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Conditions for the Equivalence

of the Autoregressive Latent

Trajectory Model and a Latent Growth

Curve Model With Autoregressive Disturbances

ELLEN L. HAMAKER

University of Amsterdam

Curran and Bollen combined two models for longitudinal panel data: the latent growth
curve model and the autoregressive model. In their model, the autoregressive rela-
tionships are modeled between the observed variables. This is a different model than
a latent growth curve model with autoregressive relationships between the distur-
bances. However, when the autoregressive parameter ρ is invariant over time and lies
between −1 and 1, it can be shown that these models are algebraically equivalent. This
result can be shown to generalize to the multivariate case. When the autoregressive
parameters in the autoregressive latent trajectory model vary over time, the equivalence
between the autoregressive latent trajectory model and a latent growth curve model with
autoregressive disturbances no longer holds. However, a latent growth curve model with
time-varying autoregressive parameters for the disturbances could be considered an
interesting alternative to the autoregressive latent trajectory model with time-varying
autoregressive parameters.

Keywords: latent growth curve model; autoregressive latent trajectory model; autore-
gression; structural equation modeling

In structural equation modeling (SEM) literature, two important
classes of models to analyze longitudinal panel data can be
distinguished. The oldest consists of models containing autoregres-
sive relations, such as the simplex model, the quasi-simplex model,
the Wiener-simplex model, and the Markov model (Guttman 1954;
Jöreskog 1971, 1979; Humphreys 1960; Anderson 1960). Character-
istic of these autoregressive models is that the current observations
are regressed on the prior observation of the same variable, and the
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Hamaker / LATENT GROWTH CURVE MODELS 405

further apart (in time) two observations are, the smaller the connection
between them. Put differently, the correlation structure is character-
ized by a decrease in correlations as they are further away from the
main diagonal. Although not customary, these models can be extended
with structured means (Browne and Du Toit 1991; Mandys, Dolan,
and Molenaar 1994).

A more recently developed class of models to analyze longitudi-
nal panel data concentrates on both the covariance structure and the
means. It can be understood as the longitudinal version of the mul-
tilevel model and goes by names such as the latent growth curve
(LGC) model, level and shape model, latent trajectory model, ran-
dom effects model, and random coefficients modeling (Aitkin and
Longford 1986; Duncan et al. 1999; Meredith and Tisak 1984, 1990).
These models are used to describe growth curves while allowing
individuals to differ from each other with respect to their individ-
ual growth curve parameters. What is estimated in these models are
the means and (co)variances across subjects of these intraindividual
curve parameters.

Curran and Bollen (2001) integrated the LGC model and the autore-
gressive model in what they called the autoregressive latent trajectory
(ALT) model (for the technical details, see Bollen and Curran 2004).
This model consists of a standard LGC model with autoregressive
relationships between the observed variables. This model differs from
LGC models with autocorrelated disturbances, such as proposed by
Chi and Reinsel (1989). In this article, it is shown that, under certain
conditions, the LGC model with autoregressive relationships between
the observed variables and the LGC model with autoregressive rela-
tionships between the disturbances are algebraically equivalent. The
necessary conditions concern the invariability of the autoregressive
parameter ρ over time, and limitations on the value that this parameter
can take on (i.e., |ρ| < 1). The relationship between the parameters
in the two model formulations and their function is elaborated on.
In addition, it is shown how the means, variances, and covariances
of the intraindividual curve parameters in the two representations are
related to each other. Also, it is shown that the model equivalence
generalizes to the multivariate case. In the Discussion section, some
additional remarks are made about more general models that include
growth curves and autoregressive parameters.
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406 SOCIOLOGICAL METHODS & RESEARCH

EQUIVALENT REPRESENTATIONS OF THE SAME UNIVARIATE TIME
SERIES OF A SINGLE SUBJECT

In this section, the univariate ALT model of Bollen and Curran
(2004; Curran and Bollen 2001) is presented for a single subject. It is
shown that under certain conditions, this model can be rewritten as an
LGC model with autoregressive disturbances. The function that the
intraindividual curve parameters have in both model formulations is
illustrated with a numerical example.

ALT MODEL WITH TIME-INVARIANT ρ AND |ρ| < 1

Consider the specific version of the ALT model in which the autore-
gressive parameter ρ is invariant over time. Using i as the subject
index, the model for the observations is

yt,i = αi + tβi + ρyt−1,i + εt,i, (1)

where t is the occasion (t = −∞, . . . ,−1, 0, 1, . . . ,∞), αi is a
constant, βi is the regression coefficient by which the current y is
regressed on time, ρ is the autoregressive parameter by which the
current y is regressed on the previous y, and εt,i is a residual. The
series εt is a white noise sequence, meaning that the residuals ε are
independently and identically distributed, with εt ∼ N[0, σ 2

ε]. As can
be seen from equation (1), the LGC parameters β and α contain a
subject index, indicating that they differ across subjects, whereas the
autoregressive parameter ρ is invariant across subjects.

The model in equation (1) is a recursive expression in that the
current y, which is a function of αi and βi , is also regressed on the
previous y, which is in turn a function of αi and βi , as well as of
the y preceding it, and so on. Because of this recursion, the process
has to be “started up” if one wishes to use this model in practice. In
Bollen and Curran (2004:364), it is shown that under the restriction
that |ρ| < 1, the expression for y0,i is

y0,i = αi(1 − ρ)−1 − βiρ(1 − ρ)−2 + z0,i , (2)

where z0,i = ∑∞
j=0 ρjε−j,i ; that is, z0,i is an infinite weighted sum

of previous residuals εs. This z0,i is elaborated on below. After the
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process is started up at t = 0, the model defined in equation (1)
can be used for the following occasions (i.e., for t = 1, 2, . . . ). The
nonlinear constraints 1/(1 − ρ) for αi and ρ/(1 − ρ)2 for βi at t = 0
may lead to computational problems when SEM software is used to fit
this model.1 To avoid the use of these nonlinear constraints, one can
treat the first observation y0,i as predetermined (Bollen and Curran
2004). However, as Bollen and Curran (2004) pointed out, this has
the effect that the standard LGC model is no longer nested under
the ALT model. To establish nesting of the LGC model under this
predetermined version of the ALT model, they proposed to treat the
first observation in the LGC model also as predetermined.

ALTERNATIVE EXPRESSION

Here it is shown that by rewriting the ALT model as an LGC model
with autoregressive disturbances, the recursiveness is separated from
the trend. The latter implies that the process is much easier to start
up. To obtain this alternative expression, we recursively enter the
expression of the previous observation2 into equation (1); that is,

yt,i = αi + tβi + ρyt−1,i + εt,i

= αi + tβi + ρ(αi + (t − 1)βi + ρyt−2,i + εt−1,i) + εt,i

= αi + ραi + tβi + (t − 1)ρβi + ρ2yt−2,i + ρεt−1,i + εt,i

= αi + ραi + tβi + (t − 1)ρβi

+ ρ2(αi + (t − 2)βi + ρyt−3,i + εt−2,i) + ρεt−1,i + εt,i

= αi + ραi + ρ2αi + tβi + (t − 1)ρβi

+ (t − 2)ρ2βi + ρ3yt−3,i + ρ2εt−2,i + ρεt−1,i + εt,i

. . .

=
∞∑

j=0

ρjαi +
∞∑

j=0

(t − j)ρjβi +
∞∑

j=0

ρjεt−j,i . (3)

The last term in equation (3) may be recognized as a moving average
(MA) process of infinite order. It is a well-known fact that rewriting
a first-order autoregressive (AR(1)) process as an MA process results
in such an expression (e.g., Box and Jenkins 1976; Chatfield 1989;
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408 SOCIOLOGICAL METHODS & RESEARCH

Hamilton 1994). We make use of this result and replace the last term
in equation (3) by zt,i , which is an AR(1) process; that is,

zt,i = ρzt−1,i + εt,i =
∞∑

j=0

ρjεt−j,i , (4)

with zt ∼ N(0, σ 2
z). Note that as a result of autoregression, these zs

are not independent over t , in contrast to the εs. The expression in
equation (3) can be further simplified by use of the geometric series
in the following way:

yt,i =
∞∑

j=0

ρjαi +
∞∑

j=0

(t − j)ρjβi + zt,i

= αi

∞∑
j=0

ρj + βi

∞∑
j=0

(t − j)ρj + zt,i

= αi

∞∑
j=0

ρj + βi

{ ∞∑
j=0

tρj −
∞∑

j=0

jρj

}
+ zt,i

= αi

∞∑
j=0

ρj − βi

∞∑
j=0

jρj + tβi

∞∑
j=0

ρj + zt,i

= αi

∞∑
j=0

ρj − βiρ

∞∑
j=0

jρj−1 + tβi

∞∑
j=0

ρj + zt,i

= αi(1 − ρ)−1 − βiρ(1 − ρ)−2 + tβi(1 − ρ)−1 + zt,i

= δi + tγi + zt,i . (5)

The model in equation (5) can be recognized as an LGC model, where
δi is the intercept of individual i, which can be written as a function
of αi , βi , and ρ; that is,

δi = αi(1 − ρ)−1 − βiρ(1 − ρ)−2, (6)

and γi is the slope parameter of subject i, which can be written as a
function of βi and ρ; that is,

γi = βi(1 − ρ)−1. (7)

Thus, it has been shown that, if the autoregressive parameter ρ does
not vary over time and |ρ| < 1, the ALT model can be rewritten
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as an LGC model (equation (5)) with autoregressive disturbances
(equation (4)). Because the recursiveness is separated from the trend
in this formulation, the process is easier to start up when applied in
practice; that is,

y0,i = δi + z0,i . (8)

Note that this z0,i is identical to the one in equation (2), where it was
equated to an infinite weighted sum of previous εs. This relationship
between z0,i and the previous εs can also be obtained from equation
(4) with t = 0.3 From equation (8), it is clear that to use the model
defined in equations (4) and (5) in practice, one does not need the
nonlinear constraints as defined in equation (2), nor does one have to
treat the first observation as predetermined.

THE FUNCTION OF THE PARAMETERS αi , βi , δi , γi , AND ρ

The algebraic relationships between the parameters αi and βi in
equation (1) and the parameters δi and γi in equations (4) and (5) are
given in equations (6) and (7). It can be seen that these relationships
are relatively complicated. To gain more insight into the roles that
these parameters play, a numerical example is given. The subject
index i is omitted as it plays no role here. In Table 1, a series ε1 to
ε8 was generated. In addition, a value for z0 was randomly chosen.
Then, ρ was fixed at .8, α at 1, and β at .1. Through use of equations
(6) and (7), it was determined that δ = 3 and γ = .5. Next, the values
for y0 to y8 were calculated using equations (4) and (5) (see columns
3 and 4 in Table 1). To show that the model in equations (4) and (5)
leads to the same results as the model in equations (1) and (2), y0

was calculated using equation (2) (to start up the process), and from
there on, the values for y1 to y8 were calculated using equation (1)
(see column 5 in Table 1). It can be seen that these two methods lead
to the same values for y.

The values of y are plotted in Figure 1 along with the linear trend
based on the intercept δ = 3 and slope γ = .5. It can be seen that
the parameters δ and γ describe the deterministic trend around which
the observations are scattered. Regardless of the value of ρ, these
parameters have the same role as the parameters in standard LGC
models (i.e., δ is the individual’s intercept, and γ is the individual’s
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410 SOCIOLOGICAL METHODS & RESEARCH

TABLE 1: Numeric Example Showing the Equivalence Between the Two Model
Formulations With ρ === .8

Equations (4) and (5) Equations (1) and (2)

δ = 3 and γ = .5 α = 1 and β = .1

t ε z y y

0 1.1246088 4.124609 4.124609
1 −1.1465057 −0.2468187 3.253181 3.253181
2 −1.5135502 −1.7110052 2.288995 2.288995
3 0.4281170 −0.9406871 3.559313 3.559313
4 0.4667663 −0.2857833 4.714217 4.714217
5 0.9058520 0.6772253 6.177225 6.177225
6 0.7102752 1.2520555 7.252055 7.252055
7 −0.2106597 0.7909847 7.290985 7.290985
8 2.4574620 3.0902498 10.090250 10.090250

NOTE: The first column indicates time. The second column contains the i.i.d. disturbances ε

that were generated. The first element of columns 3, z0, was also randomly chosen and used
in both model formulations. All other elements in the third column (i.e., z1 to z8) were then
obtained by use of equation (4). Using equation (5) gave the values for y in column 4. The fifth
column contains y based on equations (1) and (2).

slope). In contrast, the parameter values α = 1 and β = .1 do not
have this simple function in the data plotted in Figure 1: Only when
ρ = 0 do α and β serve as the intercept and slope (see also equations
(6) and (7)).

Although the autoregressive parameter ρ is identical in both model
specifications, its function differs. In the ALT model, it serves the
same role as in the original autoregressive models: In these models,
ρ is the parameter by which yt is regressed on yt−1, representing the
dependency of the current observation on the previous observation.
In contrast, in the LGC model with AR(1) disturbances, ρ is the para-
meter by which the current disturbance zt is regressed on the previous
disturbance. This latter role of ρ may be more difficult to compre-
hend: The AR(1) disturbances imply that, although the unconditional
expectation of zt is zero (i.e., E[zt ] = 0), the expectation of zt condi-
tional on zt−1 is not zero but can be expressed as E[zt |zt−1] = ρzt−1.
From this conditional expectation, it can be seen that, when ρ > 0
(as is the case in this example), this implies that if the observation at
a certain occasion t lies above the deterministic trend (i.e., zt > 0),
the value of yt+1 is also likely to lie above the deterministic trend,
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Figure 1: Data From Table 1

NOTE: Dots represent values of y at different occasions, and the straight line represents
deterministic trend with intercept δ = 3 and slope γ = .5.

as E[zt+1|zt ] = ρzt > 0. Similarly, if yt lies below the deterministic
trend, a ρ > 0 results in the expectation that yt+1 will also lie below the
deterministic trend. This is nicely illustrated in Figure 1. If, in contrast,
ρ < 0, this implies that when yt lies above the deterministic trend
(and so zt > 0), yt+1 is likely to lie below it, as E[zt+1|zt ] = ρzt < 0,
and vice versa.

MULTIPLE SUBJECTS

In standard LGC modeling, individuals are allowed to differ from each
other with respect to their trend parameters. Rather than to estimate
each individual’s trend parameters, one is interested in the means,
variances, and covariances (across individuals) of these intraindivid-
ual trend parameters. In this section, it is shown how the means, vari-
ances, and covariance of the trend parameters γi and δi can be written
as functions of the means, variances, and covariance of the parameters
βi and αi .
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412 SOCIOLOGICAL METHODS & RESEARCH

The mean and variance of the intraindividual intercept δi can be
expressed as functions of the means and variances of the intraindivid-
ual constant αi and the intraindividual regression coefficient βi and
of ρ; that is,

µδ = E[δi] = µα(1 − ρ)−1 − ρµβ(1 − ρ)−2, (9)

σ 2
δ = E[{δi − µδ}2] = σ 2

α (1 − ρ)−2 + ρ2σ 2
β (1 − ρ)−4

− 2ρσαβ(1 − ρ)−3. (10)

Similarly, the mean and variance of the slope γi can now be written as
a function of the mean and variance of the intraindividual regression
parameter βi and the autoregressive parameter ρ as follows:

µγ = E[γi] = µβ(1 − ρ)−1, (11)

σ 2
γ = E[{γi − µγ }2] = σ 2

β (1 − ρ)−2. (12)

Finally, the covariance between δi and γi expressed as a function of
the (co)variances of αi , βi , and ρ results in

σγδ = E[{γi − µγ }{δi − µδ}] = σαβ(1 − ρ)−2 − ρσ 2
β (1 − ρ)−3.

(13)

From equation (10), it can be seen that, even when there is no
variation in intraindividual constant αi (i.e., σ 2

α = 0 and σαβ = 0), this
does not imply that the individuals have the same intercept δi , unless
the autoregressive parameter is zero (ρ = 0) and/or all individuals
have the same regression coefficient β (i.e., σ 2

β = 0). Similarly, from
equation (13), it can be seen that, even when the constant αi and the
regression coefficient βi are not correlated (i.e., σαβ = 0), the intercept
δi and the slope γi may still be correlated (as long as ρ and σ 2

β are not
zero).

MULTIVARIATE GENERALIZATION

Bollen and Curran also considered multivariate ALT models (Bollen
and Curran 2004; Curran and Bollen 2001). Using i as subject index,
a k-variate ALT model with time-invariant auto- and cross-regressive
parameters can be written as

Yt,i = Ai + Bi t + RYt−1,i + Et,i , (14)
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where Yt,i is a k × 1 vector with the observations of subject i at
occasion t , Ai is a k×1 vector with constants, Bi is a k×1 vector with
regression coefficients to regress the current observations on time,
t is a scalar indicating the occasion, R is a k×k matrix with auto- and
cross-regression coefficients, and Et,i is a k ×1 vector with residuals.

Analogue to the univariate case, this multivariate ALT model can
be rewritten as a multivariate LGC model with auto- and cross-
regressive disturbances, under the restriction that the eigenvalues of
R lie between –1 and 1. Some algebra shows4 that equation (14) is
equivalent to

Yt,i = ���i + 			it + Zt,i , (15)

where ���i is a k × 1 vector with intercepts, which are a function of
Ai , Bi , and R; that is,

���i = (I − R)−1Ai − (I − R)−2RBi , (16)

where 			i is a k × 1 vector with slopes, which can be written as a
function of Bi and R; that is,

			i = (I − R)−1Bi . (17)

and Zt,i is a first-order vector autoregressive model, which is iden-
tical to a vector moving average model of infinite order (Hamilton
1994:260); that is,

Zt,i = RZt−1,i + Et,i =
∞∑

j=0

RjEt−j,i . (18)

As the recursion (equation (18)) is separated from the trend (equation
(15)), this model formulation does not require specific constraints to
start up the process when used in practice.

DISCUSSION

In this article, it is shown that, given time-invariant autoregressive
parameters that satisfy |ρ| < 0, the ALT model formulated by Bollen
and Curran (2004; Curran and Bollen 2001) is equivalent to an LGC
model with AR(1) disturbances. Formulating the model as an LGC
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with AR(1) disturbances results in a separation of the trend from
the recursiveness in the model. This has two advantages. First, the
parameters δi and γi have the same function as the trend parameters
in standard LGC modeling: δi is the individual’s intercept, and γi

is the individual’s slope, which describes the deterministic trend of
subject i. Second, the process does not need to be started up with
nonlinear constraints that may lead to computational problems.

In this article, only univariate ALT models with time-invariant
autoregressive parameter ρ and |ρ| < 1 were considered. Bollen and
Curran (2004) proposed a more general version of the ALT model,
in which the autoregressive parameters can vary over time and may
exceed unity in absolute value. This model can be obtained from
equation (1) by replacing the time-invariant ρ by ρt,t−1, relating yt,i

to yt−1,i . This more general model is not equivalent to an LGC model
with AR(1) disturbances. The reason for this is that if the ρs vary
over time and/or exceed unity in absolute value, one cannot use the
geometric series and the expression of an AR(1) process as an MA
of infinite order. Both results are essential in establishing the equiva-
lence between these models.

However, one can also consider an LGC model with autocorre-
lated disturbances in which the autoregressive parameters vary over
time. Such a model can be obtained from the model in equations (4)
and (5) by replacing the time-invariant ρ in equation (4) by a time-
specific ρt,t−1, which relates the distance of the observation yt,i to
the deterministic trend at occasion t (i.e., zt,i) to the distance of the
observation yt−1,i to the trend at the previous occasion (i.e., zt−1,i).
As with the LGC models discussed in this article, this extension with
time-varying autoregressive parameters does not require to be started
up. In contrast, as Bollen and Curran (2004) pointed out, the ALT
model with time-varying ρs always requires the first observation to be
treated as predetermined. To this end, three extra parameters must be
estimated (i.e., the covariances between y0,i and the parameters αi and
βi , as well as the mean of y0,i). Hence, although the ALT model with
time-varying autoregressive parameters and an LGC model with auto-
correlated disturbances and varying autoregressive parameters are not
equivalent, the latter could be considered as an interesting and more
parsimonious alternative to the former in cases in which the model
with time-invariant ρs does not fit.
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NOTES

1. Such computational problems were encountered in LISREL (Jöreskog and Sörbom
1999) but not in Mx (Neale et al. 1999). The Mx-input files, based on an empiri-
cal example for both model formulation discussed in this article, can be obtained from
http://users.fmg.uva.nl/ehamaker/.

2. Some readers may feel uncomfortable with the resulting expressions going back in time
to minus infinity. However, the alternative expression arrived at in equation (3) is mathemati-
cally equivalent to the expression given in equation (1). Either expression is only used as a
local description of some process. Hence, it is not implied that the actual process follows this
description to infinity or has been following it from minus infinity.

3. The variance across subjects of this z0,i is not the same as the variance of the disturbances
εt,i , but this relationship is σ 2

z = σ 2
ε/(1 − ρ2). Although not necessary, the latter may be used

as an constraint in model fitting. This constraint could be used in model specification based on
equations (1) and (2) as well as model specification based on equations (4) and (8).

4. For details, see http://users.fmg.uva.nl/ehamaker/.
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