the chemical potential to the temperature. A factor of 2
was taken into account as the statistical weight for positive
and negative spin states. Inserting Eq. (30) into Eq. (29)
one gets for the cooling rate per unit volume

Q−ν = (3α2+1)
π σ0 c (kT )6

(hc)3(mec2)2

ρ

mu

× [YpF5(ηe) + YnF5(−ηe)]

≈ 145
ρ

mu

(
kT

2 MeV

)6 [
MeV

s

]
, (31)

where the numerical factor is the rate in MeV per nucleon
when Yn + Yp ≈ 1 and the equilibrium relation ηe− =
−ηe+ ≡ ηe with ηe ≈ 0 are used. The latter approximation
is good in the shock-heated layers because the electron
fraction Ye = ne/nb and thus the electron degeneracy is
rather low and e± pairs are abundant. F5(η) is the Fermi
integral for relativistic particles,

Fj(η) =
∫ ∞

0

dx
xj

1 + exp(x− η)
, (32)

with F5(0) ≈ 118. (Useful formulae for sums and differ-
ences of these Fermi integrals can be found in Bludman &
Van Riper 1978, and simple approximations in Takahashi
et al. 1978.)

Heating balances cooling at the gain radius, i.e., the
gain radius Rg has to fulfill the condition Q+

ν = Q−ν by
definition. With Eqs. (28) and (31) one obtains the fol-
lowing relation:

Rg,7

(
kTg

2 MeV

)3

≈ 1.05

√
Lνe,52

〈µν〉g

(
kTνe

4 MeV

)
· (33)

Rg,7 is the gain radius in units of 107 cm and Tg = T (Rg)
the temperature at the gain radius. Depending on the po-
sition of the gain radius, 〈µν〉g is a factor somewhere be-
tween 0.25 (value at the neutrinosphere) and unity (limit
for r →∞).

4.3. The EoS transition radius

It is interesting to consider the conditions for which the
pressure is dominated by nonrelativistic nucleons or ra-
diation plus relativistic e± pairs (kT >∼ 0.5 MeV). In
the first case P ≈ Pb = kTρ/mu, if nuclei are fully
dissociated into free nucleons. In the latter case P ≈
Pr = Pe± + Pγ ≈ 11

12aγ(kT )4, when ηe ≈ 0 is again as-
sumed for the electron degeneracy and the constant is
aγ = 8π5/

[
15(hc)3

]
≈ 8.56 1031 MeV−3cm−3. Setting Pb

equal to Pr gives

(kT )3

ρ
=

12
11

1
muaγ

(34)

or, using the temperature kT ≈ kTνe ≈ 4 MeV (compare
Fig. 2),(

kT

4 MeV

)3

ρ−1
10
∼= 1.2 . (35)
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This means that the transition from the baryon-
dominated to the radiation-dominated regime occurs at a
density significantly below that of the neutrinosphere. The
latter is typically above 1011 g/cm3. When the electron de-
generacy is negligibly small, the contributions of relativis-
tic and nonrelativistic gas components to the pressure are
equal for a value of the radiation entropy per nucleon of
sr = se± + sγ ≈ (εr + Pr)/(kTρ/mu) = 4Pr/Pb = 4. Since
the energy density of relativistic particles is εr = 3Pr,
whereas εb = 3Pb/2 for nonrelativistic particles, the rela-
tivistic electrons-positron pairs and photons dominate the
energy density at such conditions. The main contribution
to the entropy, however, then still comes from nucleons
and nuclei (cf. Fig. 8 in Woosley et al. 1986).

4.4. The shock radius and infall region

Conservation of the mass flow, momentum flow and energy
flow across the discontinuity of the shock front is expressed
by the three Rankine-Hugoniot conditions

ρpup = ρsus , (36)

Pp + ρpu
2
p = Ps + ρsu

2
s , (37)

1
2
u2

p + wp − qd =
1
2
u2

s + ws , (38)

where the indices p and s denote quantities just ahead
and behind the shock, respectively (see Fig. 2), w = (ε+
P )/ρ is the enthalpy per unit mass, qd the nuclear binding
energy per unit mass absorbed by photodisintegration of
nuclei within the shock front, and u = v − Us the fluid
velocity relative to the shock when Us = Ṙs is the shock
velocity and v the gas velocity relative to the center of the
star. Note that in the infall region v has negative sign.

With the definition β ≡ ρs/ρp, Eq. (36) gives us =
up/β, which can be used to eliminate us from Eq. (37).
For a strong shock, i.e., Ps � Pp, this yields

Ps ≈
(

1− 1
β

)
ρp (vp − Us)

2
. (39)

Combining Eqs. (36)–(38) one further finds

ws − wp =
1
2

(Ps − Pp)
(

1
ρs

+
1
ρp

)
− qd . (40)

With Pp � Ps, wp � ws and ws ≈ 4Ps/ρs for the
radiation-dominated gas in the postshock region, Eq. (40)
can be rewritten as
ρs

ρp
≈ 7 +

2 qd ρs

Ps
≈ 7

4− 3
√

1 + 14 qd/(9 u2
p)

, (41)

where in the second transformation Eq. (39) was used to
replace Ps/ρs. This shows that for a relativistic gas the
density jump in a strong shock is a factor of 7. Energy
consumed by photodissociation of nuclei increases the
density contrast between preshock and postshock region
(Thompson 2000). In a more general treatment, retaining

wp and taking into account the (subdominant) contribu-
tions from nonrelativistic nucleons to the gas pressure be-
hind the shock (but still using Pp � ρpu

2
p in the infall

region) one also derives the right hand side of Eq. (41),
now with the expression

q∗ ≡ qd − wp −
3

2mu

∑
i

Yi kTs (42)

instead of qd in the denominator. This means that the
density discontinuity is also affected by the preshock en-
thalpy and the thermal pressure of nucleons and nuclei be-
hind the shock (the nuclear composition is accounted for
by the sum of the number fractions,

∑
i Yi). Considering

qd to be several MeV/mu, kTs ∼ 1 MeV, and the preshock
medium to be dominated by relativistic, degenerate elec-
trons in which case wp ≈ ζeYe/mu with an electron chem-
ical potential ζe = ηekT of a few MeV, one can see that
all terms in Eq. (42) are of the same order and therefore
equally important.

The preshock region is not affected by the postshock
conditions. Because the shock moves supersonically rela-
tive to the medium ahead of it, sound waves cannot trans-
port information in this direction. The matter there falls
into the shock with a significant fraction of the free-fall
velocity,

vp = −α

√
2GM̃
Rs

(43)

with α ∼ 1/
√

2 (Bethe 1990, 1993; Bruenn 1993). Ahead
of the shock free nucleons are absent and therefore νe and
ν̄e absorption does not play a role, but neutrinos interact
with nuclei by coherent scatterings. The opacity of the
latter reaction scales roughly with N2/A when N is the
neutron number and A the mass number of the nuclei,
and the total neutrino opacity of the preshock medium
turns out to be close to the result of Eq. (12). Therefore
the momentum transfer by neutrinos was again taken into
account by using M̃ instead of M in Eq. (43). Plugging
Eq. (43) into the rate at which mass falls into the shock,
Ṁ = 4πR2

sρpvp(< 0), gives the density just above the
shock:

ρp = − Ṁ

4π α
√

2GM̃ R
3/2
s

· (44)

On the other hand, if the original presupernova material
has a density distribution ρ0(r0) = H r−3

0 with H being a
constant, then mass conservation yields a density at the
footpoint of the shock at time t after the start of the col-
lapse of

ρp =
2
3

H

α
√

2GM̃
t−1R−3/2

s (45)

(Bethe 1990, 1993; see also Cooperstein et al. 1984).
Comparing Eqs. (44) and (45) one finds that the rate at
which mass crosses the shock in this case is

Ṁ = − 8π
3
H

t
, (46)
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which depends on the structure of the progenitor star
through the constant H and decreases with time.

5. Structure of the atmosphere

Within the supernova shock, the infalling matter is
strongly decelerated to a velocity vs = (vp − Us)/β + Us.
For a stalled shock, |vs| � |vp|. Compared to the internal
energy and the gravitational energy, the kinetic energy be-
hind the shock is therefore negligibly small. The gas is fur-
ther slowed down as it moves inward and settles onto the
nascent neutron star. Between neutrinosphere and shock
front dv/dt ≈ 0 is therefore a good assumption, i.e., the
stellar structure is well approximated by hydrostatic equi-
librium (Chevalier 1989; Bethe 1993, 1995; Fryer et al.
1996). Combining Eqs. (2) and (3) and using Eq. (6), the
equation of hydrostatic equilibrium is found to be

− 1
ρ

∂P

∂r
− GM̃

r2
= 0 . (47)

In the following, the solutions of this equation in the layers
between neutrinosphere Rν and EoS transition radiusReos

and between Reos and shock position Rs will be derived.

5.1. Hydrostatic equilibrium between Rν and Reos

When nonrelativistic baryons dominate the pressure and
relativistic electrons contribute, but positrons and radia-
tion can be ignored because the electrons are mildly de-
generate, the pressure can be expressed as

P ≈ Pb + Pe− =
ρ

mu
kT

(
1 +

Ye

3
F3(ηe)
F2(ηe)

)
≡ fg

ρ

mu
kT . (48)

Since Ye and the electron degeneracy do not vary strongly,
the factor fg can be considered as constant. Between Rν
and Reos also the temperature is a slowly changing quan-
tity, T (r) ≈ Tν ≈ Tνe (compare Fig. 2). Hydrostatic equi-
librium therefore implies

ρ(r) = ρν exp

[
− GM̃ mu

fgkTνRν

(
1− Rν

r

)]
, (49)

where ρν is the density at the neutrinosphere. Near the
neutrinosphere, r ≈ Rν , this can be approximated by

ρ(r) ≈ ρν exp
(
− x
h

)
(50)

with x ≡ r −Rν and h ≡ fg
kTν R

2
ν

GM̃ mu

·

Using typical numbers gives

h ≈ 2.9 104 fgR
2
ν,6

(
kTν

4 MeV

)(
M̃

M �

)−1

[cm] , (51)

where Rν,6 is the radius of the neutrinosphere in units
of 106 cm.

The density declines exponentially outside the neutri-
nosphere with a scale height h� r, forming a sharp “cliff”
(Bethe & Wilson 1985; Bethe 1990; Woosley 1993a). For
this reason the effective optical depth is dominated by the
immediate vicinity of the neutrinosphere. Therefore the
integration in Eq. (13) can be performed, using Eq. (50)
for the density in the effective opacity of Eq. (16), to derive
the neutrinospheric density (normalized to 1010 g/cm3) as

ρν,10 ≈ 150 f−1
g R−2

ν,6

(
M̃

M�

)(
kTν

4 MeV

)−3

· (52)

This result confirms that the density of the transition from
the baryon-dominated to the radiation-dominated regime
(Eq. (35)) is significantly lower than ρν .

5.2. Hydrostatic equilibrium between Reos and Rs

In the radiation-dominated region a large part of the pres-
sure is due to relativistic electron-positron pairs and pho-
tons, but also contributions from nucleons and nuclei with
number fractions Yi might not be negligible, therefore

P = Pγ + Pe± + Pb

=
aγ
3

(kT )4

[
11
4

+
15
2π4

η2
e

(
π2+

η2
e

2

)
+

3 ρkT
∑
i Yi

muaγ(kT )4

]
≡ Pr

(
1 +

4
gr sγ

)
≡ fr Pr , (53)

where Pr is the pressure associated with relativistic parti-
cles,

Pr = gr Pγ =
1
3
aγ gr (kT )4 , (54)

with gr ≡
11
4

+
15
2π4

η2
e

(
π2 +

1
2
η2

e

)
, (55)

sγ is the entropy per nucleon carried by photons, sγ =
4aγ(kT )3/(3ρ/mu), and

∑
i Yi ≈ 1 because of the nearly

complete disintegration of nuclei. If both the factor gr and
sγ are constant (which is roughly fulfilled in the radiation-
dominated region between Reos and Rs where the electron
degeneracy parameter ηe divided by π is small, and, as was
discussed in Sect. 2, convective processes tend to homoge-
nize the total entropy and thus also the radiation entropy;
see Bethe 1996b) then also fr can be considered as con-
stant. In this case the pressure is simply proportional to
(kT )4, both for the contribution from nucleons and for
the contribution from photons plus electron-positron pairs
(for a detailed discussion, see Bethe 1993).

This implies that the density ρ is proportional to T 3,
i.e.,

P = fr gr
aγ
3

(kT )4 = K ρ4/3 . (56)

Note that Eq. (56) is valid more generally than for
radiation-dominated conditions (Bethe 1996b). Using

ne = Ye
ρ

mu
=

8π
3

(kT )3

(hc)3
ηe(π2 + η2

e ) , (57)
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the coefficient K can be determined as

K = frgr
aγ
3

(hc)4

(
3

8π
Ye

muηe(π2 + η2
e )

)4/3

· (58)

If K in Eq. (58) is approximately constant, which is typ-
ically fulfilled in the region between Rg and Rs (Bethe
1996b), Eq. (56) is a useful representation of the equation
of state.

With Eq. (47), one can now determine the density dis-
tribution between Reos and Rs in hydrostatic equilibrium
as

ρ(r) =

[
ρ1/3

s +
1
4
GM̃

K

(
1
r
− 1
Rs

)]3

· (59)

Inserting this in Eq. (56) and setting K = Ps/ρ
4/3
s , the

pressure as a function of radius is obtained,

P (r) =

[
P 1/4

s +
1
4
GM̃

K3/4

(
1
r
− 1
Rs

)]4

, (60)

and kT (r) can also be found from Eq. (56) as

kT (r) = kTs +
1
4

(
3

fr gr aγ

)1/4
GM̃

K3/4

(
1
r
− 1
Rs

)
(61)

when kTs = [3Ps/(frgr aγ)]1/4 is used. If the density-
pressure relation is more general than Eq. (56), namely
P = Kργ with K being constant, hydrostatic equilibrium
implies

ρ(r) =

[
ργ−1

s +
γ−1
γ

GM̃

K

(
1
r
− 1
Rs

)]1/(γ−1)

, (62)

which replaces Eq. (59).
Instead of the general solutions, Eqs. (59)–(61), simple

power-laws,

ρ(r) = ρs

(
Rs

r

)3

, kT (r) = kTs
Rs

r
,

P (r) = Ps

(
Rs

r

)4

, (63)

yield a good approximation for the hydrostatic atmo-
sphere, if K fulfills the condition K = GM̃/(4Rsρ

1/3
s ).

Since K = Ps/ρ
4/3
s , this is equivalent to the requirement

that

Ps

ρs
=

GM̃

4Rs
· (64)

On the other hand, from Eqs. (39) and (43) one gets

Ps

ρs
≈ β − 1

β2

2α2GM̃

Rs

(
1− Us

vp

)2

∼ 6
49

GM̃

Rs

(
1− Us

vp

)2

· (65)

The numerical factor on the right hand side of Eq. (65) was
obtained with α ∼ 1/

√
2 (Bethe 1990, 1993) and β ∼ 7

(Eq. (41)). Equation (65) shows that the requirement of
Eq. (64) is reasonably well, although for small shock radii
not very well, fulfilled. In the following the power-laws
of Eq. (63) will therefore only serve to facilitate analytical
evaluation, and the use of this approximate solution of hy-
drostatic equilibrium will be avoided where inconsistencies
might result.

With Eqs. (33) and (63) the gain radius Rg and the
conditions at the gain radius can be expressed in terms
of the properties at the shock front and the characteristic
parameters (Tνe , Lνe) of the neutrino emission. Inserting
the relation kTg = kTs(Rs/Rg) into Eq. (33) yields the
gain radius (in units of 107 cm),

Rg,7 ≈ 0.98 R
3
2
s,7 (kTs,2)

3
2 (kTνe,4)−

1
2

(
Lνe,52

〈µν〉g

)− 1
4

, (66)

and for the temperature at the gain radius one gets

kTg,2 ≈ 1.02 R−
1
2

s,7 (kTs,2)−
1
2 (kTνe,4)

1
2

(
Lνe,52

〈µν〉g

)1
4

, (67)

where kTg,2 = kTg/(2 MeV) and kTνe,4 is the neutri-
nospheric temperature and kTs,2 the postshock temper-
ature normalized to 4 MeV and 2 MeV, respectively.

The assumptions made in this section to solve the
equation of hydrostatic equilibrium in the layer between
Reos and Rs do not seem to be very restrictive, because
two-dimensional as well as one-dimensional simulations
without convection (e.g., Bruenn 1993; Janka & Müller
1996, Fig. 6; Rampp 2000) yield density and temperature
profiles in the postshock region which are very close to
power laws with power law indices around 3 and 1, re-
spectively. Near Reos the contributions of relativistic and
nonrelativistic gas components will become equally im-
portant. Here the exponentially steep density decline just
outside the neutrinosphere must change to the power-law
behavior behind the shock, and both of these limiting
solutions will not provide a good description. The exact
structure in the intermediate layer between Reos and Rg,
however, does not play an important role in the further
discussion and therefore a more accurate treatment is not
necessary.

6. Heating and cooling

To discuss energy deposition and emission of neutrinos
exterior to the neutrinosphere, one starts with the energy
equation for νe plus ν̄e, which is

1
4π r2

∂Lν
∂r

= −Q+
ν +Q−ν , (68)

where Lν = Lνe +Lν̄e and Q+
ν and Q−ν are the heating and

cooling rates of the stellar medium as given by Eqs. (28)
and (31), respectively. In writing Eq. (68), stationarity was
assumed for the neutrinos, which is justified because the
neutrino emission of the accreting neutrino star changes
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on a timescale which is typically longer than other relevant
timescales of the discussed problem. From Eq. (68) the net
effect of heating or cooling in a layer between radii r1 and
r2 can be deduced as
r2∫
r1

dr 4π r2
(
Q+
ν −Q−ν

)
= Lν(r1) − Lν(r2) . (69)

Refering to Eqs. (23) and (27), a suitable spectral and
flavor average for the absorption coefficient of νe and ν̄e

can be defined as

〈κa〉 =
Q+
ν

Lν/(4π r2〈µν〉)
, (70)

when 〈µνe〉 ≈ 〈µν̄e〉 ≡ 〈µν〉 is used. Plugging this into
Eq. (68) gives

∂Lν
∂r

= −〈κa〉
Lν
〈µν〉

+ 4π r2Q−ν . (71)

The neutrino luminosity as a function of radius r ≥ r0 is
the general solution of Eq. (71):

Lν(r) = exp

−
r∫

r0

dr′
〈κa〉
〈µν〉

 Lν(r0)

+

r∫
r0

dr′ 4π (r′)2Q−ν exp

−
r∫

r′

dr′′
〈κa〉
〈µν〉

 · (72)

The first exponential factor represents the absorption
damping of the luminosity in the shell between r0 and
r, the second exponential factor the reabsorption of neu-
trinos emitted at r′ in the layer enclosed by radii r′ and r.

6.1. Heating and cooling between Rν and Rg

Here the lower boundary of the considered volume is the
neutrinosphere at radius r0 = Rν . Since both 〈κa〉 ∝ ρ(r)
(cf. Eqs. (70) and (28)) and Q−ν ∝ ρ(r) (cf. Eq. (31)) are
steep functions of the radius in the region between Rν and
Rg, where the density drops exponentially, most of the ab-
sorption and emission occurs in the immediate vicinity of
the neutrinosphere. Therefore the neutrino luminosity at
the gain radius, Lν(Rg), can be approximated by the limit
for r → ∞ of Eq. (72), and the integral

∫ r
r′ dr

′′ 〈κa〉/〈µν〉
can be replaced by

∫∞
Rν

dr 〈κa〉/〈µν〉. This leads to

Lν(Rg) ≈ exp

−
∞∫

Rν

dr
〈κa〉
〈µν〉


×

Lν(Rν) +

∞∫
Rν

dr 4π r2Q−ν

 · (73)

To evaluate the exponential damping factor, 〈κa〉 is ex-
pressed by Eq. (70), making use of Eq. (28) and Lν =
2Lνe . The neutrino spectrum is assumed not to change

outside the neutrinosphere. With Eq. (50) the integral over
the density profile becomes

∫∞
Rν

dr ρ(r) ≈ ρνh. Employing
Eqs. (51) and (52), one finds

∞∫
Rν

dr
〈κa〉
〈µν〉

≈ 0.42

〈̃µν〉
≡ a , (74)

where 〈̃µν〉 denotes a radial average of the flux factor
〈µν〉 in the layer between Rν and Rg. The energy loss
integral is calculated with Eq. (31) where T (r) ≈ Tνe

is used near the neutrinosphere. With
∫∞
Rν

dr r2ρ(r) ≈
ρνh

[
h2 + (Rν + h)2

]
≈ ρνR

2
νh (because h � Rν , cf.

Eq. (51)) and Eqs. (51) and (52) this leads to:

∞∫
Rν

dr 4π r2Q−ν ≈ 4.9 1051R2
ν,6

(
kTνe

4 MeV

)4 [erg
s

]
≡ b. (75)

Equation (73) now becomes

Lν(Rg) ≈ e−a [Lν(Rν) + b] , (76)

and the total energy exchange between Rν and Rg accord-
ing to Eq. (69) therefore is

Lν(Rg)− Lν(Rν) ≡ Lacc ≈ (e−a− 1)Lν(Rν) + e−ab. (77)

Since Rg separates the layer of neutrino cooling from the
one of neutrino heating, the region between Rν and Rg

must lose energy by neutrino emission. Therefore the neu-
trino luminosity at Rg must be larger than Lν(Rν), and
Lacc represents the luminosity associated with the accre-
tion of matter through the gain radius onto the surface of
the nascent neutron star. The requirement Lacc ≥ 0 con-
strains the luminosity of the neutron star core relative to
the product R2

ν(kTνe)4 by the inequality

Lν(Rν) ≤ b (ea − 1)−1
. (78)

Provided the core luminosity can be expressed in terms of
blackbody emission of temperature Tνe ,

Lν(Rν) ≈ 4πR2
ν

c

4
7
8
aγ(kTνe)4

≈ 2.9 1051R2
ν,6

(
kTνe

4 MeV

)4 [erg
s

]
, (79)

the consistency condition translates into the relation

〈̃µν〉 >∼ 0.42 , (80)

which is satisfied above the neutrinosphere in the layer
between Rν and Rg.

6.2. Heating and cooling between Rg and Rs

For reasons of simplicity it will be assumed that in the
layer bounded by Rg and Rs nuclei are completely disin-
tegrated into free nucleons. Disregarding the occurrence
of α particles, in particular, is certainly an approximation
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which becomes invalid when the temperature drops be-
low about 1 MeV, i.e., when the shock is at large radii,
typically around 300 km (see Bethe 1993, 1995, 1996a–c,
1997). The presence of α particles reduces the neutrino
heating, because electron neutrinos and antineutrinos are
absorbed only on nucleons, but energy released by the re-
combination of α’s during shock expansion supports the
shock at a later stage and contributes to the energy bud-
get of the explosion. Since in the context of this paper we
do not attempt to calculate the explosion energy, but are
interested in a qualitative discussion of the revival phase
of the stalled shock, the recombination of nucleons to α
particles is probably not a crucial issue.

As will be demonstrated below, the optical depth be-
tweenRg andRs is small such that

∫ Rs

Rg
dr 〈κa〉/〈µν〉 <∼ 0.5.

Therefore the reabsorption probability of emitted neutri-
nos is also small and an approximation to the solution of
Eq. (72) at the shock position is

Lν(Rs) ≈

1−
Rs∫
Rg

dr
〈κa〉
〈µν〉

Lν(Rg) +

Rs∫
Rg

dr 4π r2Q−ν . (81)

The net energy deposition is found to be

Lν(Rg)− Lν(Rs) ≈
Rs∫
Rg

dr
〈κa〉
〈µν〉

Lν(Rg)−
Rs∫
Rg

dr 4π r2Q−ν

≡ H− C . (82)

Since in the layer bounded by Rg and Rs neutrino heating
takes place, Lν(Rg) ≥ Lν(Rs) (this will also be verified
below). Expanding the exponential damping factors only
to lowerst order in the exponent implies a slight overes-
timation of the energy input into the stellar medium by
neutrinos (because the luminosity entering at Rg is as-
sumed to decay linearly through the layer), but also the
energy loss by neutrinos is overestimated, because the re-
absorption of emitted neutrinos is not included.

Using Q+
ν from Eq. (28) in Eq. (70), Lν = 2Lνe , and

the density profile from Eq. (63), one finds for the first
integral in Eq. (82):

H ≈ 4.9 1050 Lν,52(Rg)
〈µν〉∗

(kTνe,4)2ρs,9Rs,7

×
[(

Rs

Rg

)2

− 1

] [erg
s

]
, (83)

where kTνe was again treated as a constant, 〈µν〉∗ defines
an average value of the flux factor in the layer between Rg

and Rs, and ρs,9 is the density behind the shock in units
of 109 g cm−3. The second integral in Eq. (82) is evaluated
with Q−ν from Eq. (31) and the temperature and density
relations from Eq. (63):

C ≈ 2.9 1050 (kTs,2)6 ρs,9R
3
s,7

×
[(

Rs

Rg

)6

− 1

] [erg
s

]
· (84)

Employing the gain condition, Eq. (33), and again making
use of Eq. (63), one gets(

kTs

2 MeV

)6

≈ 0.55
Lν,52(Rg)
〈µν〉gR2

g,7

(
kTνe

4 MeV

)2(
Rg

Rs

)6

, (85)

which serves to rewrite Eq. (84) as

C ≈ 1.6 1050 Lν,52(Rg)
〈µν〉g

(kTνe,4)2ρs,9Rs,7

×
(
Rs

Rg

)2
[

1−
(
Rg

Rs

)6
] [erg

s

]
· (86)

Combining Eqs. (83) and (86) gives the net energy transfer
to the stellar medium in the gain region:

H− C ≈ H×
{

1− 1
3
〈µν〉∗
〈µν〉g

[
1+
(
Rg

Rs

)2

+
(
Rg

Rs

)4
]}
· (87)

Since 〈µν〉∗/〈µν〉g ∼ 1 and Rs > Rg, typically Rs ∼ 2Rg,
we verify that H−C > 0 and therefore Lν(Rs) < Lν(Rg),
as expected for the neutrino heating region. For β =
ρs/ρp ≈ 7 (Eq. (41)) and α = 1/

√
2, Eq. (44) yields for

the postshock density

ρs ≈ 3 109 (−Ṁ)
M�/s

(
M̃

M�

)−1/2

R
−3/2
s,7

[ g
cm3

]
· (88)

Using this and Rs ∼ 2Rg in Eq. (83) leads to

Rs∫
Rg

dr
〈κa〉
〈µν〉

=
H

Lν(Rg)

∼ 0.44
〈µν〉∗

(kTνe,4)2

R
1/2
s,7

(−Ṁ)
M�/s

(
M̃

M�

)− 1
2

· (89)

For sufficiently small accretion rates |Ṁ | this is less than
about 0.5, and the assumption made before Eq. (81) is
verified, i.e., the reabsorption of neutrinos emitted in the
gain region can be neglected.

7. Mass accretion onto the neutron star

The shock accretes mass at a rate Ṁ ≡ 4πR2
sρpvp as de-

termined by the conditions in the core of the progenitor
star (see Sect. 4.4). In a stationary state, this rate is equal
to the rate at which matter is advected inward from the
shock to the neutrinosphere to be finally added into the
neutron star. The rate at which matter can be absorbed
by the neutron star, however, depends on the efficiency by
which neutrinos are able to remove the energy excess of
the infalling material relative to the energy of the strongly
bound matter in the neutron star surface layers. For the
large accretion rates typical of the collapsed stellar core
right after bounce, the density is so high that the infalling
matter becomes opaque to neutrinos. In this case the ef-
ficiency of the energy loss is reduced. When the gas is
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hotter, the neutrino opacity increases (because of the en-
ergy dependence of the neutrino cross sections), and the
neutrinosphere moves to a larger radius. Due to this regu-
latory effect, the neutrinospheric temperature is a rather
inert quantity and, e.g., turns out to be very similar in
different numerical models. Therefore it is not a steady-
state mass accretion rate which governs the temperature
at the base of the “atmosphere” (as for accretion in op-
tically thin conditions), but the “surface” of the nascent
neutron star forms where the temperature is sufficiently
high for neutrino opaqueness to set in.

When neutrino cooling is not efficient enough, the ad-
vection of matter through the neutrino cooling region is re-
duced compared to the accretion into the shock, and mat-
ter piles up on top of the neutron star. Similarly, strong
neutrino heating in the gain region can reduce the inflow
of matter. The transition from accretion to an explosion
is characterized by an inversion of infall to outflow. For
this reason the analysis of the conditions for shock revival
requires the inclusion of this sort of time-dependence in
the discussion. In the simplified model considered here,
the mass accretion rate is allowed to change between Rs

and Rg. Matter advected through Rg at a rate determined
by the efficiency of neutrino cooling is then assumed to be
added into the neutron star (compare Fig. 2).

Using Eqs. (2) and (6) and the definition Ṁ(r) =
4πr2ρv, Eq. (4) can be rewritten in the following form:

∂

∂r

[
Ṁ

(
e+P
ρ
− GM̃

r

)]
= 4πr2(Qν +Qd)

− 4πr2ρ
∂

∂t

(
e

ρ

)
+

(
e

ρ
− GM̃

r

)
∂Ṁ

∂r
, (90)

where Qν = Q+
ν −Q−ν is the net rate (per unit volume) of

energy transfer between neutrinos and the stellar medium
and Qd denotes the energy consumed or released by the
photodisintegration of nuclei. The latter term has to be
introduced in the equation when rest-mass contributions
from nucleons and nuclei are not included in the internal
energy density ε (Eq. (5)). The nuclei present in the ac-
cretion flow through the shock are assumed to be dissoci-
ated to free nucleons within the shock front (cf. Eq. (38)).
Therefore the rate Qd in terms of the (positive) nuclear
binding energy per unit mass, qd, is

Qd = ρ v qd δ(r −Rs) . (91)

Here δ(x) is the delta function. For v < 0, which is true
in case of accretion, energy is extracted from the stellar
medium, i.e., Qd < 0. Now integrating Eq. (90) between

Rν and a radius r that is infinitesimally larger than Rs

gives

Ṁ

[
e+ P

ρ
− GM̃

r

]
Rs

− Ṁ ′
[
e+ P

ρ
− GM̃

r

]
Rν

=

Ṁ ′ qd +

M(Rs)∫
M(Rν)

dM
[
Qν
ρ
− ∂

∂t

(
e

ρ

)]

+

Ṁ∫
Ṁ′

dṀ

(
qd +

e

ρ
− GM̃

r

)
, (92)

where ∂M/∂r = 4πr2ρ was used. The mass accretion rate
through the shock was defined as Ṁ = 4πR2

sρpvp and the
corresponding accretion rate through the neutrinosphere
as Ṁ ′ ≡ Ṁ(Rν) = 4πR2

νρνvν . The term for the rate of
energy consumption by nuclear dissociation was split into
two parts according to Ṁ(r) = Ṁ ′ +

∫ Ṁ(r)

Ṁ′
dṀ .

From Eq. (92) an approximation for Ṁ ′ can be de-
rived by taking into account that |Qν/ρ| � ∂(e/ρ)/∂t
in the region between Rν and Rs, where strong neutrino
heating and cooling occurs. Moreover, the integrand of
the last term on the right hand side of Eq. (92) is usually
small, because qd corresponds to about 8–9 MeV per nu-
cleon for complete disintegration of nuclei into free nucle-
ons, GM̃/Rs ∼ 14 (M̃/M�)/Rs,7 MeV per nucleon, and
e/ρ ≈ 1

2v
2
p ∼ 1

2GM̃/Rs immediately above the shock,
where the infall velocity vp is given by Eq. (43) and the
specific internal energy is typically much smaller than the
specific kinetic energy. For the same reason, the first term
on the left hand side of Eq. (92) is much smaller than the
second term when Ṁ and Ṁ ′ are of the same order. With
all this one gets

Ṁ ′ ≈ −
Rs∫
Rν

dr 4πr2Qν ×
([

e+P
ρ

]
Rν

− GM̃

Rν
+ qd

)−1

· (93)

Because of the large gravitational binding energy of mat-
ter at the neutrinosphere, the term in brackets in Eq. (93)
is negative. The integral adds up the contributions from
neutrino cooling between Rν and Rg and from neutrino
heating between Rg and Rs. If cooling is stronger (which
is the case in the first second after bounce), the integral is
negative and Ṁ ′ < 0, i.e., the neutron star accretes mat-
ter. If neutrino heating dominates, there is mass outflow,
Ṁ ′ > 0.

Such mass loss takes place during the later phase of
the neutrino-cooling evolution of the nascent neutron star,
where a baryonic wind, the so-called neutrino-driven wind,
is blown off the neutron star surface due to neutrino en-
ergy deposition just outside the neutrinosphere (Qian &
Woosley 1996). The transition from accretion to mass out-
flow and the onset of mass loss can be discussed with the
formulae presented here. A description of the wind regime
(where the fluid velocity v approaches the local speed of
sound), however, is beyond the scope of the present work,
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because it requires retaining the velocity gradient in the
momentum equation, Eq. (3). Assuming steady-state con-
ditions, this leads to the well known set of dynamic wind
equations which can also be discussed by analytic means
(see Qian & Woosley 1996, and references therein). In con-
trast, the toy model developed in this paper does not make
use of steady-state assumptions for the mass flow through
the gain layer, i.e., it is allowed that Ṁ 6= Ṁ ′ in general.

The integral in Eq. (93) was evaluated in Sect. 6:
Rs∫
Rν

dr 4πr2Qν = −Lacc +H− C . (94)

Equation (77) gives the net energy exchange between neu-
trinos and stellar medium in the layer [Rν , Rg], Eq. (87)
the corresponding result for the interval [Rg, Rs], when
H is taken from Eq. (83) and the neutrino luminos-
ity Lν(Rg) from Eq. (76) with a and b provided by
Eqs. (74) and (75), respectively. Plugging in numbers
representative for the early post-bounce evolution, Lν ≈
5 1052 erg s−1, Rν ≈ 50 km, M̃ ≈ 1 M�, a ∼ 1, one
finds Lν(Rg) ≈ 6.3 1052 erg s−1 and

∫ Rg

Rν
dr 4πr2Qν =

−Lacc = Lν(Rν) − Lν(Rg) ≈ −1.3 1052 erg s−1, and us-
ing Rs ≈ 2Rg ≈ 200 km, 〈µν〉∗ ∼ 1, 〈µν〉g ∼ 0.75, yields∫ Rs

Rg
dr 4πr2Qν = H − C ≈ 7.7 1051 erg s−1. The gravi-

tational energy at the neutrinosphere at 50 km is about
−28 MeV per nucleon, qd is roughly 8 MeV per nucleon,
and the internal energy plus pressure account for typically
∼10 MeV per nucleon:(
e+ P

ρ

)
Rν

≈
(

5
2

+
4
3
Ye
F3(ηe)
F2(ηe)

)
kTν
mu

≈ 7
2
kTν
mu

, (95)

where e = ε has been applied because 1
2ρv

2 � ε at the
neutrinosphere. Therefore the sum of the terms in the
denominator of Eq. (93) can be estimated to be about
−1019 erg g−1. This leads to a mass accretion rate of the
neutron star of Ṁ ′ ∼ −0.3 M� s−1, a value which is in the
range of the results of detailed numerical simulations and
is of the order of the mass infall rate on the shock, Ṁ .

8. Mass and energy conservation in the gain
region

Mass and energy conservation in the gain region between
Rg andRs determine the early postbounce evolution of the
supernova shock. For example, the shock is pushed out-
ward when the matter that falls through the shock stays
hot and piles up on top of the neutron star, forming an
extended envelope instead of being accreted into the dense
core quickly after efficient energy loss in the neutrino cool-
ing layer below Rg. Similarly, strong neutrino heating in
the gain region causes an increase of the postshock pres-
sure and thus drives an expansion of the shock. On the
other hand, enhanced neutrino emission will extract mass
and/or energy from the layer which supports the super-
nova shock. The consequence will be a retraction of the
shock in radius. These effects need to be accounted for by
an appropriate discussion of the delayed explosion mech-
anism. A steady-state picture is certainly not adequate.

8.1. Mass in the gain region

The mass ∆Mg in the gain region can be calculated as
volume integral over the density:

∆Mg =

Rs∫
Rg

dr 4πr2 ρ(r) . (96)

with the density ρ(r) given by Eq. (59). Alternatively,
since the latter equation is the exact solution for hydro-
static equilibrium, one can use ρ(r) = −r2(dP/dr)/(GM̃ )
with P (r) from Eq. (60). Defining the coefficients c1 ≡
ρ

1/3
s −GM̃/(4KRs) and c2 ≡ GM̃/(4K), one finds:

∆Mg = 4π

[
1
3
c31
(
R3

s −R3
g

)
+

3
2
c21c2

(
R2

s −R2
g

)
+3 c1c22 (Rs −Rg) + c32 ln

(
Rs

Rg

)]

= 4π

[
1
3
(
R3

sρs −R3
gρg

)
+
c2
2

(
R2

sρ
2
3
s −R2

gρ
2
3
g

)
+c22

(
Rsρ

1
3
s −Rgρ

1
3
g

)
+ c32 ln

(
Rs

Rg

)]
· (97)

In deriving the second form of Eq. (97), use was made of
ρ(r) = (c1 + c2/r)3. Moreover, with ρ = (P/K)3/4 the
density in Eq. (97) can be substituted by the pressure P .
Note that the quantities ρg = ρ(Rg) and Pg = P (Rg) at
the gain radius must be expressed by the exact relations
of Eqs. (59) and (60), respectively. They depend on the
postshock state of the matter as do the coefficients c1 and
c2. The gain radius Rg is given by Eq. (66). It is also a
function of the conditions immediately behind the shock.
Writing the postshock temperature in terms of the post-
shock pressure via Eq. (56), kTs = [3Ps/(frgraγ)]1/4, and
using Eqs. (39), (43), (44) and (53)–(55) with typical val-
ues β ∼ 7, α ∼ 1/

√
2, sγ ∼ 4, and ηe ∼ 2 (the exact values

of these parameters are not essential for the discussion and
affect the result rather insensitively), one gets in case of
|Us| = |Ṙs| � |vp|:

kTs ≈ 2 R−
5
8

s,7

(
−Ṁ
M�/s

)1
4
(
M̃

M�

)1
8

[MeV] . (98)

Inserting this in Eq. (66) and using Lν = 2Lνe yields

Rg,7 ≈ 1.13 R
9
16
s,7 (kTνe,4)−

1
2

(
Lν,52(Rg)
〈µν〉g

)− 1
4

×
(
−Ṁ
M�/s

)3
8
(
M̃

M�

) 3
16

, (99)

where the neutrino luminosity at the gain radius, Lν(Rg),
is given by Eq. (76).

Instead of the exact expression of Eq. (97) an approx-
imation for ∆Mg is sometimes preferable. Performing the
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integration of Eq. (96) with the approximate density pro-
file of Eq. (63), one finds

∆Mg ≈ 4π ρsR
3
s ln
(
Rs

Rg

)
∝ −Ṁ

M̃1/2
R3/2

s ln
(
Rs

Rg

)
· (100)

Here ρs was written in terms of Rs by making use of ρs =
βρp and Eq. (44). Moreover, from Eq. (99) one can deduce
that Rs/Rg ∝ R

7/16
s for |Us| � |vp|. An increase of the

shock radius therefore means that ∆Mg will also grow.
The rate at which the mass in the gain region changes

in time due to a shift of the upper and lower boundaries of
this region but also due to a variation of the density of the
stellar medium, is determined as the total time derivative
of Eq. (96):

d
dt

(∆Mg) = 4πR2
sρsṘs − 4πR2

gρgṘg +

Rs∫
Rg

dr4πr2 ∂ρ

∂t
, (101)

where Ṙs ≡ dRs/dt = Us is the shock velocity and
Ṙg ≡ dRg/dt the velocity of the gain radius. When the
integration in Eq. (101) is carried out to a radius infinitesi-
mally smaller than Rs with the help of Eq. (2), one obtains

d
dt

(∆Mg) = 4πR2
sρs(Ṙs − vs)− 4πR2

gρg(Ṙg − vg)

= 4πR2
sρpṘs − 4πR2

gρgṘg − Ṁ + Ṁ ′ , (102)

with vg and vs being the velocities of the stellar medium
at the gain radius and just behind the shock, respectively.
The lower expression was derived by using the shock jump
condition for the mass flow, Eq. (36), and the definitions
Ṁ = 4πR2

sρpvp and Ṁ ′ = 4πR2
gρgvg = 4πR2

νρνvν as in-
troduced in Sect. 7. Equation (102) shows that the mass
in the gain region can change because of inflow and out-
flow of gas but also due to the motion of the boundaries
Rg and Rs. Knowing the initial mass in this layer, ∆M0

g ,
Eq. (102) allows one to calculate the value at later times.

8.2. Energy in the gain region

Since the postshock matter is effectively in hydrostatic
equilibrium (see Sect. 5) the kinetic energy is negligible
compared to the internal energy and the gravitational po-
tential energy, and the total energy in the gain region is
therefore given by

∆Eg =

Rs∫
Rg

dr 4πr2

[
ε(r) − GM̃

r
ρ(r)

]
· (103)

To evaluate the right hand side, one substitutes ε =
P/(Γ − 1), which relates the internal energy density ε
and the pressure P for an ideal gas, with the adiabatic
index Γ being typically between 4/3 and 5/3, depending
on whether relativistic or nonrelativistic particles, respec-
tively, dominate the pressure. In addition making use of

hydrostatic equilibrium (Eq. (47)) or, alternatively, apply-
ing the virial theorem, one finds

∆Eg =
4π

3(Γ− 1)
(PsR

3
s − PgR

3
g)

− 4πGM̃
3Γ− 4

3(Γ− 1)

Rs∫
Rg

dr rρ(r) . (104)

The second term is the gravitational potential energy
times (Γ− 4

3 )/(Γ−1). An exact expression for the integral
is obtained when Eq. (59) is used for ρ(r):
Rs∫
Rg

dr rρ(r) =
c31
2

(R2
s−R2

g) +
(

3c21c2 +
c32

RsRg

)
(Rs−Rg)

+ 3 c1c22 ln
(
Rs

Rg

)
· (105)

The coefficients c1 and c2 were already defined in Sect. 8.1.
For the following discussion an approximation of this in-
tegral is sufficient. It can be derived by employing the
approximate power law profile for the density, Eq. (63):
Rs∫
Rg

dr rρ(r) ≈ ρs
R2

s

Rg
(Rs −Rg) . (106)

The rate at which the total energy in the gain region
changes with time can be calculated as the time derivative
of Eq. (103). With the definition l ≡ (ε + P )/ρ − GM̃/r
one finds
d
dt

(∆Eg) = 4πR2
sρslsṘs − 4πR2

gρglgṘg

−4πR2
sPsṘs + 4πR2

gPgṘg

+

Rs∫
Rg

dr 4πr2

(
∂ε

∂t
− GM̃

r

∂ρ

∂t

)
, (107)

where Ṙs and Ṙg have the same meaning as in Eq. (101).
The partial derivatives in the integral can be substituted
by Eqs. (2) and (4). Making additional use of Eqs. (5) and
(6) and of 1

2ρv
2 � ε yields

d
dt

(∆Eg) = 4πR2
sρsls(Ṙs − vs)− 4πR2

gρglg(Ṙg − vg)

−4πR2
sPsṘs + 4πR2

gPgṘg +

Rs∫
Rg

dr4πr2Qν. (108)

Now employing the continuity equation for the mass flow
across the shock, Eq. (36), and replacing the integral for
the energy exchange with neutrinos between Rg and Rs

by H−C as given in Eqs. (82) and (87), one ends up with

d
dt

(∆Eg) = 4πR2
sρpls(Ṙs − vp)− 4πR2

gρglg(Ṙg − vg)

− 4πR2
sPsṘs + 4πR2

gPgṘg +H− C
= 4πR2

sρplsṘs − 4πR2
gρglgṘg − 4πR2

sPsṘs

+ 4πR2
gPgṘg − Ṁ ls + Ṁ ′ lg +H− C. (109)
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The mass accretion rates Ṁ and Ṁ ′ account for the in-
flow of matter into the gain region through the shock and
for the mass that is advected through the gain radius,
respectively (see Sect. 7 and discussion after Eq. (102)).
Equation (109) means that the total energy in the gain
region changes due to active mass motions, pdV work as-
sociated with these mass motions, the movement of the
boundaries, and neutrino heating.

Making use of εs = Ps/(Γ−1), ρs/ρp = β, and Eq. (39),
one finds for ls = (εs + Ps)/ρs −GM̃/Rs:

ls ≈ −
[

1− Γ
Γ−1

β−1
β2

(
1− Us

vp

)2
]
GM̃

Rs
, (110)

where Eq. (43) with α ≈ 1/
√

2 was employed for v2
p ≈

GM̃/Rs ≈ 1.3 1019R−1
s,7 (M̃/M�) erg g−1. Because of hy-

drostatic equilibrium a simple relation exists between lg
and ls. With ε = P/(Γ − 1) and Eqs. (56) and (59) one
obtains

lg = ls −
3Γ− 4

4(Γ− 1)
GM̃

Rs

(
Rs

Rg
− 1
)
. (111)

Using the more general density-pressure relation P = Kργ

instead of Eq. (56), and the corresponding hydrostatic
density profile of Eq. (62), leads to

lg = ls −
(

1− Γ
Γ−1

γ−1
γ

)
GM̃

Rs

(
Rs

Rg
− 1
)
. (112)

For Γ = γ, this gives lg = ls.

9. Evolution of shock radius and shock velocity

The model developed in the preceding sections allows one
to study the behavior of the supernova shock in response
to the processes that play a role in the collapsed stellar
core. The physics between the neutron star surface and
the shock is constrained by the energy influx from the
neutrinosphere on the one hand and the mass accretion
into the shock front on the other. Equations (97), (104)
(in combination with (105)), and (39) determine the shock
radius Rs, the shock velocity Us, and the postshock pres-
sure Ps. The state of the matter immediately behind the
shock and that at the gain radius are related via Eqs. (59)–
(61) and (111), the gain radius Rg is given by Eq. (66),
the postshock temperature by kTs = [3Ps/(frgraγ)]1/4

(Eq. (56)), and the postshock density as ρs = βρp with
ρp from Eq. (44).

The mass accretion rate Ṁ into the shock is a fixed
parameter of the problem (in Eq. (46) it is expressed in
terms of the constant H which is linked to the structure of
the progenitor star). The rate of mass advection into the
neutron star, Ṁ ′, can be calculated from Eq. (93). The
radius Rν and mass M of the neutron star, the neutri-
nospheric luminosity Lν , and the spectral temperature of
the emitted electron neutrinos Tνe (assumed to be roughly
equal to the temperature Tν of the stellar gas at the neutri-
nosphere) are also input parameters. The discussion takes

into account the effects of neutrino losses in the cooling re-
gion, expressed by Eqs. (74)–(77), and of neutrino heating
in the gain region as given by Eqs. (82), (83), and (87).

The time dependence of the considered model requires
as initial conditions the values ∆M0

g and ∆E0
g for the

initial mass and energy in the gain region. This couples
the subsequent evolution in ∆Mg and ∆Eg, which can be
followed with Eqs. (102) and (109), respectively, to the sit-
uation that exists right after core bounce. Knowing Ṁ ′(t)
allows one to include also the changes of the neutron star
mass.

9.1. Shock expansion and acceleration

Combining Eqs. (104) and (106) and using Eq. (60) for Pg

in terms of Ps with K3/4 = P
3/4
s /ρs, one gets the relation

(x− x0)x3 ≈
(
Rg

Rs

)3
[
x +

(
Rs

Rg
− 1
)]4

+ 4 (3Γ− 4)
(
Rs

Rg
− 1
)
x3. (113)

Here x and x0 were defined as

x ≡ Ps

(
GM̃ρs

4Rs

)−1

∝
(

1 + Us

√
Rs

GM̃

)2

, (114)

x0 ≡ 3(Γ− 1)
∆Eg

4πR3
s

(
GM̃ρs

4Rs

)−1

∝ − ∆Eg

Ṁ

√
RsM̃

· (115)

The proportionality relations can be verified by using
Eqs. (39), (43) (with α = 1/

√
2) and (44).

Equation (113) is the key equation to understand the
behavior of the supernova shock under the influence of
accretion and neutrino heating. Typically, ∆Eg < 0 dur-
ing the shock stagnation phase, and therefore x0 < 0.
Equation (113) depends on two variables which constrain
the conditions at the shock front, namely on x > 0 and
on y ≡ Rs/Rg, for which y ≥ 1 holds. Fixing the pa-
rameters Ṁ , M̃ and Rs, one can show that a larger value
of x and thus a larger Us requires that x0 and therefore
∆Eg is bigger (i.e., less negative). Physically, this corre-
sponds to the case where neutrino energy deposition leads
to a rising postshock pressure Ps (compare Eq. (114)),
which accelerates the shock front. On the other hand, if
|Us| � |vp| ≈ (GM̃/Rs)1/2 the quantity x is essentially
constant, and y ∝ R7/16

s (cf. Eq. (99)) is the variable which
reacts to changes of x0. The corresponding discussion is
more transparent when Eq. (113) is rewritten in the fol-
lowing form:

[x−x0+4(3Γ−4)]x3y3 ≈ (x+y−1)4+4(3Γ−4)x3y4.(116)

For x0 < 0 this equation has a solution ŷ which shrinks, if
∆Eg and thus x0 is larger (i.e., less negative). Therefore
the radius Rs of the shock, which is compatible with the
assumptions, is smaller. Inversely, if ∆Eg and x0 are lower
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(more negative), Rs will be larger. This behavior can be
explained by the observation that ∆Eg decreases when
matter with negative specific energy is accumulated in the
gain region. Such an accumulation of mass will cause a
growth of the shock radius. It should be noted that for x of
order unity (i.e., |Us| � |vp|) a solution ŷ ≥ 1 of Eq. (116)
exists only in case of x0 ≤ 0. A positive value of ∆Eg, on
the other hand, is compatible only with a sufficiently large
shock velocity Us.

The situation is graphically illustrated in Fig. 3, where
∆Mg from Eq. (97) and ∆Eg from Eqs. (104) and (105)
are plotted as functions of Us for different choices of the
shock radius Rs (with parameters: M̃ = 1.25M�, Ṁ =
0.3M� s−1, Γ = γ = 4/3, β = 7, α = 1/

√
2, gr = 6.41,

fr = 1.16). Figure 3 (or Eq. (100)) shows that a growth of
the mass ∆Mg in the gain region will cause an increase of
Rs. This means that dRs/dt ≥ 0 can be ensured if
d
dt

(∆Mg) ≥ 0 . (117)

This, however, is not a sufficient criterion for a continued
outward motion of the shock. The dotted arrows in Fig. 3
indicate a situation where the decrease of energy in the
gain region is so large that the increase of the shock ra-
dius implies a deceleration of the shock. For moving along
the path marked by solid arrows, i.e., for obtaining stable
shock expansion with dUs/dt ≥ 0, a necessary condition is

d
dt

(∆Eg) ≥ Us

[
∂(∆Eg)
∂Rs

]
Us

· (118)

The right hand side of Eq. (118) cannot be zero in gen-
eral, because d(∆Eg)/dt > 0 can also be associated with
a shrinkage of Rs if more matter (with negative total en-
ergy) is lost from the gain region by advection through
the gain radius than is resupplied by gas falling into the
shock. The combined conditions of Eqs. (117) and (118)
guarantee that Rs and Us grow at the same time. Applied
to a stalled shock, in which case Us = 0, Eq. (117) together
with Eq. (118) can therefore be considered as “shock re-
vival criterion”, which states that for an expansion and
acceleration of the shock front to occur, the energy in the
gain region should increase and simultaneously the mass
in the gain region should not decrease.

9.2. Shock revival criterion

If the conditions between neutrinosphere and shock vary
slowly with time, Ṙg ≈ 0 is a good assumption. Since
vp 6= 0, Eq. (109) can then be written in the form

d
dt

(∆Eg) ≈ −Ṁls + Ṁ

(
ls−

Ps

ρp

)
Ṙs

vp
+ Ṁ ′lg +H− C. (119)

Replacing ls in the bracket on the right hand side of
Eq. (119) by Eq. (110) and using Eq. (39) for Ps/ρp, one
derives in case of |Us| � |vp| the expression

d
dt

(∆Eg) ≈ − Ṁ ls − Ṁ
(

2− 1
β
− β−1

β2

Γ
Γ−1

)
vpṘs

+ Ṁ ′ lg +H− C . (120)

Fig. 3. Mass ∆Mg and energy ∆Eg in the gain region as func-
tions of shock velocity Us for different shock radii Rs. The
values of neutron star mass M̃ and mass infall rate Ṁ into the
shock are fixed. Two possible cases for a transition from initial
shock radius Rs = 100 km to final shock radius Rs = 200 km
are indicated. The path marked by solid arrows corresponds to
stable shock expansion, the situation marked by dotted arrows
means a slow-down of the shock

This equation is correct to first order in |Ṙs/vp| � 1. From
the discussion in Sect. 8.2 follows that for an outward
acceleration of a stalled shock (Ṙs = Us = 0), a necessary
condition is (see Eq. (118)):

d
dt

(∆Eg) = − Ṁ ls + Ṁ ′ lg +H− C > 0 . (121)

Note that neutrino heating (H) and cooling (C) in the
gain region as well as the mass accretion rate Ṁ through
the shock have a direct influence. But also neutrino losses
below Rg have an effect by determining Ṁ ′, and a more
indirect one by causing additional energy deposition in the
gain region, where the neutrino energy extracted from the
cooling layer is partly reabsorbed.

The terms proportional to Ṁ = 4πR2
sρpvp account for

the so-called ram pressure of the infalling matter, which is
proportional to ρpv

2
p and damps shock expansion, because

the accretion of matter through the shock yields a negative
contribution to the right hand sides of Eqs. (119)–(121).
A comparison of Eqs. (120) and (121) shows that the onset
of shock expansion enhances this and therefore Eq. (121)
gives a minimum requirement.

Instead of just an outward acceleration of the shock, a
positive postshock velocity, i.e., vs > 0, may be considered
as a stronger criterion for the possibility of an explosion.
With β = ρs/ρp and Eq. (36) one derives vs = β−1(vp −
Us) + Us, which means that vs > 0 translates into Us >
− vp/(β − 1). Since β � 1 (Eq. (41)), this condition is
fulfilled while |Us/vp| � 1 still holds. Using this more
rigorous criterion will therefore affect the details of the
discussion, but will not change the picture qualitatively.

d(∆Eg)/dt > 0 can be achieved by strong neutrino
heating (H large), but can also result if Ṁ ′lg > Ṁls.
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For lg = ls, which is true when Γ = γ (see Eq. (112)),
this is equivalent to Ṁ ′ < Ṁ , i.e., when less mass is ac-
creted through the shock than is lost from the gain region
into the neutron star (note that ls < 0; Eq. (110)). As a
consequence, however, the mass between Rg and Rs and
therefore the shock radius will decrease, in conflict with
the demand for shock expansion (see Sect. 9.1). To make
sure the shock expands, also Eq. (117) has to be fulfilled.
In case of Us = 0, Ṙg = 0, Eq. (102) yields:

d
dt

(∆Mg) = − Ṁ + Ṁ ′ ≥ 0 ⇐⇒ Ṁ ≤ Ṁ ′ . (122)

Both Eqs. (121) and (122) constrain the parameters for
which a revival of the stalled shock can occur.

9.3. Conditions for shock revival

The properties of Eq. (121) together with Eq. (122) will
now be discussed in more detail. For chosen fixed values of
the shock stagnation radius, those combinations of mass
accretion rate Ṁ and neutrinospheric luminosity Lν will
be determined which allow for an outward acceleration of
the shock front. For these conditions an explosion driven
by neutrino energy deposition may develop.

Assuming Us = 0 the gain radius is given by Eq. (99).
For the neutrino luminosity Lν = 2Lνe will be taken again.
The accretion rate Ṁ ′ of Eq. (93) can be calculated by
using Eqs. (94) and (95). Neutrino effects are evaluated
from Eqs. (74)–(77) and Eqs. (83) and (87) with Eq. (88)
for the postshock density ρs.

Several consistency constraints have to be taken into
account to make sure that the assumptions of the analytic
model developed in the preceding sections are fulfilled:

(i) For the gain radius (Eq. (99)) Rν +h <∼ Rg ≤ Rs

must hold. Here h is the scale height of the exponen-
tial neutron star atmosphere, Eq. (51). The left in-
equality constrains the neutrinospheric luminosity to
be Lν <∼ L1(Ṁ), where the limit L1 depends on the
accretion rate Ṁ . The right inequality, on the other
hand, requires Lν ≥ L2(Ṁ);

(ii) Since the neutrinospheric luminosity Lν and temper-
ature Tν are not coupled here by the assumption of
blackbody emission, Eq. (78) must be satisfied to have
Lacc ≥ 0, i.e., to have a cooling layer outside of the neu-
trinosphere. This translates into a condition Lν ≤ L3;

(iii) The definition of Rg implies that neutrinos transfer
energy to the stellar gas for Rg ≤ r ≤ Rs. Therefore
Eq. (87) has to fulfill the condition H − C ≥ 0, cor-
responding to Lν ≥ L4(Ṁ). This constraint is similar
to the one which follows from the requirement that
Rg ≤ Rs, but somewhat stronger, depending on the
value of the ratio between 〈µν〉g and 〈µν〉∗;

(iv) Equation (89) (with H taken from Eq. (83)) has to
be less than about 0.5 to justify the disregard of reab-
sorption of neutrinos emitted from the gain layer. This
limits the neutrinospheric luminosity to Lν <∼ L5(Ṁ);

(v) The postshock temperature must be kTs >∼ 1 MeV be-
cause the matter behind the shock is assumed to be
completely disintegrated into free nucleons, and α par-
ticles therefore do not exist. For this to hold, the ab-
solute value of the mass accretion rate must exceed
some lower limit, |Ṁ | >∼ |Ṁ1|, where Ṁ1 depends on
the shock radius and the effective mass M̃ of the rem-
nant;

(vi) Since self-gravity of the gas between neutrinosphere
and shock was neglected, the total mass there must
be much smaller than the mass of the neutron star.
This requirement leads to an upper limit for the rate
of mass accretion: |Ṁ | <∼ |Ṁ2|.

While conditions (i)–(iii) ensure the logical coherence of
the model, a violation of conditions (iv)–(vi) would just
reduce the accuracy of the discussion. For example, the
framework developed in the previous sections can be gen-
eralized such that the (partial) recombination of nucleons
to α particles or heavy nuclei at temperatures below about
one MeV is taken into account. Item (vi) implies

Rs∫
Rν

dr 4πr2ρ(r) =

Reos∫
Rν

dr 4πr2ρ(r) +

Rs∫
Reos

dr 4πr2ρ(r)

<∼
∞∫

Rν

dr 4πr2ρ1(r) +

Rs∫
Rν+h

dr 4πr2ρ2(r) , (123)

where ρ1(r) ≡ ρν exp [−(r−Rν)/h] (Eq. (50) with h from
Eq. (51)) and ρ2(r) ≡ ρs(Rs/r)3 (Eq. (63)). A reasonable
upper bound for this mass integral is

Rs∫
Rν

dr 4πr2ρ(r) <∼
M̃

5
, (124)

which limits the allowed accretion rate according to con-
dition (vi).

The sequence of plots in Fig. 4 shows the results of
an evaluation of Eqs. (121) and (122) together with the
constraints (i)–(vi) for different shock stagnation radii:
Rs = 100, 150, 200, 250 and 300 km, respectively. The
numerical values chosen for the other parameters were:
M̃ = 1.25 M�, Rν = 50 km, kTν = 4 MeV, β = 7,
Γ = γ = 4

3 , fg = 1.25 (corresponding to ηeYe ≈ 1 at
the neutrinosphere), qd = 8.5 1018 erg g−1, 〈µν〉∗ = 0.7,
〈µν〉g = 0.6, and 〈̃µν〉 = 0.4.

The roots of d(∆Eg)/dt and d(∆Mg)/dt are repre-
sented by the lines labeled with OE and OM, respec-
tively. These lines separate regions in the |Ṁ |-Lν plane,
within which the collapsed stellar core reacts differently
to the mass inflow through the shock and to the ir-
radiation by neutrinos emitted from the neutrinosphere
(and from the cooling layer). In this respect the plots of
Fig. 4 can be considered as “phase diagrams” for the post-
bounce evolution of the supernova. Within the hatched
areas both Eqs. (121) and (122) are simultaneously ful-
filled. Additional lines correspond to constraints (i)–(vi).
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Fig. 4. Conditions for shock revival by neutrino heating for
different shock stagnation radii Rs. The lines labeled with OE

and OM connect the roots of d(∆Eg)/dt and d(∆Mg)/dt, re-
spectively, in the plane defined by the mass accretion rate into
the shock, Ṁ , and the neutrinospheric luminosity Lν . The
curves with labels Li (i ∈ {1, ..., 5}) and |dMj/dt| (j ∈ {1, 2})
correspond to the constraints (i)–(vi) listed in Sect. 9.3. They
represent warning flags indicating that the assumptions of
the discussion may need to be generalized. The hatched ar-
eas mark the regions where the conditions are favorable for a
neutrino-driven explosion, because Eqs. (121) and (122) are
both satisfied such that the supernova shock expands and ac-
celerates. Below the curve OM the rate of mass loss from the
gain layer to the neutron star exceeds the mass accretion rate
Ṁ and therefore d(∆Mg)/dt is negative. Above the curve OE

the energy deposition by neutrino heating cannot compensate
for the accumulation of mass with negative total energy in the
gain region and therefore d(∆Eg)/dt is negative

They are displayed as warning flags that the assumptions
of the treatment may need to be generalized. Left of the
vertical dotted line, which corresponds to constraint (v), α

particles and heavy nuclei in the postshock medium would
have to be taken into account, and the analysis performed
here is not very accurate. The vertical dashed line marks
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Fig. 5. Left: conditions for shock revival by neutrino heating for shock stagnation radii Rs = 150 km (cross-hatched area) and
250 km (hatched area). Right: the lines OM and OE which connect the roots of Eqs. (121) and (122), respectively, for shock radii
300 km, 400 km, 500 km, 600 km, and 700 km. Different from Fig. 4, the gain radius and the integrals for neutrino heating and
cooling in the gain layer were evaluated by using the exact solution for hydrostatic equilibrium instead of approximate power-law
profiles. In addition, the disappearance of free nucleons and therefore the quenching of neutrino absorption and emission below a
temperature of 1 MeV were taken into account. Above the line labeled with L3 the accretion luminosity Lacc (Eq. (77)) becomes
negative. The lines corresponding to constraints (v) and (vi) are omitted for reasons of clarity

the boundary right of which Eq. (124) and thus constraint
(vi) is violated.

Two of the simplifications that entered the analysis
for Fig. 4 can be easily removed. On the one hand, the
gain radius Rg and heating and cooling in the gain layer
can be calculated more accurately, when the density and
temperature profiles of Eqs. (59) and (61) instead of the
power-law approximation of the hydrostatic atmosphere
[Eq. (63)] are used. In this case Rg must be numerically
determined as the root of Eq. (33) (with Lνe = 1

2Lν(Rg)
as given by Eq. (76)), and the integrals for H and C in
Eq. (82) can also be evaluated numerically. On the other
hand, the recombination of free nucleons to α particles and
heavy nuclei at low temperatures can roughly be taken
into account concerning its effects on the neutrino in-
teraction in the gain region. Provided that above a cer-
tain temperature, say 1 MeV, all nuclei are disintegrated
into free nucleons and below this temperature all nucle-
ons are bound in nuclei, neutrino absorption and emission
reactions will not take place outside of the correspond-
ing radius Rα. The latter can also be calculated from the
temperature profile of Eq. (61). The heating and cooling
integrals are then performed with the upper integration
boundary being chosen as the minimum ofRs andRα. The
recombination of nucleons to α particles releases a sizable
amount of energy, about 7 MeV per nucleon. This addi-
tional energy source in the gain region was not included
in the discussion here, because it requires a detailed mod-
elling of the composition history of the postshock medium
(considering the different degree of disintegration of nuclei
during infall and recombination of nucleons during later
expansion in different volumes of matter).

The results of this more general treatment are dis-
played in Fig. 5 for shock radii Rs = 150 km and 250 km.

The quantitative changes are significant: Compared to
Fig. 4 the different value for the H − C term moves the
OM-line slightly upward and the OE-line more strongly
downward. A similar effect is associated with a moderate
reduction of the shock radius in Fig. 4. The gain radius ob-
tained by the exact calculation can also shrink with grow-
ing shock radius, different from the approximate represen-
tation of Eq. (99). On the other hand, the outer boundary
of the gain layer is defined by the recombination radius Rα
of α particles instead of the possibly larger shock radius.
Both effects combined, the total heating rate in the gain
layer is similar. Therefore the qualitative picture remains
unchanged.

The hatched areas in the plots of Figs. 4 and 5 include
those combinations of parameters for which the conditions
of Eqs. (121) and (122) are both satisfied and therefore
the initially stagnant shock will expand and will be ac-
celerated. Below the OM line neutrino cooling outside of
the neutrinosphere is very efficient and the neutron star
swallows matter faster than gas is resupplied by accre-
tion through the shock. Therefore d(∆Mg)/dt is negative.
When the mass accretion rate |Ṁ | drops below this critical
line, shock expansion can be supported only by an increas-
ing core luminosity, because a larger value of Lν reduces
the neutrino losses from the cooling region. Otherwise ad-
vection through the gain radius and thus into the neutron
star extracts mass from the neutrino-heating region and
the shock retreats. Figures 4 and 5 show that for given rate
|Ṁ | there is a lower limit of the neutrinospheric luminos-
ity Lν , which must be exceeded when shock expansion and
acceleration shall occur.

Above the OE line neutrino heating (represented by
the H − C term in Eq. (121)) cannot compete with the
accumulation of matter with negative total energy in the
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gain layer. In this case d(∆Eg)/dt is negative. Rs can nev-
ertheless grow for such conditions, simply because gas piles
up on top of the neutron star. This pushes the shock far-
ther out, but does not allow positive postshock velocities
to develop. Since the postshock matter is gravitationally
bound (∆Eg < 0), an explosion, however, requires suffi-
ciently powerful energy input by neutrinos. The position
of the OE line shifts with changing shock radius. For dis-
cussing the destiny of the shock this change of the overall
situation associated with the shock motion therefore has
to be taken into account. This can be done by solving the
equations of the toy model for time-dependent informa-
tion about the shock radius and the shock velocity (see
Sect. 9.4).

The OE line is very sensitive to the shock position,
whereas the OM line is only weakly dependent (Fig. 5).
On the one hand, a high core luminosity Lν reduces the
downward advection of gas through the gain radius. On
the other hand, the neutrino heating in the gain layer
increases with larger shock radius. Both effects determine
the slopes and positions of the critical lines. The distance
between the OM and OE lines in Figs. 4 and 5 grows for
larger shock radii, and the hatched area expands. This is
caused by an increase of the H− C term in Eq. (121).

Acceleration is easier for a shock which has stalled at
a large distance from the center, i.e., the same core lumi-
nosity can then ensure favorable conditions already for a
higher value of |Ṁ |. Besides stronger neutrino heating in
the more extended gain region, another effect contributes
to this. The increase of the postshock pressure which is
necessary to accelerate the standing shock to a positive
velocity Us � |vp| is given by

∆Ps = Ps(Us)− Ps(0)

∼= −2
(
1− 1

β

)
ρpvpUs = −

(
1− 1

β

)
ṀUs

2πR2
s

· (125)

This pressure increase is lower when the shock radius Rs

is big.
The OM line defines a critical curve for the shock evo-

lution, whose slope and position are hardly dependent on
the shock radius. It can be approximated analytically by
solving Eq. (122) in case of Ṁ ′ = Ṁ for the critical core
luminosity L∗ν as a function of Ṁ . One derives

L∗ν(Ṁ) ≈ e−ab(1− 0.1ω)− Ṁ(lν + qd)
1− e−a(1− 0.1ω)

, (126)

where lν is defined as the quantity l = (e+P )/ρ−GM̃/r
at the neutrinosphere (cf. Eqs. (93) and (95)), a and b
were introduced in Eqs. (74) and (75), respectively, and ω
is given by

ω ≡ (kTνe,4)2

〈µν〉∗
(−Ṁ)
M�/s

(
M̃

M�

)− 1
2

R
−1/2
s,7

[(
Rs

Rg

)2
−1

]
. (127)

To obtain Eq. (126) use was made of Eqs. (66),
(76), (77), (83), (87), (88), (93), (94), and (99). The term
in the curly brackets of Eq. (87) was assumed to be equal

to 2
3 , and the rather weak dependence of the gain radius

in Eq. (127) on the neutrino luminosity was ignored in
writing L∗ν in the explicit form of Eq. (126). In the latter
equation ω also depends on the mass infall rate Ṁ . For
representative shock radii and accretion rates, ω is found
to be of order unity: ω ∼ 1. With this, L∗ν becomes a sim-
ple linear function of Ṁ . Inserting the parameter values
used for Figs. 4 and 5 (listed after Eq. (124)), one ends up
with

L∗ν(Ṁ) ≈
(

5.6− 3.3
(−Ṁ)
M�/s

)
1052 erg

s
· (128)

This expression has a root for Ṁ = −1.7 M� s−1 and fits
the OM lines in Figs. 4 and 5 reasonably well.

9.4. Time-dependent solutions

The equations of the toy model developed in this paper
can be solved for the shock radius Rs(t) and the shock ve-
locity Us(t) as functions of time. For this purpose the mass
and energy in the gain layer have to be evolved according
to the conservation laws of Eqs. (102) and (109). Together
with Us = dRs/dt ≡ ∆Rs/∆t these equations were inte-
grated implicitly in time, with the velocity of the gain ra-
dius given by Ṙg ≡ ∆Rg/∆t for time step ∆t. The mass in
the gain layer, ∆Mg, and the corresponding total (internal
plus gravitational) energy, ∆Eg, were initially calculated
from Eq. (97) and Eqs. (104) and (105), respectively. The
gain radius Rg and the heating and cooling integrals for
the gain layer were evaluated using the exact solution of
hydrostatic equilibrium (Eqs. (59)–(61)) with the option
to chose an arbitrary value for the structural polytropic
index γ (Eq. (62)). The quenching of neutrino absorption
and emission reactions by the recombination of free nucle-
ons to α particles and heavy nuclei below a temperature
around 1 MeV was taken into account.

The postshock density is related to the preshock den-
sity by ρs = βρp, and the postshock pressure is given
by Eq. (39). The density contrast β as well as the pres-
sure jump at the shock are affected by the conditions in
the gain layer. The latter is assumed to be in hydrostatic
equilibrium with mass inflow from the infall region and
additional gain or loss by mass exchange with the neutron
star. Therefore simultaneous conservation of mass and en-
ergy requires that β is allowed to float, just as Ps is a de-
gree of freedom which adjusts in response to the energy
input due to the heating by neutrinos. This means that β
is also considered as a variable which the set of equations
is solved for.

Although generalization is straightforward, the neu-
tron star mass M̃ , the mass accretion rate into the shock,
Ṁ , and the neutrinospheric parameters (Lν , Tν , Rν)
were kept constant with time for reasons of simplicity.
Supernova calculations show that during a transient, but
rather short period of several 10 ms up to about 100 ms
after bounce, Lν and Ṁ decrease from very high values
to a much lower level, and lateron change only slowly
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Fig. 6. Shock radius (left) and specific energy in the gain layer (right) as functions of time for different neutrinospheric luminosi-
ties (measured in units of 1052 erg s−1) and for an initial shock stagnation radius of 150 km [with Us(t = 0) = 0]. The structural
polytropic index of the gain layer was chosen to be γ = 4/3, the mass accretion rate into the shock |Ṁ | = 0.3 M� s−1, the

neutron star mass M̃ = 1.25M�, and the neutrinospheric radius and temperature Rν = 50 km and Tν = 4 MeV, respectively.
The gain radius and the integrals for neutrino heating and cooling in the gain layer were evaluated by using the exact solution
for hydrostatic equilibrium. The disappearance of free nucleons and therefore the quenching of neutrino absorption and emission
below a temperature of 1 MeV were also taken into account. The dashed lines correspond to the case where the density jump
in the shock was set to be large (see text)

with time (cf., for example, Fig. 2 in Rampp & Janka
2000). A discussion of the subsequent destiny of the su-
pernova shock should not be affected by this variation,
because the shock expansion turns out to occur on a sig-
nificantly shorter timescale (see below). The ongoing con-
traction of the neutron star and a corresponding change
of the neutrinospheric temperature and luminosity, how-
ever, were found to have considerable influence (see Janka
& Müller 1996). For the exemplary purpose of the calcu-
lations reported on below, the introduction of additional,
model-dependent degrees of freedom will nevertheless be
abstained from.

9.4.1. Results for different Lν and fixed Ṁ

The shock radius Rs(t) and the specific energy in the gain
layer, ∆Eg/∆Mg, are shown as functions of time in Fig. 6
for different neutrinospheric luminosities Lν . The struc-
tural polytropic exponent γ was set equal to the adiabatic
index Γ of the equation of state, both chosen to be 4

3 . The
other parameters of the evaluation were M̃ = 1.25 M�,
Rν = 50 km, Tν = 4 MeV, and |Ṁ | = 0.3 M� s−1. The
initial shock radius was set to 150 km with Us(t = 0) = 0
and Ṙg(t = 0) = 0.

The solid lines display the case where β was allowed
to vary in all equations. Only for sufficiently high neutri-
nospheric luminosity the shock is able to expand to large
radii. For lower Lν the specific energy per nucleon in the
gain layer begins to drop again at some stage of the evo-
lution, and continued shock expansion is not possible, be-
cause the postshock pressure is not large enough for driv-
ing the shock out. The sudden positive acceleration of the

shock front towards the end of the solid lines for these un-
successful cases is a mathematical artifact, which occurs
in response to the rapid decrease of the factor (1 − β−1)
in Eq. (39) as β falls to unphysical values near unity. For
a given value of Ps, the decay of the term (1−β−1)→ 0 is
attempted to be compensated by a catastrophic increase
of the factor (vp − Us)2 in Eq. (39). In contrast to the
solid lines, the dashed curves were obtained by explicity
setting (1−β−1) ≈ 1 in Eq. (39). Thus assuming that the
density jump in the shock is large, the shock velocity is
solely determined by the value of the pressure Ps behind
the shock. Therefore the dashed lines show the breakdown
of the shock expansion more clearly than the solid lines.
They confirm that shock recession is correlated with a de-
crease of the specific energy in the gain layer.

The properties of the time-dependent solutions for the
shock radius agree with the discussion of Sects. 9.1–9.3.
Keeping Ṁ fixed, there is a threshold value for the core
luminosity above which the shock runs out to large radii
and the energy per baryon in the gain layer becomes posi-
tive. A high neutrinospheric luminosity has two favorable
effects: On the one hand the neutrino heating in the gain
layer is larger, on the other hand the energy loss by neu-
trino emission in the cooling layer is lower, thus reducing
the mass accretion into the neutron star and the mass loss
from the gain layer. The case with Lν = 4 1052 erg s−1

is near the borderline between successful shock expan-
sion and failure for the chosen set of parameters (compare
also Fig. 5): The shock is already very weak when it has
reached a radius of about 400 km, which is clearly visible
from the dashed lines.
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Fig. 7. Same as Fig. 6, but for a structural polytropic index γ = 1.45 in the gain layer

The mass accretion rates, Ṁ ′, of the nascent neutron
star, which correspond to increasing values of the neutri-
nospheric luminosity Lν in Fig. 6, are all negative, with
values: |Ṁ ′| = 1.15, 0.84, 0.68, 0.53, and 0.21, and the νe

plus ν̄e luminosities at the gain radius for these cases are:
Lν(Rg) = 5.0, 5.3, 5.5, 5.7, and 6.0 1052 erg s−1. Because
of the contribution from the accretion luminosity, Lν(Rg)
shows much less variation than the core luminosity Lν ,
and the neutrino heating in the gain layer is also simi-
lar. The accretion component is not dominant when the
shock moves out. The breakdown of shock expansion is
therefore associated with a low neutrinospheric luminosity
which causes high mass loss from the gain layer, leading
to a decrease of the pressure support behind the shock.
At the same time the width of the gain layer shrinks, its
optical depth drops, and the neutrino energy deposition
decreases. This leads to a negative feedback and the shock
recession accelerates dramatically.

The optical depth for νe and ν̄e absorption in the gain
layer is given by Eq. (89), τa ≡ H/Lν(Rg). Its value de-
pends on the particular conditions, the shock position,
mass infall rate into the shock, and the neutrinospheric
luminosity, temperature and radius, which influence the
position of the gain radius. For the models shown in Figs. 6
and 7 the initial value is between 0.15 and 0.18. In case
of shock expansion the optical depth increases for an in-
termediate period of time by up to 50 per cent due to the
growth of the gain region. This improves the conditions
for ongoing neutrino heating and leads to a rapid rise of
the energy in the gain layer. The positive feedback also
causes a sharp bifurcation in the behavior of cases of fail-
ing and successful shock expansion. Because neutrinos are
not only absorbed, but also reemitted, the net effect of
neutrino energy deposition is lowered somewhat. It scales
with (H−C)/Lν(Rg), which has typically only about half
the value of τa. When the gain layer expands, the temper-
ature decreases and the reemission of neutrinos is reduced.

9.4.2. Results for different Ṁ

When |Ṁ | lies below the OM line of Figs. 4 and 5, the
shock expansion is suppressed. But also high mass infall
rates damp the shock expansion, because a larger increase
of the postshock pressure is needed for shock acceleration
(see Eq. (125)) and the optical depth of the gain layer
decreases (because the gain radius is farther out). For high
|Ṁ | the shock therefore gains speed more slowly.

In case of very high mass infall rates |Ṁ | and small
shock radii a gain layer does not exist. Provided the neu-
trino luminosity is sufficiently large such that Ṁ ′ > Ṁ
(which is easily fulfilled for high |Ṁ |), the shock is slowly
pushed outward by the gas that stays in the layer between
the neutron star and the shock. Eventually the postshock
temperature will be low enough for a gain layer to form.
With neutrino-heated gas accumulating above the gain
radius (i.e., ∆Mg increases) the shock moves even farther
out, but the total energy in the gain layer decreases be-
cause the neutrino heating cannot compensate the nega-
tive binding energy of the growing gas mass. Only when
the shock has reached a sufficiently large radius the sit-
uation becomes favorable for an explosion because then
d(∆Eg)/dt > 0 (i.e., the conditions are now left of the
corresponding OE line in Fig. 5). If this radius is very far
out, because |Ṁ | is very high, the energy deposited in the
gain layer may not be sufficient to produce a positive to-
tal energy in the gain layer. The gas behind the shock will
stay bound and an explosion is not possible. The critical
accretion rate for this to happen depends on the neutri-
nospheric parameters (Rν , Tν and Lν), to some degree
also on the structural polytropic index γ. For the param-
eters and neutrino luminosities considered in the present
discussion this value is found to be around 4 M� s−1.

Even for somewhat smaller absolute values of the ac-
cretion rate and a positive total energy in the gain layer ex-
plosions might not occur. The question, however, whether
an outward running supernova shock will reach the
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stellar surface and what amount of matter it is able to
eject, requires a global treatment of the problem, including
the possible energy release by nuclear burning and recom-
bination of nucleons, and including the energy which will
be spent on lifting the stellar mantle and envelope in the
gravitational field of the star. This is far beyond the limits
of the current treatment, which focusses on a discussion
of the conditions that are necessary for reviving a stalled
shock and for pushing it out to a radius of >∼1000 km by
the neutrino heating mechanism.

9.4.3. Thermodynamic conditions

The entropy per nucleon in the gain layer, where rela-
tivistic electrons, positrons and photons as well as nonrel-
ativistic nucleons and nuclei contribute to the pressure, is
given by

s =
ε+ P

kT (ρ/mu)
−
∑
i

ηiYi , (129)

where the sum runs over all kinds of particles i. When
nuclei are fully dissociated, in which case Yp = Ye and
Yn = 1− Ye, this sum can be written as∑
i

ηiYi = Ye(ηe + ηp − ηn) + ηn

≈ Yeηe + Ye ln
(

Ye

1− Ye

)
+ ln

(
1.27 10−3 (1− Ye)ρ9

(kT )3/2

)
· (130)

Since typically Ye ∼ 0.2–0.3 and ηe/π <∼ 1 around the gain
radius, the combined terms scaling with Ye are negligibly
small. Using P = (Γ − 1)ε, Eq. (129) can be evaluated
for the models plotted in Figs. 6 and 7. Near the gain ra-
dius characteristic initial values of the entropy per nucleon
are found to be between 10 and 14, with a contribution
from relativistic degrees of freedom of sr ∼ 2–3. This is in
good agreement with results from detailed hydrodynam-
ical models (see, e.g., Rampp & Janka 2000). In case of
successful shock expansion, the total entropy per nucleon
increases to values between 25 and 30 towards the end of
the computed evolution.

Clearly, neither the entropy nor the pressure are dom-
inated by radiation and leptons, but baryons play an im-
portant role, at least at the beginning of shock expan-
sion. Nevertheless, the description in Sect. 5 of the gain
layer as being a “radiation-dominated” region remains jus-
tified, although in a generalized sense. While in the re-
gion around the neutrinosphere baryons (and possibly de-
generate electrons) yield the major contribution to the
pressure and internal energy, the importance of electron-
positron pairs and photons increases at lower densities. In
Sect. 5.2 (Eqs. (56)–(58)) it was argued that for r > Reos

both the pressure contributions from relativistic and non-
relativistic particles can be written as P ∝ T 4, provided
that the electron fraction Ye and the electron degeneracy
parameter ηe do not vary strongly. In the gain layer this

is fulfilled, because the electron degeneracy is typically
small, i.e., ηe <∼ π, and electron-positron pairs are abun-
dant (see the detailed discussion by Bethe 1993, 1996b).
Indeed, the hydrodynamical simulation of Rampp & Janka
(2000) shows that ηe in the gain layer changes only be-
tween about 1.5 and 3 during the interesting phase of the
post-bounce evolution.

Despite of the considerable contribution to the pres-
sure which is provided by nonrelativistic baryons, also the
use of Γ = (∂ lnP/∂ ln ρ)s = 4

3 for the adiabatic index
of the equation of state in the postshock region is justi-
fied, although the calculations in this paper are not con-
strained to this specific choice. At the conditions present
between the gain radius and the shock (density between
a few 108 g cm−3 and several 109 g cm−3 and tempera-
tures between roughly <∼1 MeV and >∼2 MeV), a finite
mass fraction of α particles is still present (Xα <∼ 0.5).
The disintegration of these α’s at nuclear statistical equi-
librium around 1–1.5 MeV and the growing importance
of e+e− pairs and photons for higher temperatures pro-
duce Γ values between 1.3 and 1.4. This can, for example,
be verified by an inspection of the equation of state of
Lattimer & Swesty (1991).

9.4.4. Steady-state conditions

Steady-state conditions are realized when Ṙs = Ṙg = 0,
which in general requires that d(∆Mg)/dt = d(∆Eg)/dt =
0. From Eq. (122) one gets Ṁ ′ = Ṁ , which yields

Lacc = Ṁ (lν + qd) +H− C , (131)

when Eqs. (93) and (94) and the definition l = (e +
P )/ρ−GM̃/r are used (note that 1

2ρv
2 � ε at the neutri-

nosphere). Neutrino heating and cooling in the gain layer
scale with Lν(Rg) and thus Lν(Rν) (Eq. (76)), and depend
on Rs, directly as well as via Rg. Also Lacc depends on the
neutrinospheric luminosity Lν (Eq. (77)). Equation (121),
on the other hand, yields

Ṁ =
H− C
ls − lg

(132)

for ls < lg, which is fulfilled if Γ < γ. [Γ = γ requires
H − C = 0 and therefore Rg = min(Rs, Rα).] From the
combined Eqs. (131) and (132) the values of the shock
radius Rs and the neutrinospheric luminosity Lν can be
determined which correspond to steady-state conditions
for a given value of Ṁ . The solution for Lν lies on the
critical OM line displayed in Figs. 4 and 5, where Ṁ ′ and
Ṁ are equal. The core luminosity has to satisfy this con-
straint, because the neutrinospheric conditions and the
temperature in the cooling layer above the neutrinosphere
are assumed to be regulated by the interaction with the
high neutrino fluxes from the hot, neutrino-opaque neu-
tron star. This inner boundary condition differs from the
one used for discussing ordinary steady-state accretion
onto neutron stars (Chevalier 1989). There the temper-
ature of the optically thin medium at the base of the at-
mosphere is assumed to adopt a value which ensures that
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photon or neutrino losses carry away the binding energy
of the matter which is accreted at a given constant rate.
This requirement then yields a condition for calculating
the steady-state position of the accretion shock.

9.5. Convective energy transport

The simplified analytic model described in this paper can
certainly not account for the detailed effects associated
with convective overturn in the neutrino-heated layer be-
tween gain radius and shock. This overturn is an intrin-
sically multi-dimensional phenomenon where low-entropy
downflows and hot, rising bubbles of neutrino-heated gas
coexist in the same region of the star. Therefore the mix-
ing achieved by the gas motions is not complete even on
a macroscopic scale. Nevertheless, some consequences and
fundamental effects associated with the existence of con-
vective energy transport in the gain region can be figured
out.

The described analytic model distinguishes between
the adiabatic index Γ of the equation of state in the gain
layer, and the structural polytropic index γ. The gain layer
is subject to non-adiabatic changes, because energy depo-
sition by neutrino heating takes place. Also, the gain layer
is not necessarily isentropic. Using the developed frame-
work of equations with P = Kργ , γ = Γ = const., and
K = const. for the equation of state in the gain region –
which is the default setting for the analyses in Sect. 9 –,
Eq. (112) yields the same value for the total specific ener-
gies at Rg and Rs. For a gas with adiabatic index Γ this
also means that isentropic conditions are realized. This,
therefore, corresponds to the case where convection is very
efficient in carrying energy from the gain radius, close to
which neutrino heating is strongest, to directly behind the
shock. Chosing instead γ > Γ yields lg > ls, a result which
is more characteristic of the situation without convection.
Here the energy deposition by neutrinos establishes nega-
tive gradients of the entropy and specific energy between
gain radius and shock.

Repeating the derivations of Sects. 5–9 with γ > 4
3 , re-

veals, on the one hand, that the gain radius Rg is smaller
and therefore the optical depth and the net heating in the
gain region,H−C, are somewhat larger than for the “stan-
dard” case of γ = 4

3 (because the hydrostatic density and
temperature profiles are flatter behind the shock). On the
other hand, however, a less efficient energy transport from
the gain radius to the shock has a severe disadvantage: The
gas which is advected inward through Rg, carries away a
large fraction of the energy absorbed from neutrinos be-
fore. In Eq. (121) the term Ṁ ′lg yields a smaller positive
or even a negative contribution when Ṁ ′ < 0 and lg is
negative or positive, respectively. This reduces the net ef-
fect of neutrino heating and is harmful for shock expansion
and acceleration.

A comparison of Figs. 6 and 7 demonstrates the differ-
ences. The time-dependent solutions for shock radius and
specific energy in the gain layer were obtained with Γ = 4

3

in both cases, but in Fig. 7 γ = 1.45 was chosen instead
of γ = 4

3 . For γ > Γ the shock expansion is weaker and
the specific energy in the gain layer stays lower. The effect
is particularly obvious for the core neutrino luminosity of
Lν = 4 1052 erg s−1. Figure 6 shows a marginal success
for this case, whereas in Fig. 7 the shock expansion fails.

These findings are confirmed by an inspection of the
spherically symmetric simulation of the collapse and post-
bounce evolution of a 15 M� progenitor star published re-
cently by Rampp & Janka (2000). After an expansion to
more than 350 km, the shock in this model finally recedes
to a much smaller radius and fails to produce an explosion.
The shock recession is caused (or accompanied) by a rapid
decrease of the mass in the gain region, because more mat-
ter is flowing through the gain radius than is resupplied
by accretion through the shock. In the hydrodynamical
simulation one finds that ∆Eg also decreases during this
phase, an effect which should not occur if lg = ls < 0
(compare Eq. (121)).

This discussion emphasizes the importance of convec-
tive energy transport between the gain radius and the
shock. Postshock convection reduces the mass loss as well
as the energy loss from the gain region, which are asso-
ciated with the continuous inward advection of neutrino-
heated gas during the phase of shock revival. Also an in-
crease of the core luminosity can diminish the accretion of
gas into the neutron star by suppressing the net neutrino
emission from the cooling layer. Both effects have been
demonstrated in numerical simulations to be helpful for
an explosion.

9.6. Limits of the toy model

Employing idealized and in many respects simplifying as-
sumptions, a toy model was developed here on grounds of
an approximate solution of the hydrodynamic equations,
Eqs. (2)–(4). By reducing the complexity, hopefully with-
out sacrificing fundamental properties, the model is in-
tended to help discussing the principles and the essence of
the neutrino-driven mechanism. It is, however, not meant
to compete with detailed hydrodynamical simulations,
where usually a lot more refinements concerning the de-
scription of the stellar fluid and of the neutrino transport
are included.

The stellar structure outside of the forming neutron
star at the center is considered to consist of three layers:
The cooling layer, from where neutrino loss extracts en-
ergy, is bounded by the neutrinosphere on the one side
and the gain radius on the other; the heating layer ex-
tends between gain radius and shock and receives net en-
ergy deposition by neutrinos; in the infall region exterior
to the shock, matter of the progenitor star moves inward
at a significant fraction of the free-fall velocity. The evo-
lution of the shock depends on the conditions in the gain
layer. Assuming the radial structure of this layer to be
given by hydrostatic equilibrium one can discuss the be-
havior of the shock in response to integral properties of the
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heating region. The total mass and energy of the gain layer
change due to inflow and outflow of gas, neutrino heating,
and a possible shift of the boundaries, and are therefore
sensitive to the rate of mass accretion by the shock on
the one hand, and the irradiation by the neutrinospheric
luminosities on the other.

9.6.1. Temperature in the cooling layer

The present work concentrates on a discussion of the phase
of shock revival due to neutrino energy deposition, where
the infall of the stellar gas is inverted to outflow. This im-
plies that the gas flow through the gain layer cannot be
stationary, i.e., the mass infall rate into the shock, Ṁ , is in
general different from the mass accretion rate Ṁ ′ by the
nascent neutron star. Here Ṁ ′ in dependence of the phys-
ical conditions near the neutron star surface is estimated
by assuming that the temperature at and just outside the
neutrinosphere is governed by the interaction of the stel-
lar medium with the neutrinos streaming out from deeper
layers. This temperature determines the energy loss from
the cooling layer around the neutron star, the efficiency of
which then drives the mass exchange (inflow or outflow)
with the gain layer farther out.

This picture is certainly a simplification of the real
situation. For example, when outward motion of the post-
shock gas sets in, the advection of gas through the gain
radius may be quenched as found in spherically symmet-
ric simulations. In the described model this effect could be
reproduced if the temperature in the cooling layer would
drop. The current set of equations, however, does not al-
low one to calculate this effect because it does not in-
clude how the temperature in the cooling layer depends
on the expansion or compression of the neutron star atmo-
sphere. On the other hand, in the three-dimensional situ-
ation downflows and rising bubbles can coexist when con-
vective overturn is present in the gain layer, as suggested
by two-dimensional hydrodynamical simulations (Herant
et al. 1994; Burrows et al. 1995; Janka & Müller 1996). In
this case accretion does not need to stop even when the
shock is accelerated outward (Bethe 1993, 1995; however,
Burrows et al. 1995 see a decrease of the neutrino lumi-
nosity associated with a reduced accretion rate when the
explosion sets in). Convective overturn and thus accretion
might in fact continue until the shock has reached a radius
above 1000 km (Bethe 1997). It is not easy to estimate the
fraction of the gas which stays in the gain layer relative
to the part which is advected inward to the neutron star.
The ansatz described here may be considered as a crude
attempt to do so.

9.6.2. Hydrostatic equilibrium

The stellar structure in the gain layer was calculated as
a solution of the equation of hydrostatic equilibrium. The

latter is derived from Eq. (3) combined with Eq. (2). When
the velocity-dependent terms can be neglected, this yields

∂v

∂t
+ v

∂v

∂r
=

dv
dt

= − 1
ρ

∂P

∂r
− ∂Φ
∂r

= 0 . (133)

Hydrostatic equilibrium holds in the regime where the
fluid velocity v is much smaller than the local sound speed
cs. This is well fulfilled when the postshock gas settles in-
ward, and is also well fulfilled when it starts moving out-
ward behind an accelerating shock. Of course, omitting
the v(∂v/∂r) = ∂(v2/2)/∂r term from Eq. (133) implies
that the discussed toy model will not reproduce the so-
lutions for a stationary wind, which has a critical point
where v = cs. This is not a handicap during the shock
revival phase and the onset of shock expansion, because
the gas behind the (slowly propagating) shock front moves
(relative to the shock) with subsonic velocities. It means,
however, that the treatment is not sufficiently general to
follow the explosion to large radii and high shock veloci-
ties, which is the evolutionary phase when the expanding
medium around the nascent neutron star forms a neutrino-
driven wind. When the shock is far out and the gain layer
has expanded by a large amount, the assumption of hy-
drostatic equilibrium therefore becomes inadequate and
the corresponding structure of the gain layer is not suf-
ficiently accurate any longer. Unless the gas velocity ap-
proaches cs, the modification of the stellar density and
pressure profiles due to velocity effects is small. In fact,
when the time-dependent calculations of Sects. 9.4 and
9.5 were terminated at t = 0.1 seconds, the specific kinetic
energy of the gas immediately behind the shock was only
a minor fraction of the specific internal energy, at most
about 20%. The integral kinetic energy of the gain layer
was even smaller compared to the total internal energy.

Considering hydrostatic conditions means that the
fluid velocity is assumed not to be relevant for the struc-
ture of the neutron star atmosphere. In fact, an accretion
or outflow velocity field in the gain layer was not derived
(and was not of direct relevance for the discussion), al-
though the toy model employs the mass accretion rates Ṁ
and Ṁ ′. The fluid velocity immediately above the shock
is given by the infall velocity of the gas, and at the gain
radius it must be equal to vg = Ṁ ′/(4πR2

gρg). Different
rates for the mass accretion into the shock and the mass
flow through the gain radius imply that the mass of the
gain layer can grow or drop due to active mass inflow or
outflow (in addition to the motion of the shock and of the
gain radius as the outer and inner boundaries, respectively,
of the considered stellar shell). Therefore the conditions in
the gain layer are non-stationary, i.e., ∂ρ/∂t = 0 cannot
be true in general.

Deriving a velocity profile for the gain layer requires
solving Eq. (2) with non-vanishing time derivative of the
density and the lower boundary condition being given by
v(Rg) = vg. Doing so, the velocity jump at the shock is
also influenced by the physical conditions around the gain
radius. This is analogue to the postshock density, which
is sensitive to the mass accumulated in the gain layer,
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and is similar to the postshock pressure, which varies with
the integral value of the energy deposited by neutrinos in
the gain layer. Mass and energy loss or gain thus affect
the whole heating layer simultaneously. Assuming hydro-
static equilibrium implies that the physical state of the
gas behind the shock front is coupled to the conditions
at the gain radius, because the sound crossing timescale
is considered to be small compared with all other rele-
vant timescales of the problem. Therefore the Rankine-
Hugoniot relations for the density jump and the velocity
jump at the shock front cannot be satisfied exactly, which
reflects the approximative nature of the hydrostatic struc-
ture. The violation of the Rankine-Hugoniot conditions
(for specific values of the EoS parameters), however, is
usually small and the overall properties of the calculated
solutions should be close to the true ones, in particular at
some distance behind the shock front.

9.6.3. Equation of state and convection

The equation of hydrostatic equilibrium in the gain layer
was solved assuming that gas pressure, density and tem-
perature are related by P = Kργ = A(kT )4 (Eq. 56)) with
γ, K and A being constants. As discussed in Sects. 5.2
and 9.4, this is reasonably well fulfilled in the gain layer,
where the stellar gas consists of a mixture of relativistic
electrons, positrons and photons and nonrelativistic nucle-
ons and nuclei. On the one hand the electron degeneracy
is low (ηe <∼ π) and both ηe and the electron fraction Ye do
not vary strongly (the variation of Ye is at most a factor of
about two, roughly between 0.25 at the gain radius and 0.5
at the shock). For these reasons fermion captures on nucle-
ons were ignored concerning their effect on the Ye profile in
the gain layer. On the other hand, heavy nuclei are mostly
disintegrated into free nucleons with some admixture of α
particles. Therefore also the sum of the nuclear number
fractions

∑
i Yi is roughly constant; in fact,

∑
i Yi ≈ 1 is

a good approximation. Because there is a finite mass frac-
tion of α particles, Xα = 4Yα <∼ 0.5, nuclear statistical
equilibrium yields an adiabatic index of Γ = 1 + P/ε ≈ 4

3
for the equation of state at typical postshock conditions,
although nucleons are responsible for a large fraction of
the pressure. None of these assumptions, however, is rig-
orously fulfilled in the medium of the gain layer at all radii
and at all times. But making use of these assumptions sim-
plifies the discussion considerably because the equation of
state can be treated analytically. Since the overall proper-
ties of the stellar gas are accounted for, it is very unlikely
that the conclusions on the qualitative level of this paper
are affected when more refinements and complications are
added. This might change details, but should not modify
the essence of the toy model.

The energy input to the gain layer by neutrino heat-
ing is accounted for in the model. This energy gain from
neutrinos means that the changes in a fluid element are
non-adiabatic. Therefore the structural polytropic index
γ can be different from the adiabatic index Γ of the EoS.
Varying γ allows one to mimic additional processes which

might affect the evolution and behavior of the gain layer.
Chosing γ = Γ = 4

3 implies that the gain layer is consid-
ered to be isentropic, i.e., the energy deposited by neu-
trinos is assumed to be efficiently (and instantaneously)
redistributed such that the entropy is roughly equal ev-
erywhere and ls = lg holds (Eq. (112)). Since neutrino
heating is strongest near the gain radius, this means that
energy has to be transported from smaller radii to posi-
tions closer to the shock. Such an effect is realized by the
strong postshock convection seen in multi-dimensional hy-
drodynamic simulations (e.g., Herant et al. 1994; Burrows
et al. 1995; Janka & Müller 1996). Using γ > Γ a situa-
tion is described where more of the deposited energy stays
near the gain radius, corresponding to less efficient energy
transport by convection. The toy model confirms that this
has a negative influence on the possibility of shock expan-
sion.

9.6.4. Neutrino processes

Processes different from νe and ν̄e absorption and emis-
sion by nucleons were not taken into account for the
neutrino heating and cooling above the neutrinosphere.
Both neutrino-electron/positron scattering and neutrino-
pair annihilation have much smaller reaction cross sec-
tions than the baryonic processes and are less efficient in
transferring energy to the stellar medium. For this reason
they do not play a crucial role for the explosion mecha-
nism (Bethe & Wilson 1985; Bethe 1990, 1993, 1995, 1997;
Cooperstein et al. 1987).

Effects due to muon and tau neutrinos and antineu-
trinos (νx) were completely ignored in the discussions of
this paper. Because muons and tau leptons cannot be
produced in the low-density medium above the neutri-
nosphere, νµ and ντ do not interact with nucleons via
charged-current reactions and therefore couple to the gas
less strongly than electron neutrinos and antineutrinos.
Energy exchange by neutral-current scatterings off nucle-
ons contributes in shaping their emission spectra near the
neutrinosphere (Janka et al. 1996; Burrows et al. 2000)
and might also be relevant for the heating in the gain
layer. Although the recoil energy transfer per scattering is
reduced by a factor ε/(mc2) relative to the absorption of
neutrinos with energy ε (m is the nucleon mass), the cross
sections of both processes are similar and all flavors of neu-
trinos and antineutrinos participate in the neutral-current
reactions with neutrons as well as with protons. Using
Eq. (10) for the nucleon scattering opacity and the mean
energy exchange per reaction as given by Tubbs (1979),
one can estimate the importance of nucleon scattering for
the energy transfer to the medium relative to νe and ν̄e

absorption as:

Q+
ν,sc

Q+
ν,abs

∼
1+3α2

16 5(Yn + Yp)
(
〈ε3νx〉 − 6kT 〈ε2νx〉

)
1+3α2

4 〈ε2νe
〉(Yn + 2Yp)mc2

∼ 15
2

(kTνx)2

(kTνe)2

kTνx − kT
mc2

∼ 30
kTνx − kT

mc2
(134)
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where Q+
ν,abs was taken from Eq. (28) and T is the gas

temperature. Tνe and Tνx are the spectral temperatures
of electron neutrinos and heavy-lepton antineutrinos, re-
spectively, for which T 2

νe
≈ 1

2T
2
ν̄e
≈ 1

4T
2
νx was assumed

again (compare Sect. 3). Moreover, the estimate was ob-
tained by using Lνe ≈ Lν̄e ≈ Lνx and Yn + 2Yp ≈ 1. The
spectral average of the third power of the neutrino en-
ergy, 〈ε3νx〉, was defined in analogy to Eq. (25). Since the
spectral temperatures and therefore the scattering cross
sections of νe and ν̄e are smaller than those of νx, electron
neutrinos plus antineutrinos were given roughly the same
weight as one of the heavy-lepton neutrinos. For typical
values kTνx ∼ 8 MeV and kT ∼ 2 MeV one therefore de-
rives a relative contribution of scattering processes to the
neutrino heating in the gain layer of about 20%.

Apart from this moderate amplification of the heat-
ing, muon and tau neutrinos have other effects on the
shock propagation during the post-bounce evolution of
a supernova. Within the first tens of milliseconds after
shock formation, muon and tau neutrino pairs are pro-
duced by e± annihilation in the heated matter immedi-
ately behind the shock. In addition to the disintegration
of nuclei and the emission of νe and ν̄e, this extracts en-
ergy from the shock-heated layers and weakens the prompt
bounce shock. Somewhat later, between several ten mil-
liseconds and a few hundred milliseconds after bounce,
most of the muon and tau neutrinos come from the hot
mantle layer of accreted material below the neutrinosphere
of the forming neutron star. Since νµ and ντ pairs now
carry away energy which otherwise would be radiated in
electron neutrinos and antineutrinos and would thus be
more efficient for the heating behind the shock, this will
have a negative effect on the possibility of shock rejuve-
nation. During the following phase of the evolution, when
the deleptonization of the neutron star advances to deeper
layers and the neutron star enters the Kelvin-Helmholtz
cooling stage (Burrows & Lattimer 1986), muon and tau
neutrinos are mostly produced at higher densities. Being
less strongly coupled to the nuclear medium, they diffuse
to the surface more rapidly than νe and ν̄e. This helps
keeping the neutrinospheric layer hot, where electron neu-
trinos and antineutrinos take over a larger part of the en-
ergy transport. During this late phase of the evolution, νµ
and ντ might thus even support higher νe and ν̄e fluxes.

10. Summary and conclusions

In this paper an analytic approach was presented which
allows one to discuss the conditions for the revival of a
stalled supernova shock by neutrino heating. The treat-
ment is time-dependent in the sense that the gas flow is
not assumed to be steady and the model can be used to
calculate the shock radius, shock velocity, and the prop-
erties of the gain layer as functions of time.

10.1. Components of the toy model

The “atmosphere” of the collapsed stellar core outside of
the neutrinosphere is considered to consist of three distinct
layers (Sect. 2). Between neutrinosphere and gain radius

there is a cooling region where neutrino emission extracts
energy. In a heating layer between gain radius and shock,
νe and ν̄e absorptions on nucleons dominate the inverse
capture reactions of electrons and positrons and deposit
energy. Finally, there is an infall region above the shock,
where the gas of the progenitor star is accelerated to nearly
the free-fall velocity. These different layers are in contact
and exchange mass and energy.

The radial structure of the cooling and heating layers
is assumed to be described by the conditions of hydro-
static equilibrium, which requires that the sound travel
timescale is smaller than the other relevant timescales of
the problem. This assumption is reasonably well fulfilled
during the phase when the shock is near stagnation or
just starts to gain momentum. For such conditions the
layer behaves like one unit and reacts to changes in an
infinitesimally short time. In combination with a simple
representation of the equation of state, hydrostatic equi-
librium allows one to calculate the density and pressure
profiles analytically (Sect. 5). The radius and velocity of
the shock then depend on integral properties of the gain
layer, i.e., its total mass and energy.

Changes of the mass and energy integrals are caused
by the motion of the boundaries or by active mass flow
into or out of the gain layer. In Sect. 8 conservation equa-
tions for these global quantities were derived by integrat-
ing the equations of hydrodynamics, including the terms
with time derivatives, over the volume of the gain layer.
Following these integral quantities it was then possible to
compute the shock position and shock velocity as well as
other important quantities, e.g., the location of the gain
radius, as functions of time. Assuming hydrostatic equi-
librium thus reduces the mathematical problem to an in-
tegration of a set of ordinary differential equations with
time as the independent variable. Discussing the destiny
of the supernova shock therefore means solving an initial
value problem. This expresses the fact that the shock evo-
lution depends on the initial conditions, for example, on
the shock stagnation radius and the initial energy in the
gain layer, and is controlled by the cumulative effects of
neutrino energy deposition and mass accumulation in the
gain layer.

In general the gas falling through the shock will not
move as a stationary flow between shock and neutri-
nosphere: the rate at which mass is advected through the
gain radius is usually different from the mass accretion
rate by the shock. Steady-state accretion or mass loss are
special cases, which should be limits of the more general
situation.

It is not easy to calculate the fraction of the accreted
gas which stays in the gain layer. The neutron star can
“swallow” matter only at a finite rate, depending on the
efficiency with which the gas gets rid of the excess energy
that prevents its integration into the neutron star surface.
This efficiency is a sensitive function of the conditions in
the cooling layer above the neutrinosphere. Since the hot,
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nascent neutron star below the neutrinosphere is a source
of intense neutrino radiation and these neutrinos inter-
act still frequently in the cooling region, the temperature
there should be close to the neutrinospheric value. With
this assumption and with known radius and density pro-
file it is possible to calculate the neutrino energy loss from
the cooling layer. This then allows one to derive a rough
estimate for the rate at which gas can be advected through
the neutrinosphere into the neutron star (Sect. 7).

Up to this stage the discussion does not require a de-
tailed solution for the velocity field of the flow. Since hy-
drostatic conditions are assumed to hold, in which case
the kinetic energy is small compared to internal and grav-
itational energies, and the time evolution can be discussed
by considering integral quantities, it is sufficient to know
the rates at which mass enters or leaves the gain layer at
both boundaries.

The model described here is based on a number of sim-
plifications and approximations. With the analytic repre-
sentation of the equation of state developed in Sect. 5.2,
there is no need to monitor the radial profile and time
evolution of the electron fraction. In addition to assuming
hydrostatic equilibrium this, of course, limits the accuracy
of the radial structure derived for the gain layer. Other
shortcomings are the treatment of the neutron star as a
point mass, i.e., the gravity of the atmosphere above the
neutrinosphere is neglected, general relativistic effects are
ignored, the energy release by nucleon recombination in
the postshock medium at kT <∼ 1–2 MeV is not included,
and additional neutrino heating and cooling by neutrino-
electron scattering and neutrino-pair processes are not
considered. Although it may be desirable to include these
effects for a more detailed solution, it seems very unlikely
that more refinements will change the essence of the dis-
cussion.

In calculating the neutrino energy deposition in the
gain layer the neutrinospheric luminosity as well as the
neutrino emission from the cooling layer, which is associ-
ated with the accretion of gas onto the neutron star, are
taken into account. The most problematic and probably
most serious weakness of the presented toy model, how-
ever, is the overly simplified description of the conditions
in the cooling layer, which are essential for estimating both
the mass accretion rate and the accretion luminosity of the
neutron star. The temperature of the medium around the
neutrinosphere is certainly not only determined by the in-
teraction with the neutrino flow from the neutrinosphere,
but also depends on the processes in contact with the gain
layer. This is currently not included in the toy model.

Despite of these simplifications the toy model yields in-
teresting insights into the interdependence of effects and
processes which determine the post-bounce evolution of
the supernova shock. Thus it may help one understand-
ing the results of the much more complex hydrodynamic
simulations.

10.2. Results and conclusions

In particular, the discussion of this paper allows one to
draw the following conclusions:

1. A criterion for shock revival could be derived in
Sects. 9.1 and 9.2. It defines the conditions for which
the radius Rs and the velocity Us = Ṙs of the super-
nova shock can grow simultaneously. This criterion,
applied to a stalled shock (Us ∼ 0), states that expan-
sion (Ṙs > 0) and acceleration (U̇s > 0) will occur at
the same time when both the mass and the energy in
the gain layer increase, i.e., when d(∆Mg)/dt > 0 and
d(∆Eg)/dt > 0;

2. For fixed neutrinospheric radius and temperature and
given neutron star mass, the destiny of a shock at ra-
dius Rs depends on the rate at which the shock ac-
cretes matter, Ṁ , and on the νe plus ν̄e luminosity Lν
coming from the neutrinosphere. In the Ṁ -Lν plane
the two inequality relations of the shock revival cri-
terion define two critical lines, an upper one and a
lower one, which enclose the region where favorable
conditions for shock expansion and acceleration oc-
cur. Neutrino heating is strong enough there to ensure
d(∆Eg)/dt > 0 for a growing mass of the gain layer.
The existence of a threshold value of the core neutrino
luminosity (Burrows & Goshy 1993) for a given value
of Ṁ is confirmed. Besides stronger neutrino heating
in the gain layer, the main effect of a higher Lν is re-
ducing the neutrino emission in the cooling region and
thus suppressing the rate at which mass is advected
into the neutron star. If Lν drops below the threshold
value, the gain layer loses more mass than it receives by
gas falling into the shock. Therefore the pressure sup-
port for the shock breaks down and the shock retreats.
The same effect can be caused when the mass accre-
tion rate Ṁ drops below a critical limit. This means
that not only a low core luminosity but also a low mass
accretion rate by the shock can prevent shock expan-
sion;

3. The efficiency of the neutrino cooling between neutri-
nosphere and gain radius is an important factor which
contributes to regulating the mass advection through
the gain radius and into the neutron star, and thus
affects also the evolution of the gain layer and of the
shock. Although the description in the toy model is
greatly simplified, it demonstrates the importance of
an accurate treatment of the physics, in particular of
the neutrino-matter interactions, in the cooling layer.
It must be suspected that excessive neutrino emission
in the cooling layer, causing mass and energy loss from
the gain layer, and not insufficient neutrino heating in
the gain layer, may have been the main reason why
spherically symmetric simulations ultimately failed to
produce explosions, although the shock had expanded
to larger radii, at least for some period of the post-
bounce evolution (see, e.g., Bruenn 1993; Bruenn et al.
1995; Rampp & Janka 2000);
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4. The area between the two critical lines in the Ṁ -Lν
plane grows for larger shock radii, because the con-
ditions for neutrino heating in the gain layer improve.
For parameters (|Ṁ |, Lν) above the upper critical line,
neutrino energy deposition cannot compensate for the
inflow of “negative total energy” with the gas that is
falling through the shock. Since the mass in the gain
layer increases, the shock nevertheless expands. But
only after the shock has reached a sufficiently large ra-
dius can neutrino heating raise the total energy in the
gain layer. When this radius is very far out, the total
energy in the gain layer may stay negative, even for
high neutrino luminosities, because only a small frac-
tion of the gas in the gain layer experiences favorable
heating conditions. In this case an explosion cannot
occur. For the parameters considered in the discussed
model, this happens when the (absolute value of the)
mass accretion rate by the shock is larger than about
4 M� s−1. Also for somewhat lower accretion rates and
in cases where the energy in the gain layer has become
positive, explosions might not be possible. The ques-
tion whether the shock is finally able to eject some
part of the mantle and envelope of the progenitor star
requires a global treatment of the problem. The toy
model developed in this paper, however, is suitable
to discuss only the phase of shock revival in depen-
dence of the conditions around the forming neutron
star. Considering the early evolution of the supernova
shock is in general not sufficient to make predictions
about the final outcome, in particular in cases where
the postshock medium cannot acquire enough energy
to gravitationally unbind the whole mass above the
gain radius;

5. The equations of the toy model were integrated for
time-dependent solutions Rs(t) and Us(t), and charac-
teristic properties of the gain layer as functions of time.
These solutions confirm the conclusions drawn from an
evaluation of the shock revival criterion. In addition,
they yield information about the evolution of the mass
and energy in the gain layer;

6. Accounting for the complex effects of multi-
dimensional convective overturn within the simpli-
fied discussion of the toy model is not possible.
Nevertheless, some consequences of convective energy
transport in the gain layer can be addressed. For a
suitable choice of the structural polytropic index γ of
the hydrostatic atmosphere one can describe a situ-
ation where the gain layer is essentially isentropic in
contrast to a case where the energy transport by con-
vection is less efficient and therefore negative gradi-
ents of the entropy and specific energy are present be-
tween the gain radius and the shock front. Without
convection such negative gradients must develop be-
cause neutrino heating is strongest just outside of the
gain radius. Despite of a slightly larger neutrino en-
ergy deposition (because of a smaller gain radius) the
absence of “convection” in the toy model has a nega-
tive effect on the shock expansion. Because convection

redistributes the energy deposited by neutrinos mainly
near the gain radius to regions closer to the shock, the
energy loss associated with the downward advection
of gas through the gain radius is reduced. Therefore
more energy stays in the gain layer, in particular at
larger radii, the postshock pressure is enhanced, and
the shock is driven out more easily;

7. Parametric studies with the toy model suggest that
successful explosions, driven by neutrino energy depo-
sition, cannot be very energetic. The total energy per
unit mass (gravitational plus internal energy plus mi-
nor kinetic contributions) in the expanding gain layer
(between gain radius and shock) was observed to satu-
rate around 0.1 s after shock revival and was found to
be always limited, even for high core luminosities Lν,
by ∆Eg/∆Mg <∼ 1052 ergM−1

� , (corresponding to an
energy per nucleon of <∼5 MeV). For “typical” mass ac-
cretion rates by the shock, Ṁ , of a few 0.1 M� s−1, the
integral mass in the gain layer was then between sev-
eral 10−2 M� and (1–2) 10−1 M�, the corresponding
total energy in the gain layer at most around 1051 erg.
For higher accretion rates Ṁ the mass in the gain layer
was found to be larger, but the energy per nucleon
at the same time lower. The maximum total energies
were obtained for intermediate values of Ṁ (around
1 M� s−1) and high νe plus ν̄e luminosities Lν (values
up to 12 1052 erg s−1 were considered), but ∆Eg was
less than (2–3) 1051 erg in all cases.

10.3. Implications

The physical mechanism of powering the explosion by neu-
trino absorption on nucleons therefore seems to limit the
explosion energy to values of at most a few 1051 erg. There
is no obvious reason why neutrino-driven explosions could
not be less energetic. The upper limit of the explosion
energy is of the order of or a small multiple of the grav-
itational binding energy of the gas mass in the neutrino-
heating layer around the nascent neutron star.

The reason for this energy limit is a very fundamen-
tal one, associated with the mechanism how the energy
for the explosion is delivered, stored and carried outward.
The energy which starts and drives the explosion is mainly
transferred to the stellar gas by electron neutrino and an-
tineutrino absorption on nucleons. As soon as the baryons
have obtained a sufficiently large mean energy the expan-
sion of the heating region sets in and the nucleons move
away from the central source of the neutrino flux. The
specific energy for this to happen is of the order of the
gravitational binding energy of a nucleon. In fact, because
of the inertia of the gain layer and the confinement by
the matter falling into the shock, the nucleons can absorb
more energy than that. If this were not the case, the en-
ergy of the expanding layer would be consumed by lifting
the baryons in the gravitational field of the neutron star,
and the kinetic energy at infinity could never be large.
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The neutrinospheric luminosity Lν as well as the mass
in the gain layer behind a stalled shock decrease with time,
associated with the decreasing rate Ṁ of mass accretion
by the shock. This has negative effects on the possibility
of shock revival, as discussed above on grounds of the toy
model. It definitely does not improve the conditions for
a strong explosion, because of the limited energy which a
baryon can absorb before it starts moving outward. With
little gas being exposed to neutrino heating the explosion
energy will therefore stay low. For these reasons “late”
neutrino-driven explosions appear to be disfavored com-
pared to delayed ones that develop within the post-bounce
period when both Lν and Ṁ are still high. This is typically
the case until about half a second after core bounce.

Estimating the final explosion energy of the star re-
quires, of course, that the energy release by nucleon re-
combination and possible nuclear burning in a fraction of
the mass of the gain layer are added, and the gravita-
tional binding energy of the mantle and envelope material
of the progenitor star is subtracted (see, e.g., Bethe 1990,
1993; Bethe 1996a,c). Within the considered toy model
these energies cannot be estimated. In case of a success-
ful neutrino-driven explosion these terms, however, should
not be the dominant ones in the total energy budget.

The total energy of the explosion should also not re-
ceive a major contribution by the energy released dur-
ing the phase of the neutrino-driven wind, which succeeds
the period of shock revival and early shock expansion.
Different from the latter phase, the neutrino-driven wind
is characterized by quasi steady-state conditions, with the
mass flow rate not varying with the radius outside of a
narrow region where the mass loss of the neutron star is
determined. Baryons interacting with neutrinos near the
surface of the neutron star cannot absorb a particle energy
much larger than their gravitational binding energy before
they are driven away from the neutrinosphere. Although
always positive, the neutrino heating decreases rapidly
when the wind accelerates outward and the distance from
the source of the luminosity increases. Since the confining
effect of mass infall to a shock is absent, the final net en-
ergy of a nucleon moving out with the wind will be even
smaller than at earlier times. In addition, the neutrino
luminosity and the neutron star radius shrink with time.
Therefore the mass loss rate during the wind phase will
be lower than right after shock revival. For these reasons
the total mass ejected in the wind is expected to be less
than a few 10−2 M� (see Woosley & Baron 1992; Woosley
1993a; Qian & Woosley 1996).

Overcoming the stringent limit on the energy per nu-
cleon that neutrinos can transfer to the heated matter,
requires specific conditions. It could either be achieved
by a sudden, luminous outburst of (energetic) neutrinos,
which builds up on a timescale shorter than the expan-
sion time of the gas around the neutron star. However,
assuming a standard, hydrostatic cooling history of the
nascent neutron star, there is no theoretical model to sup-
port such a scenario. Alternatively, the energy of the ex-
plosion could be absorbed and carried by non-baryonic

particles, i.e., electrons and positrons and photons. In both
cases the total energy is not constrained roughly by the
binding energy of the gas in the gravitational potential of
the neutron star. In fact, neutrino-electron scattering and
neutrino-antineutrino annihilation have been suggested as
important sources of energy for the explosion (Goodman
et al. 1987; Colgate 1989). An accurate discussion of
the physics of neutrino transport in the semi-transparent
regime around the neutrinosphere (Janka 1991a,b) and
a detailed evaluation of the conditions in the heating
layer, however, show that both νe± scattering (Bethe &
Wilson 1985; Bethe 1990, 1993, 1995) and νν̄ annihilation
(Cooperstein et al. 1987; Bethe 1997) are significantly less
efficient than νe and ν̄e absorption, and thus contribute
only minor fractions to the explosion energy.

The situation may be different when the global spher-
ical symmetry is broken, e.g., in case of a black hole that
accretes gas from a thick disk formed by the collapsing
matter of a rapidly rotating, massive star. The disk be-
comes very hot and loses energy primarily by neutrino
emission. Such a scenario was suggested as source of cos-
mological gamma-ray bursts and possibly strange, very en-
ergetic supernova explosions (Woosley 1993b; MacFadyen
& Woosley 1999; MacFadyen et al. 1999). In this case the
neutrino luminosities can be higher, the region where neu-
trino pairs annihilate is more compact (which implies that
the neutrino number densities are larger), and the geome-
try favors more head-on collisions between neutrinos. All
these effects lead to an enhanced probability of νν̄ anni-
hilation in the close vicinity of the black hole (Popham
et al. 1999).
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