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Conditions for void formation in friction stir welding from

machine learning
Yang Du1,2, Tuhin Mukherjee1 and Tarasankar DebRoy1

Friction stir welded joints often contain voids that are detrimental to their mechanical properties. Here we investigate the

conditions for void formation using a decision tree and a Bayesian neural network. Three types of input data sets including

unprocessed welding parameters and computed variables using an analytical and a numerical model of friction stir welding were

examined. One hundred and eight sets of independent experimental data on void formation for the friction stir welding of three

aluminum alloys, AA2024, AA2219, and AA6061, were analyzed. The neural network-based analysis with welding parameters,

specimen and tool geometries, and material properties as input predicted void formation with 83.3% accuracy. When the potential

causative variables, i.e., temperature, strain rate, torque, and maximum shear stress on the tool pin were computed from an

approximate analytical model of friction stir welding, 90 and 93.3% accuracies of prediction were obtained using the decision tree

and the neural network, respectively. When the same causative variables were computed from a rigorous numerical model, both

the neural network and the decision tree predicted void formation with 96.6% accuracy. Among these four causative variables, the

temperature and maximum shear stress showed the maximum influence on void formation.

npj Computational Materials            (2019) 5:68 ; https://doi.org/10.1038/s41524-019-0207-y

INTRODUCTION

Friction stir welding (FSW), a relatively new solid-state welding
process, is now widely used in aerospace, shipbuilding, auto-
motive, and other industries.1–3 In this process, a rotating rigid tool
with a shoulder and a pin is inserted in the joint under pressure.2 It
generates heat by friction between the tool and workpiece,
softens the alloy but does not melt it. The softened material flows
around the tool pin and forges a joint behind the pin.2,3 Since FSW
does not involve melting, it avoids the common fusion welding
problems such as solidification cracking and loss of volatile
alloying elements.1,3 Despite its many advantages, its success
depends on a confluence of many complex physical processes
that influence the three-dimensional distribution of temperature,
velocities of the plasticized material, strain rate, and other
mechanical and metallurgical variables. Changes in the tempera-
ture and velocity fields, strain rates, and other parameters may
result in the formation of voids in the component at a location
near the tip of the pin.4 Voids in the welded components affect
both the mechanical properties and the serviceability of the joints.
Because of the importance of this problem, significant efforts

have been made to understand and develop a theory that can
help in mitigating the voids. However, the complexity of many
simultaneously occurring physical processes and the large
parameter space of the welding variables and materials have so
far precluded the establishment of a unified criterion that can be
used to avoid the void formation. Efforts have been made to
experimentally determine the effects of welding parameters on
void formation in commonly used aluminum alloys.4–19 Tracers
have been used to examine experimentally how the flow of
materials affect the void formation.20–22 The time lapse determi-
nation of the tracer’s position in some cases indicated that the

voids occurred near the bottom of the pin where the flow of the
plasticized material was interrupted. Phenomenological models
were also used to examine their effectiveness to mitigate void
formation in FSW.17,23–29 It was also suggested that the peak
temperature had to be within 80–90% of the solidus temperature
of the alloy to avoid the void formation.25 Diverse experimental
studies such as ultrasonic30 and radiographic31 detections of voids
and theoretical analysis of forces26,32,33 were undertaken to
understand the origin of void formation. Although progress made
in the previous work to identify the important variables such as
temperature, strain rate, torque, and maximum shear stress on the
pin that affect the void formation, no rigorous mechanistic
explanation, or criterion for the void formation have emerged.
Here we examine the effectiveness of supervised machine

learning (ML) algorithms to forecast the void formation during
FSW. One hundred and eight sets of data for the FSW of three
aluminum alloys, AA2024, AA2219 and AA6061 obtained from the
peer-reviewed literature4–19 have been analyzed using neural
network (NN) and decision tree (DT) to examine the effectiveness
of ML to mitigate void formation. Vibration and poor fixtures may
affect the quality of welds, at least in principle. However, FSW is
routinely performed using different makes and models of
machines and there is no evidence in the literature that the void
formation is affected by the selection of mainstream, reliable FSW
machines. Therefore, it is reasonable to consider all experimental
data for training, validating, and testing of the ML algorithms
without any bias from the make or model of the machines. We
select NN and DT over other ML algorithms such as K-nearest
neighbor (KNN), support vector machines (SVM), and random
forest (RF) because of their usefulness for this investigation. For
example, NN performs accurately even for a relatively small
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volume of data and is computationally efficient. The DT is a simple
and easy-to-use method, which can handle both numerical and
categorical data with small amount of dataset. In contrast, KNN
provides accurate results only for a huge number of data sets. SVM
does not provide any model that can be used in future for
predicting voids for new datasets. RF is suitable for multivariable
outputs.34

The roles of welding parameters such as the welding speed,
rotational speed, tool shoulder radius, plate thickness, axial
pressure, pin tip and bottom radii, tilt angle, and material
properties such as thermal diffusivity and yield strength on the
void formation were examined. These data are easily accessible
because welding parameters are generally measured and
recorded in the shop floor anytime welding is undertaken, and
no further work is needed to obtain them. An analysis of the data
showed that if any one of these parameters is kept constant,
adjustment of the other parameters may result in joints both with
and without voids. In other words, all of these raw welding
parameters showed almost the same influence on the void
formation. Therefore, a ranking of these raw welding parameters
to generate a classification DT was not undertaken. Instead, the
data were analyzed using a Bayesian NN.
In many complex engineering systems, its behavior is often

accurately described by a group of variables rather than the raw
individual variables. An example is the well-studied problem of
flow of a fluid in a pipe. In principle, the pipe diameter, average
fluid velocity, and the density and viscosity of the fluid can predict
if the flow is laminar or turbulent. However, it is well accepted that
the nature of flow structure is much better represented by the
causative Reynolds number than the four aforementioned
individual variables. In FSW, the process variables, temperature
dependent thermophysical properties and the tool and specimen
geometry constitute a very large parameter space where the
effects of individual variables are masked by the complexity of the
flow of plasticized material that affects the void formation. Since
the temperature, strain rate, maximum shear stress on the tool pin,
and torque are known to affect the flow of the plasticized material,1

they are likely to be closely correlated with the void formation.
Values of these variables are needed to understand the formation
of voids during welding. A solution is to use well-tested mechanistic
models of FSW35–39 that can calculate the values of these variables
for each sets of raw welding parameters, tool and specimen
geometry and alloy system. These mechanistic models can be
either simple and easy to use reduced order analytical models40,41

with simplifying assumptions to reduce computational work or
rigorous multiphysics-based numerical models.35–39 These models
will enable an evaluation of the role of these causative variables
that affect material flow, which can be used in both DT and NN.
The comprehensive mechanistic models35–39 of FSW solve the

equations of conservation of mass, momentum, and energy to
obtain the temperature and velocity fields in three-dimensions,
strain rate, shear stress on the pin, and the torque. Figure 1
illustrates the input and the output of the mechanistic models and
how the variables that affect the flow of materials are used in DT
and NN for the FSW of aluminum alloys. Typical results of the
strain rate,37 temperature history, shear stress, and torque are
shown in the Fig. 1a–d, respectively. Higher strain rate is found at
advancing side as shown in Fig. 1a. The temperature at a
monitoring location increases from room temperature (298 K) to
the maximum value (608 K) and then slowly decreases to the
room temperature as explained in Fig. 1b. The shear stress on the
tool pin obeys sine function, and achieves the maximum at
retreating side with 90° of welding direction in Fig. 1c. Torque
decreases at higher heat input, with both reduction in welding
speed and increase in rotational speed, as shown in Fig. 1d.
Because of the simultaneous rotational and translational motion of
the tool, the strain rate, temperature, and stresses are all
asymmetric about the axis of the pin.29

One hundred and eight sets of data used in the calculations
were for the FSW of three aluminum alloys that had different
chemical composition. In order to avoid compositional effects, the
data for each alloy were normalized with dividing each variable by
its maximum value for the alloy. These normalized values of local
temperature, strain rate, torque, and maximum shear stress were
used to train, validate, and test the NN and DT. Starting from the
results of the supervised ML, this work aimed to identify a metric
that can be used to find an accurate and effective way to predict
the formation of voids and avoid them. All important welding
parameters and material properties were used to train, validate,
and test an NN. They included raw unprocessed welding
parameters such as welding speed, rotational speed, tool shoulder
radius, plate thickness, axial pressure, pin tip and bottom radii, tilt
angle, as well as thermal diffusivity and yield strength. To improve
the prediction accuracy and better understanding of the void
formation, four calculated causative variables obtained from
analytical and numerical models have been employed using NN
and DT, as the second and third types of data sets, respectively.
These four calculated causative variables are temperature, strain
rate, torque, and maximum shear stress on the tool pin. Although
the different methods are tested here for mitigating defect
formation in FSW, they are generic in nature and can be extended
for any other multifactorial manufacturing issues.42–56

RESULTS AND DISCUSSION

The effectiveness of a NN- based supervised ML algorithm to
forecast the effects of variation of welding parameters and
material properties on the formation of voids were examined. The
welding parameters were recorded every time an FSW was
conducted. Because of the accessibility of the data, it is useful to
correlate their values with void formation. One hundred and eight
data sets that contained 43 welds with voids and the remaining
sets without any voids were examined. The occurrence of voids
was decided based on their appearance in the transverse sections
of the welds. The target output for the analysis was set as ‘1’ and
‘0’ to represent joints with and without voids, respectively. Among
all data, 63 were randomly selected to train the NN. From the
remaining data, 15 and 30 sets were selected for the validation
and testing,34,42 respectively. The data sets for training, testing,
and validation were selected randomly, with the condition that
each data set represented the same percentage of welds that
contained voids. The accuracy of this method for predicting the
void formation was found to be 83.3%. The reason of this modest
outcome is not known. This prediction is significantly better than
the random guess (50%) and shows that the welding parameters
have a hidden connection with the formation of voids. However,
no explicit relation between the welding parameters and the void
formation has been uncovered. The individual welding parameters
affect many simultaneously occurring physical processes during
FSW which in turn affects the void formation. Given the
constraints of the available data-base being taken from peer-
reviewed literature, it is worth asking if the prediction efficiency
can be improved.
From the previous experimental and modeling research,4–19,23–

29 it is known that the welding parameters affect important
variables such as temperature, strain rate, torque, and maximum
shear stress on the tool pin that affect properties of the plasticized
alloy and its smooth flow. Since the disruption of the smooth flow
is thought to cause the void formation, the values of these four
variables are important for the void formation.
The inadequate and discontinuous flow of the plasticized

material around the tool pin is thought to be a cause of void
formation. Inadequate flow of plasticized material results from
insufficient heat input due to low rotational speed for a given
welding speed, inappropriate shoulder diameter, large plate
thickness, and other improper welding parameters.5,32 Low
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frictional force and insufficient flow stress in the area behind the
tool pin and near the pin tip due to reduced velocity and low
temperature cause inadequate material flow from retreating side
to advancing side.5 High strain rate found in the advancing side
near the pin tip indicates high velocity gradient and affects
material flow. The flow stress of the plasticized material is affected
by the temperature and velocity fields in the weld zone.1

Understanding and controlling the flow of plasticized material
flow is the key to reduce void formation. The plasticity of the alloy
depends on the temperature of the alloy as well as the strain
rate.37 High temperature ensures softening of the alloy to enable it
to easily flow around the pin without disruption.36 In contrast,
high local strain rates may result in nonuniformity in the flow of
the plasticized material and may disrupt smooth flow and make

the process susceptible to void formation.37 The difficulties in the
flow of the plasticized material are reflected by high shear stress
and torque on the tool pin.35 Therefore, high values of these two

parameters indicate susceptibility to void formation. Temperature,
strain rate, torque, and maximum shear stress on tool pin are
recognized as the most important factors for the void formation.
The effects of these four causative variables on the void formation

are described in Fig. 2. It shows that the void disappears at higher
temperature but at lower values of strain rate, torque, and shear
stress on the tool pin. The values of these four quantities, although
dependent on the welding parameters, are not always available

from measurements. However, they can be calculated from
verifiable mechanistic models, as indicated in Fig. 1.

Fig. 1 Schematic representation of this research. The components are FSW process, mechanistic models, and machine learning methods
(neural network and decision tree). Corresponding experimental test is in the literature.5,6 a The distribution of strain rate plotted for 4-mm
thickness above pin tip. b Temperature-time curve during FSW process. c The distribution of shear stress on tool pin with degrees. d The
distribution of torque with heat input
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The easiest way to calculate the values of these important
potentially causative factors of void formation is to use a reduced
order, back of the envelope analytical model. Details of these
calculations are described in the “Method” section. Therefore, the
four causative variables were calculated with the analytical model,
and the computed values were used for forecasting the defect
formation using a DTand an NN. Local values of temperature and
strain rates were calculated near the tool pin tip in the advancing
side where the voids typically formed.4 The four variables were
calculated for all experimental cases adapted from the literature,
normalized with respect to their maximum value, and plotted in
Fig. 3 as a function of the linear heat input.
Implementation of the NN for these four causative variables is

similar to the NN for the unprocessed welding parameters
described earlier. The accuracy of this method has been improved
from 83.3% when using welding parameters to 93.3% when the
four computed variables were used. Unlike the unprocessed
welding parameters, these four causative variables clearly
correlate better with void formation, and their utilization in ML
provided more accurate results.
It is noteworthy that all these four variables exhibit a threshold

value that decides the void formation. For example, the welds
corresponding to the normalized local temperature less than 0.93
are susceptible to the void formation. Consequently, in a third trial,
the same data sets were classified using DT. All the normalized
four variables were marked with asterisk. The threshold values of
the four variables based on which the decisions were made
explained in the ‘Method'' section and presented in Fig. 3. Among
the 108 calculated data points, 63 of them were selected to train
the DT. From the remaining data points, 15 and 30 of them were
selected for validation and testing respectively.34,42 The generated
DT in this method is provided in Fig. 4a. The uniqueness of this
method is that it provides the relative importance of the four
variables on void prediction. Details about random selection and
ranking variables are presented in the ‘Method'' section. The
variable with the highest information gain (IG) is considered as the
root node of the DT. In Fig. 4a, for the first-time ranking, the
maximum shear stress on the tool pin has the highest IG and is
selected as the first root node. The void is more likely to be formed
with high maximum shear stress (τm), high pin total torque (MT),

low temperature (T), and high relative strain rate (εr). However, the
testing accuracy of void prediction is 90% which is less than that
using a NN and the same input data set. The main disadvantage of
the DT-based ML is that the structure of the tree is significantly
dependent on both the normalized results and the threshold
values. The relative inaccuracy of the reduced order, simplified
analytical model also affects the results.
To improve the accuracy of both the NN-based and DT-based

ML, the four causative variables were next calculated using a well-
tested numerical model of FSW, shown in Fig. s1 in Supplementary
Information. The rigorous numerical model captures the complex
physics of heat transfer and flow of plasticized materials around
the tool pin and thus accurately calculates the four causative
variables. Implementation of the NN for this method was same as
that described before. Because of the accurate predictions of the
causative variables, the testing accuracy of this method is
improved from 93.3% when the back of the envelope reduced
order analytical model was used to 96.6%. However, considerable
computational work was required for generating the variables
from the numerical models.
Finally, the four causative variables computed from a well-

tested numerical model were used in a DT. The construction and
implementation of the DT are the same as what was used before.
The DT is shown in Fig. 4b. The structure of the DT depends on the
normalized results and the threshold values. Therefore, all the four
causative variables were necessary to generate the DT even
though only two of them were selected as the classified nodes in
Fig. 4b. The testing accuracy of this method in the void prediction
was found to be 96.6%.
The four causative variables are ranked based on their

hierarchical influence on void formation. Temperature and
maximum shear stress show the most important influence on
the void formation, followed by torque and strain rate. The
importance of temperature is clear from its effect on the strength
of the material. Furthermore, the temperature also affects the flow
stress. The shear stress is a measure of the nature of the flow. For
example, a high value of shear stress indicates a difficulty of the
tool pin in influencing the local flow of plasticized material. Voids
can be mitigated by producing smooth material flow in the stir
zone. Therefore, both temperature and the maximum shear stress
are important factors for the void formation.
The accuracies of the aforementioned five methods were

compared based on their accuracies in the void prediction using
the confusion matrices46,48 in Fig. 5. The basic structure of the
confusion matrix is explained in Fig. 5a. The figure shows that the
matrix is employed to display the number of correct and incorrect
predictions in comparison to the target experimental results and
the calculated results. The results of the first three sets of results
show that the accuracy improves when the raw-welding
parameters are replaced by causative variables, which capture
the conditions of void formation more accurately. The compre-
hensive well-tested numerical models provide the best results but
require more intensive calculations.
The results from several existing independent studies suggest

that the void formation is caused by inadequate material flow
often resulting from inappropriate heat input and friction force.5,32

However, the easily measurable welding parameters cannot be
directly correlated with void formation. In this paper, ML, with its
outstanding advantages in solving multiple factors problems, has
been used to explore and rank the factors that affect void
formation. Four causative variables that are known to affect
material flow are computed using mechanistic models and the
computed values are correlated with the occurrence of void
formation using ML. The causative variables have been ranked
based on their importance on the void formation. Furthermore,
we identify the conditions for void formation with reasonably
good accuracy, which is helpful for engineers to produce void free
FSW joints.
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Large void Small void Void free
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Fig. 2 Variations in causative variables for different joints. Variations
in local temperature, relative strain rate (strain rate/rps), pin total
torque and maximum shear stress on tool pin for void free joint and
joints with small and large voids. Welding speed is constant as
100mm/min. The rotational speed and corresponding transverse
sections of the joints have been provided from the literature.4

Temperature, relative strain rate, pin total torque, and maximum
shear stress are calculated with numerical models. These local
temperature and strain rate values are taken from where the
experimental void happens, which can reflect the relation of
material flow state and void formation
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In summary, void formation in the FSW of aluminum alloys was
investigated using two machine leaning algorithms, a NN and a
DT. One hundred and eight points of independent experimental
data available in the peer-reviewed literature were analyzed. Both
the raw welding parameters and potentially causative computed
variables such as temperature, maximum shear stress on tool pin,
torque, and strain rate were investigated. The observations are
summarized in Table 1. Below are the specific findings.
(1) The variables that affect void formation during FSW of

aluminum alloys are found to be temperature near the tool pin,
maximum shear stress on the tool pin, torque and strain rate, in
decreasing order of influence.
(2) The simplest methodology examined for predicting voids

was to feed raw welding parameters and material properties to an
NN capable of providing a classification scheme that outputs
binary results (void and void free). This approach was able to
forecast the void formation with 83.3% accuracy.
(3) The four potentially causative variables of void formation,

temperature, maximum shear stress on tool pin, torque, and strain
rate, are superior to the raw welding parameters in predicting void
formation during FSW. When these causative variables computed

from reduced order analytical models and used as input data sets
for ML algorithms, the accuracies of the void formation predictions
were 93.3% and 90% for NN and DT algorithms, respectively.
(4) When the void formation was correlated with the potentially

causative variables, i.e., the local temperature near the pin tip,
maximum shear stress on the tool pin, torque, and strain rate,
computed from a mechanistic numerical model, both the NN and
DT approaches could predict defect formation with 96.6%
accuracy.

METHODS

Data collection for the welding parameters

The 108 independent FSW experimental results on void formation during
FSW of three commonly used aluminum alloys are collected from the
literature and marked as ‘1’ and ‘0’ for welds with and without voids,
respectively. The temperature and velocity fields which affect the smooth
flow of plasticized alloy depend on welding parameters, welding speed,
rotational speed, tool shoulder radius, plate thickness, axial pressure, pin
tip and bottom radii, tilt angle, as well as material properties such as
thermal diffusivity and yield strength. For some cases, in which the axial
pressure on the tool and tilt angle are not reported in the literature,

Fig. 3 Distribution of the normalized results using analytical models. a Local temperature, b local relative strain rate, c pin total torque and
d maximum shear stress on the tool pin with heat input per unit length of the weld. Heat input per unit length represents the ratio of heat
input to welding speed. Relative strain rate represents the ratio of strain rate to rotational speed. All data points correspond to the
experiments and are adapted from the literature.4–19
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reasonable values that commonly used are adopted. The estimated values
of axial pressure and tilt angle are marked with asterisk in Table 1 of the
Supplementary Information.

Potential causative variables computed from analytical models

The calculations of the reduced order analytical models started with the
estimation of the velocity field.40,41 Details of these calculations can be
found in our previous publications35,40 and are not repeated here. The
shape and size of the calculation domain depended on the shoulder
radius, pin tip radius, and plate thickness. For simplicity, material
properties, sliding, and friction coefficients were assumed to be
temperature independent. Within the velocity field, 12 monitoring points
were set for detecting local velocity and strain rate. These points were at
advancing side, retreating side, front of the tool and the trailing end, and
at three elevations, around the pin tip, the mid-height of pin, and around
the pin root of the tool pin. These 12 local results were used for torque and
maximum shear stress calculations. The local temperatures near the voids
were estimated using the heat conduction equation for thick plate as
follows.57

T � T0 ¼
Q

ρCp 4παtð Þ1:5
� exp

�R2

4αt

� �

(1)

Q ¼
2

3
π δτ þ 1� δð ÞμfPNð Þ � w r3s � r3

� �

1þ tan ϕð Þ þ r3 þ 2r2lP
� �

(2)

α ¼
k

ρCP
; R2 ¼ x2 þ y2 þ z2 (3)

where Q is the total heat input, the τ is shear stress at yielding. δ is the
coefficient of slip. μf is friction coefficient. PN is axial force. rs and r are
shoulder radius and pin radius, respectively. lp is pin length. R is the
distance from the center of the tool pin to the calculated location in the
middle high of workpiece. w is rotational speed. k, ρ, and Cp are the
thermal conductivity, density, and specific heat of the work plate material,
respectively. α is material coefficient. ɸ is the tool pin tilt angle. T0 is the
room temperature, and t is the time used to achieve steady welding
state.57

Calculations of potential causative variables using numerical
models

Well-tested numerical model of FSW solves the equations of conservation
of mass, momentum, and energy. Their construction, testing, and
applications have been reported in detail in our previous publications35–
39 and are not repeated here. The rigorous numerical model, used in this
research calculates heat generation rates, transient heat transfer in three-
dimensions and plasticized material flow around the tool pin. Tempera-
tures, strain rates, shear stress, and torque were calculated using a well-
tested numerical model.36,37

Random selection, accuracy assessment, and selection of
threshold values

Data sets were randomly selected for training, validation, and testing.
Among the 108 data points, 43 sets were for welds with voids. Same
percentages of the defective welds were included in the training,
validation, and testing data sets.34,42 Both void and void free data points
were selected randomly to avoid the less-fitting and over-fitting for
training. Sixty-three randomly selected data points that included 25 welds
with voids were utilized for training. After training, 15 data points were
randomly selected as the validation data that contained 6 defective joints.
The remaining 30 sets were used for testing. The accuracies of training,
validation, and testing of these five methods are listed in Table 1.
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Fig. 4 Decision trees. The decision trees (DT) are based on
classification scheme to predict the void formation in FSW joints
using a reduced order analytical models and b rigorous numerical
model. The structure of the DT depends on the normalized results
and the threshold values for the four causative variables. Therefore,
all the four causative variables were necessary to generate the DT
even only three of them were selected as the classified nodes
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matrices, the results of b method one, c method two, d method
three, e method four, and f method five
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The distribution of the normalized results of all variables from the
reduced order analytical model and rigorous numerical model are plotted
in Fig. 3 and Fig. s1 (in the Supplementary Information). The threshold
values were randomly selected between 0 and 1. For the strain rate,
torque, and maximum shear stress, we assigned ‘1’ for void if the
normalized results were above the threshold values, and ‘0’ for void free
data below the threshold values. However, for temperature, we assigned ‘1’
for void if the results were below the threshold value and ‘0’ for void free if
the results were above the threshold value, because unlike the other three
variables, higher temperatures indicate void free welds. The agreement
between the assigned values (‘0’ and ‘1’) and the target values indicates
that the classification schemes can be predicted correctly. For each
variable, the threshold value with the least number of wrong predictions
(highest classified accuracy) was selected as the best threshold value and
used in ML algorithms.

Neural network

The training data set was used to fit a hyperbolic tangent function by
minimizing the logarithmic error.43 The first step aimed to make the actual
response of the network move closer to the desired target response in a
statistical sense. Second, the actual outputs were continuous values from 0
to 1, which needed to be classified into ‘0’ and ‘1’ for joints without and
with voids. The best threshold value, that has the highest classification
accuracy, was used for the training, validation, and testing data sets.
The number of hidden nodes for the NN was usually varied from 4 to 8

(twice the number of input nodes). The output of a node was computed
with the following hyperbolic tangent function.43

y ¼ tanh
Xn

i¼1
wixi þ θi

� �

(4)

where xi and y are the input and the output of a node,wi is the weight, n is
the total number of nodes and θi is the bias dependent on the ith input.43

The NN model with the least log predictive error43 was selected as the best
model and used for the validation and testing data sets.

LPE ¼
β

2

Xn

i¼1
di � yið Þ2þ

n

2
ln

2π

β

� �

(5)

where β is the regulariser term. Details of the implementation of the NN for
FSW are discussed in our previous publication43 and are not repeated here.

Decision trees

Four causative variables were employed as classifiers using binary DT.42

Many available methods can be used to rank variables. Here the root and
child nodes were selected according to the IG depending on the
entropy.42,47 In every ranking, the variable with the highest IG was picked
out as the node. The selection of the proper threshold value “p” is the same
as that for NN. If the answer of “xi > p?” is yes, then follow the left-hand
child node, otherwise, it will go to the right-hand child node. The objective

of each node is to split the next child nodes and make them as
homogeneous as possible. Each branch takes care of one possibility, which
contributes to accurate and effective prediction. The leaf nodes take only
two values, of the target output, ‘1’ for void and ‘0’ for void free.
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