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Abstract

Consider a matrix with positive diagonal entries, which is similar via a posi-
tive diagonal matrix to a symmetric matrix, and whose signed directed graph
has the property that if a cycle and its symmetrically placed complement have
the same sign, then they are both positive. We provide sufficient conditions
so that A be a P–matrix, that is, a matrix whose principal minors are all
positive. We further provide sufficient conditions for an arbitrary matrix A
whose (undirected) graph is subordinate to a tree, to be a P–matrix. If, in
addition, A is sign symmetric and its undirected graph is a tree, we obtain
necessary and sufficient conditions that it be a P–matrix. We go on to con-
sider the positive semi–definiteness of symmetric matrices whose graphs are
subordinate to a given tree and discuss the convexity of the set of all such
matrices.
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1 INTRODUCTION

In a paper on the question of unicity of best spline approximations for func-
tions having a positive second derivative, the following result is proved:

Proposition 1.1 ([1, Proposition 1]) Let A = (aij) ∈ Mn(IR) be a tridiag-

onal matrix with positive diagonal entries. I f

ai,i−1ai−1,i ≤
1

4
aiiai−1,i−1

(

1 +
π2

1 + 4n2

)

, i = 2, . . . , n, (1.1)

then det(A) > 0.

The proof given in [1] (see pp.1136–1138) rests on arguments involving second
order finite differences and Green’s functions. This paper grew out of an
attempt to find a matrix–theoretic proof for Proposition 1.1. The question
of the existence of such a proof was raised by a colleague of one of the present
authors, Professor Joseph P. McKenna.

We will extend Proposition 1.1 to matrices whose undirected graphs are
subordinate to a tree and whose diagonal entries are all positive. We will
also consider the class of matrices which are similar via a positive diagonal
matrix to a symmetric matrix, and whose signed directed graphs have the
property that if a cycle and its symmetrically placed complement have the
same sign, then they are both positive. For matrices in this class we will
provide sufficient conditions (inequalities) on the off–diagonal entries for the
positivity of the determinant and all other principal minors as well.

It is interesting to note that the conditions on A in Proposition 1.1 are
inherited by all the principal submatrices of A showing that, in fact, all
principal minors of A are positive and hence A is, by definition, a P–matrix.
A similar situation occurs in our extensions of Proposition 1.1, permitting us
to conclude that the matrix of interest is a P–matrix (see Theorems 2.1 and
2.2). Then Proposition 1.1 and an improvement of it follow from our results.

It is also worth noting that the verification of each of the n−1 inequalities
for the contiguous 2 × 2 principal submatrices of A in (1.1) can be carried
out independently of each other. Thus it is possible to check the validity of
condition (1.1) in parallel. This will remain true for all our results.
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In Section 3 we present conditions under which a symmetric matrix whose
graph is subordinate to a tree is positive semi–definite. We prove a partic-
ular geometric feature of the set of all positive semi–definite matrices whose
graphs are subordinate to a given tree, namely, that no proper convex com-
bination of distinguished boundary points (see Section 3 for definitions) is a
boundary point.

We continue with notation, definitions, and useful preliminary results.
We denote the set of all n × n real matrices by Mn(IR). For a matrix A ∈
Mn(IR) we let σ(A) and ρ(A) denote the spectrum and the spectral radius,
respectively. We write A ≥ 0 when A is entrywise nonnegative and consider
the induced partial order in Mn(IR). The entrywise absolute value of A is
denoted by |A|. Also diag(A) denotes the diagonal matrix whose diagonal
entries coincide with the diagonal entries of A.

Given A = (aij) ∈ Mn(IR), the (undirected) graph of A, G(A), has vertices
1, 2, . . . , n and edges {i, j} if and only if i 6= j, and aij 6= 0 or aji 6= 0. Notice
that G(A) is by definition loopless. We say A is subordinate to a graph G on
n vertices and we write that G(A) � G if G(A) is a subgraph of G (with the
same vertex set.)

By T ≡ Tn we denote a tree on the n vertices 1, 2, . . . , n, with edges {i, j},
namely, a connected, acyclic graph.

We say that A = (aij) ∈ Mn(IR) is combinatorially symmetric if aij 6= 0
implies aji 6= 0. The matrix A has the positive complementary cycle property
if whenever i1, i2, . . . , ik are distinct indices and

ai1i2 · ai2i3 · . . . · aik−1ik · aiki1 · ai2i1 · ai3i2 · . . . · aikik−1
· ai1ik > 0,

then

ai1i2 · ai2i3 · . . . · aik−1ik · aiki1 > 0 and ai2i1 · ai3i2 · . . . · aikik−1
· ai1ik > 0.

Notice that if A has the positive complementary cycle property, then A is
sign symmetric, namely, if aijaji 6= 0, then aijaji > 0.

The matrix A ∈ Mn(IR) is called diagonally symmetrizable if there exists
a diagonal matrix D with positive diagonal entries, such that D−1AD is
symmetric.
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The following results are classic but we state them here for the sake of
reference in forthcoming proofs. Recall that a signature matrix is a real
diagonal matrix S such that |S| = I.

First, the results in [6] readily imply that:

Lemma 1.2 Let T be a tree on n vertices and A be a combinatorially sym-

metric matrix with G(A) � T . Then |A| is diagonally symmetrizable.

Details regarding the following lemma can be found in [2] and in [3].

Lemma 1.3 Let A ∈ Mn(IR) be an irreducible matrix. Then A is signature

similar to a nonnegative matrix if and only if al l the cycles in the directed

graph of A are nonnegative.

2 MAIN RESULTS

Our first objective is to show that any real matrix with positive diagonal
entries, whose irreducible components have the positive complementary cy-
cle property and are diagonally symmetrizable, has positive principal minors
whenever a certain derived matrix E satisfies ρ(E) < 1. This leads to suffi-
cient conditions of the same form as in Proposition 1.1.

Theorem 2.1 Suppose that A = (aij) ∈ Mn(IR) has positive diagonal entries

and that the irreducible components of A have the positive complementary

cycle property and are diagonally symmetrizable. I f there is a nonnegative

symmetric matrix E = (eij) with ρ(E) < 1 such that for every edge {i, j} of

G(A),

aijaji ≤ aiiajje
2

ij, (2.1)

then A is a P–matrix.

Proof:
We can assume without loss of generality that A is irreducible, as the argu-
ments we shall make hold for each irreducible component of A. By replacing

4



A by (diag(A))−1/2A(diag(A))−1/2, without violating (2.1), we can further as-
sume that aii = 1, i = 1, 2, . . . , n. Let D be a diagonal matrix with positive
diagonal entries such that

Â = D−1AD − I = (âij)

is symmetric. Notice that Â still has the positive complementary cycle prop-
erty and hence all cycles in the directed graph of Â are nonnegative. So by
Lemma 1.3, Â is signature similar to |Â|. But |Â| satisfies

|âij|
2 = âij âji = aijaji ≤ e2

ij (i 6= j)

because of the symmetry of Â and because of (2.1). Thus |Â| ≤ E. By
the Perron–Frobenius theory for nonnegative matrices, the latter inequality
implies that ρ(Â) = ρ(|Â|) < 1. But then Â + I is positive definite, which

implies that A = D
(

Â + I
)

D−1 is a P–matrix, as it is a matrix each of
whose principal submatrix is similar to a positive definite matrix. ✷

The following theorem extends Proposition 1.1 to matrices whose undi-
rected graphs are subordinate to a tree.

Theorem 2.2 Let T be a tree on n vertices and let A = (aij) ∈ Mn(IR),

with G(A) � T , have positive diagonal entries. I f there exists a nonnegative

symmetric matrix E = (eij) with ρ(E) < 1 such that for every edge {i, j} of

G(A),

aijaji ≤ aiiajje
2

ij, (2.2)

then A is a P–matrix.

Proof:
We can begin by assuming that A is irreducible, for otherwise it is sufficient
to show that the irreducible components of A are P–matrices. Furthermore,
as in the previous theorem, we can without loss of generality assume that
the diagonal entries of A are all equal to 1.

Consider a diagonal matrix with positive diagonal entries D, whose existence
is assured by Lemma 1.2, such that D−1|A|D is symmetric, and let

Â = D−1AD − I, Ã =
1

2
(Â + ÂT ) (2.3)
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By construction, G(Ã) � T and hence, by Lemma 1.3, we have that Ã is
signature similar to |Ã|. But |Ã| satisfies

|ãij ãji| ≤ e2

ij

because of (2.2) and (2.3), so that |Ã| ≤ E. By the Perron–Frobenius theory
for nonnegative matrices, the latter inequality implies that ρ(Ã) = ρ(|Ã|) <
1. But then Ã + I is positive definite, which implies that Â + I, and thus A,
is a P–matrix. ✷

Remark 2.3 We note that while every real H–matrix (see Chapter 2 in [4])

with positive diagonal entries is a P–matrix, not every matrix that satis-

fies the assumptions of the above theorem is an H–matrix as the following

example illustrates:
(

1 1

−2 1

)

.

The following result includes a converse to the above theorem in the case
A is sign symmetric.

Theorem 2.4 Let T be a tree on n vertices and let A = (aij) ∈ Mn(IR) be a

sign symmetric matrix with positive diagonal entries and such that G(A) � T .

Define E = (eij) by

eij =















(

aijaji

aiiajj

)1/2

, i f {i, j} is an edge of T

0, otherwise.

Then A is a P–matrix if and only if ρ(E) < 1.

Proof:
Assume, without loss of generality, that G(A) = T , otherwise the problem
reduces to one of a lesser dimension. The sufficiency of ρ(E) < 1 is contained
in the previous theorem. Let D = diag(A). For the necessity part, notice
that, since A is a P–matrix, so is D−1/2AD−1/2. But, by Lemma 1.2, I − E
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is diagonally similar to D−1/2AD−1/2 and is, thus, positive definite, which
implies that ρ(E) < 1. ✷

We can now use our results to give a matrix–theoretic proof as well as
state an improvement of Proposition 1.1.

Let A = (aij) ∈ Mn(IR) be tridiagonal with positive diagonal entries. The
graph of A is subordinate to a tree (the line graph). Suppose that (1.1) holds
and consider the tridiagonal matrix

E = (eij) =

















0 x 0 . . . 0

x 0 x
...

. . . . . . . . .
... x 0 x
0 . . . 0 x 0

















in which x = 1

2

√

1 + π2

1+4n2 . According to a well known formula for the

eigenvalues of a symmetric tridiagonal matrix with constant diagonals (see
e.g., [5]), the largest (in modulus) eigenvalue of E is 2x cos π

n+1
(since if λ is

an eigenvalue of E then so is −λ). Starting with the fundamental inequality
tan θ > θ, for all θ ∈ (0, π

2
), we have that:

tan2
π

n + 1
>

π2

(n + 1)2
>

π2

4n2 + 1
=⇒

sin2
π

n + 1
>

π2

4n2 + 1
cos2

π

n + 1
=⇒

(1 +
π2

4n2 + 1
) cos2

π

n + 1
< 1 =⇒

2x cos
π

n + 1
< 1.

Thus ρ(E) < 1. Now, by Theorem 2.2, detA > 0, proving Proposition 1.1.

It is also clear from our approach that the conclusion of Proposition 1.1
can now be strengthened as follows:
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Proposition 2.5 Let A = (aij) ∈ Mn(IR) be a tridiagonal matrix with posi-

tive diagonal entries. I f

ai,i−1ai−1,i <
1

4
aiiai−1,i−1

1

(cos π
n+1

)2
, i = 2, . . . , n,

then det(A) > 0.

3 POSITIVE DEFINITE TREES

We continue with some results on symmetric matrices and on positive semi–
definite matrices whose graph is subordinate to a tree.

We denote the symmetric matrices with zero diagonal entries subordinate
to T by

HT = {X ∈ Mn(IR) | XT = X, diag(X) = 0, G(X) � T},

and also consider the set

XT = {X ∈ HT | I + X is positive semi–definite}.

The boundary of XT is defined by

∂XT = {X ∈ XT | I + X is singular}.

We call two nonzero matrices X1, X2 ∈ XT distinguished if the irreducible
components of X1 and X2 corresponding to the same index set (if any such
components exist) are linearly independent. For example, if X1 is irreducible,
then X1, X2 are distinguished provided that X2 is not a scalar multiple of
X1.

We will show that XT is a convex set of matrices whose spectral radii are
less than or equal to one. Moreover, no proper convex combination of two
distinguished boundary points of XT is again a boundary point.

Lemma 3.1 Let T be a tree on n vertices and X ∈ HT . Then:

(i) σ(X) = σ(|X|).
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(ii) I f λ ∈ σ(X) then −λ ∈ σ(X).

(iii) X ∈ XT i f and only if ρ(X) ≤ 1. Moreover,

∂XT = {X ∈ HT | I + X is positive semi–definite with ρ(X) = 1}

(3.1)

(iv) I f X ∈ XT , Y = Y T and if |Y | ≤ |X|, then Y ∈ XT .

Proof:

(i) By Lemma 1.3, X and |X| are similar by a diagonal matrix.

(ii) This follows from (i), or by observing that the directed graph of X
contains no loops and no cycles of length greater than 2. Thus, if n is odd
(even) the characteristic polynomial of X is an odd (even) function.

(iii) Since by (ii) σ(X) = σ(−X), and since I + X is positive semi–definite,
X has no eigenvalues < −1 and no eigenvalues > 1. That is, ρ(X) ≤ 1.
In particular, if ρ(X) = 1, then −1 ∈ σ(X) and so I + X is singular and
conversely, proving (3.1).

(iv) If |Y | ≤ |X| then diag(Y ) = 0 and G(Y ) � T , thus Y ∈ HT . Also by
the Perron–Frobenius theory of nonnegative matrices and by parts (i) and
(iii),

ρ(Y ) = ρ(|Y |) ≤ ρ(|X|) = ρ(X) ≤ 1,

showing that Y ∈ XT . ✷

We also need the following lemma. Recall that, in a tree, a vertex of
degree 1 (i.e., incident with exactly one edge) is called a pendant vertex.

Lemma 3.2 Let T be a tree on n vertices and A ∈ Mn(IR) be a symmetric

matrix with zero diagonal entries such that G(A) � T . I f al l the entries of

x ∈ IRn are nonzero, then the entries of x and Ax completely determine A.

Proof:
Without of loss of generality, assume that G(A) = T , otherwise the problem
reduces to one of a lesser dimension. We proceed with induction on n. For
n = 1 the result is trivially true. Assume the result is true for all positive
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integers less than n. Without loss of generality let 1, 2, . . . , k, 1 ≤ k ≤ n−1,
be the pendant vertices of T . Then A has the block form

A =
(

0 A12

A21 A22

)

in which A22 ∈ Mn−k(IR) and in which each row of A12 has exactly one
nonzero entry. Let x ∈ IRn with all its entries xi 6= 0. Then for every i ≤ k,
there exists a unique j > k such that

aijxi = (Ax)i. (3.2)

Thus, by (3.2), A12 is completely determined from x and Ax. By symmetry,
A21 is also then determined. If x = [u, v]T and Ax = [w, z]T are partitioned
conformally with A, then

A22v = z − A21u.

By the inductive hypothesis, since A22 has a graph subordinate to the tree
induced from T by {k + 1, k + 2, . . . , n}, the entries of A22 are completely
determined by v and z − A21u, and hence, in turn, all the entries of A are
completely determined from x and Ax. ✷

Remark 3.3 It follows from the above result and the Perron–Frobenius the-

ory that if A is an irreducible nonnegative matrix with zero diagonal entries

and such that G(A) = T , then ρ(A) and the corresponding Perron eigenvec-

tor x completely determine A.

Theorem 3.4 XT is a convex set. Moreover, no proper convex combination

of two distinguished boundary points of XT is a boundary point of XT .

Proof:
Let Xi ∈ XT , i = 1, 2, a ∈ [0, 1], and Y := aX1 + (1 − a)X2. Clearly, Y is
symmetric and its graph is subordinate to T . Also

I + Y = a(I + X1) + (1 − a)(I + X2)

is positive semi–definite, showing that XT is convex. To show the second
part of the theorem, suppose X1, X2 ∈ ∂XT are distinguished. By Lemma
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3.1 part (iii) we have that ρ(X1) = ρ(X2) = 1. We need to show that if
a ∈ (0, 1), then

Y 6∈ ∂XT

or equivalently, again by Lemma 3.1 part (iii), that ρ(Y ) < 1. Suppose that
Y is irreducible, otherwise, since Y is symmetric and because X1, X2 are
distinguished, the problem reduces to one of a lesser dimension. By way of
contradiction, assume ρ(Y ) = 1. From Lemma 3.1 part (i), ρ(Y ) = ρ(|Y |) ∈
σ(|Y |). Let x be the eigenvector of |Y | corresponding to ρ(|Y |) = 1 and recall
that the Perron–Frobenius theorem says that all entries of x are positive. By
symmetry and Rayleigh’s principle applied to |Y | and |X1|, |X2|, we then
have that

1 = ρ(Y ) =
xT |aX1 + (1 − a)X2|x

xT x
≤

axT |X1|x + (1 − a)xT |X2|x

xT x

≤ aρ(|X1|) + (1 − a)ρ(|X2|) = 1. (3.3)

Hence all inequalities in (3.3) hold as equalities. This means that X1, X2

have the same sign pattern, and that |X1| and |X2| share the eigenvector
x corresponding to the eigenvalue 1. Thus, by Remark 3.3, X1 = X2, a
contradiction. This proves that ρ(Y ) < 1. ✷

In general, it is not true that XT is a strictly convex set. The following
example shows that in the case of the line graph, a proper convex combination
of two linearly independent boundary points can be a boundary point.

Example 3.5 Let T be the line graph on four vertices and consider the

matrices in ∂XT given by

A1 =













0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0













, A2 =













0 1 0 0

1 0 0 0

0 0 0 1

0 0 1/2 0













.

It can be easily checked that 1

2
(A1 + A2) ∈ ∂XT , showing that XT is not

strictly convex. Notice that A1 and A2 are not distinguished because they

have equal irreducible components corresponding to the index set {1, 2}.
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