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Abstract. The seminal theory of singular surfaces propounded by Hadamard and
Thomas is examined within the context of the dynamics of a solid-liquid interface. It
is shown that most of the hypotheses upon which Clapeyron’s equation is based can be
weakened and two generalized versions of it are derived: with and without curvature
effects. The remaining part of the paper is mainly focused on the interface conditions
for the classical Stefan problem. The counterpart of Clapeyron’s equation for such a
problem will give an explicit expression for the supercooling temperature without recourse
to linearization procedures. Furthermore, a decay law for the latent heat of melting is
given which shows, in an explicit way, its complex dependence upon the curvature and the
normal speed of the interface. Finally, a transport equation for the interface temperature
is derived and a qualitative solution of a simplified version of it is given for the particular
case in which the jump in the Helmoltz free energies of the bulk phases is a conserved
quantity throughout the field.

1. Introduction. One of the early definitions of an interfacial system dates back to
the pioneering work of Gibbs [1] and defines it as consisting of two (or more) homogeneous
bulk phases separated by a singular surface. A singular surface is in turn defined as
a surface with no inner structure through which the bulk quantities may suffer finite
discontinuities. When material particles that belong to the surface at some time t*
remain on the surface at any time ¢ > ¢*, the surface is called “material”. There are
cases, however, in which the motion of the singular surface in the domain and the motion
of the particles in the bulk phases are somewhat independent of each other; this may be
the case, for instance, for a shock surface in gas dynamics or the advancing solidification
front in a liquid-solid phase transformation.

For the latter class of singular surfaces, when curvature effects are neglected, a clas-
sical result of thermostatics states that two phases of the same substance can coexist in
equilibrium only if they possess the same Gibbs potential ¢ per unit mass where
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¢ is the internal energy, 6 is the temperature, 7 is the entropy, p and p the pressure and
the density respectively. If we consider only two phases, say phase 1 and phase 2, and if
we suppose that on the common surface of contact the Gibbs potential of the two phases
is a function of temperature and pressure, the classical result implies that

€1(0,p) — C2(0,p) = 0. (1.1)

Taking the total differential of (1.1), we obtain
o¢  0¢ oG 0C
— ==-—=]df — - = \dp=0. 1.2
dcen) - aon = (5 - 55 )i+ (5 -5 w=0. (2
With the aid of elementary thermodynamical identities, we can rewrite (1.2) as

(n2 —m)df = <i - i) dp, (1.3)
P2 M

which is the celebrated Clapeyron’s equation. For a solid-liquid system in equilibrium,
(1.3) gives, for example, the variation of the melting temperature with the pressure and,
in the case of ice, it was experimentally validated by James and William Thompson in
1849. The remarkable agreement between (1.3) and the experimental results boosted,
at that time, the aspirations of the still embrionic science of thermostatics and, as Pip-
part [2] remarks, “--contributed largely to the spirit of confidence which underlay and
encouraged the rapid development of the subject.”

To the present time, as long as the starting hypotheses are met, (1.3) has never been
disproved. The assumptions on the basis of which (1.3) has been derived are, however,
rather severe. Not only do curvature effects have to be negligible (in other words, a flat
common interface) but the two phases must be in thermal and mechanical equilibrium
which implies, for instance, that neither phase can grow or decrease: the interface must
then be not only flat but absolutely static.

More than half a century after the original derivation of Clapeyron, in a fundamental
memoir, J. Hadamard [3] laid down the basis of the modern theory of singular surfaces.
Apart from the inherent beauty of the theory, several fields in which scattered results
connected to singular surfaces had appeared were instantaneously unified: the theory of
shock waves, vortex sheets, and waves in elastic solids are just some of the branches of
rational mechanics that could then be treated within the context of Hadamard’s the-
ory. Surprisingly enough, however, the theory of phase transition, Clapeyron’s equation
representing an important example, was never included nor treated within the context
of Hadamard’s formalism and this in spite of the fact that, at least from an historical
perspective, it was probably one of the earlier settings where the concept of singular
surface was introduced.

Whether, and in what cases, the concept of singular surface has a sound physical basis
or just represents a mathematical simplification is still a matter of debate and involves
issues of a rather complex nature. For a liquid-gas transformation for instance, in which
no change in the symmetry properties of the material is associated with the transition,
the idea that a thin transitional layer, rather than a sharp interface, separates the two
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phases is now widely accepted: the sharp interface is then interpreted as a macroscopic
view of the region while the thin layer is its microscopic counterpart (cf. Mavrovouniotis
and Brenner [4]). For solid-liquid transitions, in which a crystalline structure breaks
down to a random assembly of molecules, the existence of such a smooth layer seems
doubtful. In any case, the idea of a singular surface can be taken either as a starting
point toward more refined theories or as a physically reasonable assumption and, in both
cases, Hadamard’s theory provides a number of invaluable tools for the mathematical
treatment of the problem. Central to such a theory is the notion of interfacial condition
of compatibility which is directly derived from Hadamard’s lemma and which holds for
every quantity defined and continuously differentiable in the subdomains of which the
singular surface represents the intersection.

It is then our aim to show, on the one hand, that Clapeyron’s equation is, in fact,
the interfacial condition of compatibility for the Gibbs potential and, on the other hand,
that some of the original assumptions of its derivation can be weakened. It is not, in fact,
strictly necessary to require the equality of the Gibbs functions across the singular surface
as long as their difference is a function of time only or, in particular, a nonzero constant
along the interface. We present, in addition, a more general derivation of the equation
which allows for {dissipationless) motions in the bulk phases, for heat conduction across
and along the interface as well as the presence of curvature and of anisotropic surface
tension.

After some preliminary definitions in Sec. 2, we introduce a generalized form of Clapey-
ron’s equation in Sec. 3. In Sec. 4 it is shown that a more natural setting for the analysis
of surface effects is given by the classical Stefan problem while the appropriate thermo-
dynamical potential is now given by the Helmoltz free energy ¢. When the interface is
no longer flat, the influence of the curvature upon the melting temperature (the so-called
geometrical supercooling effect) is naturally recovered and an alternative expression for
it, without any recourse to linearization procedures, is given.

The results of Sec. 5 are of a qualitative nature. We first provide an estimate for
the average curvature of the interface and briefly discuss its relationship with the ther-
modynamical conditions along it. Section 6 contains a derivation of a decay law for the
latent heat of melting, that is, the quantity of heat released or absorbed during the phase
transition; for some class of processes this law shows an exponential decay related to,
among others quantities, the normal speed of the interface. The last section presents
an equation of evolution for the surface temperature in which the dependence upon the
normal speed of the interface is made explicit (the kinetic supercooling effect) and which
shows, in spite of some necessary restriction, the often intricate way in which all the
relevant thermomechanical variables interact during a solid-liquid phase transformation.

2. Preliminaries. Consider a regular surface S{t) (that is, a surface with a unique
normal vector at each point) moving in a domain D(t) during the interval of time (0, T).
At each instant of time, the surface S(t) divides the domain D(t) into two subregions
D*(t) and D (¢) whose common boundary is S(t) itself, such that

Dty =D () UD(t), S(t) =D (t)ND(2).
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In the euclidean space £ the surface S(t) admits the representation

x =y(p,t) (2.1)

where p are the parameters of the surface. For a given value of t € T, (2.1) defines a
surface on which p forms a curvilinear coordinate system. The velocity of the moving
surface S(t) at time ¢ is given by
_ oy
T

and the speed of §(¢) in the direction of the unit normal n is
U, =U-n.

A surface can be (locally) represented by an equation of the form

fly,t)=0 (2.2)
with y € S(¢). In terms of this representation
\Zi 1 af
n= VI 2.3
i %77 o 2

We shall assume, from now on, that the singular surface S(¢) is smooth enough to ensure
the global validity of the representation given by (2.2). If 3 is a function defined and
continuous in D¥ (¢) but discontinuous across the surface, we define
Yt = lim ¥(x,t), ¥~ = lim ¥(x,t), (2.4)
x—y*t x—y~
where the limits are taken along an arbitrary path from the interior of D" (¢) (or D~ (t))
to S(¢). We then define the discontinuity of i across the surface as

Wiy, t) =¢* -y~ (2.5)

and the average as
YT+
W)y, 1) =
The basic result in the theory of singular surfaces is due to Hadamard [3] which states
that if the function 1 is continuously differentiable in D™ (¢) and D~ (t), then also ¥
and v~ are differentiable on S(¢). We state the main lemma and refer the reader to
Truesdell and Toupin [5] or to the classical work of Hadamard [3] for the proof.

(2.6)

LEMMA. Let §(¢) be a singular surface for ¥(x,t) and let z = Z(s,t) be a smooth curve
on S(t) with curvilinear coordinate s. Then
Pt (aw) 0z

Os ox 783 (2.7)
ov- _ (o) on
ds  \Ix 9s’

where x is the spatial coordinate system.



COMPATIBILITY FOR THE SOLID-LIQUID INTERFACE 405

Taking the difference of (2.7.1) and (2.7.2) we obtain

ol _ [0v] oz
s [ax] Js (28)
while, by taking the sum and dividing by two
o) _ /Ov\ Oz
ds <6x> ds’ (2:9)

Equation (2.8), which is known as Hadamard’s lemma, can be rewritten as

grad[y)] - t = [grad ¢] - ¢

where t(s,t) is the tangent vector to the curve z and since it is valid for every ¢, it implies
that

0
[grad o] = grad[y] + [a—?ﬂ n (2.10)
where
ov_ov
on  Ox
In particular, if 9 is continuous across S(t), then it follows from (2.10) that
[grad y] = [g—:’f] n, (2.11)

which is better known as Maxwell’s theorem [5]. We now introduce the displacement
derivative (cf. Thomas [6]) given by

6y _ Oy oy

— = — —. 2.12

5 =3t “on (2.12)
The meaning of the displacement derivative is simple: given a function defined on the
singular surface, it gives the rate of change of the function as perceived by an observer
moving with the normal velocity of the surface itself. If we apply (2.12) to ¥ and ¥~
separately and subtract the result, we obtain

% = [%—ﬂ + Un, [%ﬂ : (2.13)

Clearly, a similar expression holds for the average. On the basis of a classification which,
to our knowledge, was first introduced by Thomas [6], Hadamard’s lemma and the dis-
placement derivative are, respectively, the geometrical and kinematical conditions of com-
patibility for the singular surface S(t). It is, however, necessary to take into account the
equations of balance and the constitutive equations for the material under consideration
in order to obtain the dynamical conditions whose validity, contrary to the previous ones,
holds only locally; hence, they will assure the possibility of propagation of a surface of
discontinuity only “in the small”.



406 F. BALDONI anp K. R. RAJAGOPAL

3. The generalized Clapeyron’s equation. Consider a system composed of a
liquid and a solid phase which, under suitable boundary conditions, is undergoing a
phase transformation process (from liquid to solid for example). The balance of mass,
linear momentum, and energy at the liquid-solid interface S(t) are given by (cf. Truesdell
and Toupin [5])

[p(vn — un)] =0, (3.1)
[p(vn — up)v] — [Tn] + dive Ts = 0, (3.2)
v|?
p(vn — un) e+ 5 +[g-Tv]:n=0, (3.3)
where v = v;t +v,n is the velocity of a particle on the singular surface, T = —pl1 4 T¢ is

the bulk stress tensor, q is the heat flux vector, divg is the surface divergence operator,
and Tgs is the surface stress tensor that we will assume to be given by

TS =01
where ¢ is the surface tension.! If we define the quantity
I'=p (v, —un)=p"(v) —un),

it follows from (3.2) and (3.3) that

[lon] — [Tn] - n = —20R, (3.4)
Tfy] — [Tn] -t = -t - Vo, (3.5)

2
F[e—i—%]—k[q—Tv]-n:O, (3.6)

where N is the mean curvature of the surface. To this set of equations we add the jump
statement of the second law which we shall assume to be in the form of the Clausius-
Duhem inequality which reads
-n
Tl + [qT] <0 (3.7)
where the temperature 6, from now on, will be assumed continuous across the singular
surface S(t). Let us now consider the case in which

T =—-pl

17t should be noticed that, with the necessary exception of the surface tension o, no additional
properties of the interface have been introduced. The interface is modeled essentially as a singular
surface in that, at an instant, a particle on the singular surface moves with a velocity different from
that of the singular surface. However, in those cases in which the interface S(t) is taken to represent a
material surface, interfacial properties like the surface density ps, surface entropy ns, etc., would have
to be posited (cf. Kosinski [7]).
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in the bulk phases while on the solid-liquid interface we will assume constant surface
tension. In this case, from (3.4), (3.5), and (3.6) we obtain

[p] = —20R — Tfun], (3.8)
[v)] = 0, (3.9)
r [54—%] +[g-n]+[pv,] =0 (3.10)

r [9} = [p(vn — un)), (3.11)
it follows from (3.8) and (3.10) that
v2
r [x + 7" - vnun] +[q-n] —20Ru, =0 (3.12)

where x = € + p/p is the enthalpy. Due to the continuity of u,, across the interface S(¢),
the following identity holds:

LR D Ol

2 2
so that, if we now subtract (3.7) from (3.12) we find

RY)
f“")] — 20Ruy > 0 (3.13)

r e

where ( is the Gibbs function. Let us now restrict our attention to the case of a perfectly
flat interface. We notice from (3.4) that

Llvn] = [p(vn — un)z]
so that (3.8) and (3.13) become

[P + p(vn — un)Q] =0,

r [c 4 M] > 0. (3.14)

Let

P =p+p(v, — un)2,

(vn — un)z.

E=e—
¢ 2
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From (3.14) then follows

Y] >0, (3.15)

where P 02
T=E+4+——-0n=(+—, (3.16)
P 2
and

U=u, — v,

is the speed of the interface relative to a fixed reference system. It is important to notice
that, in spite of our restriction on the stress tensor, the conditions of classical thermo-
statics do not obtain which would require both thermal and mechanical equilibrium in
the bulk phases though the values of variables such as pressure and density are allowed
to be different from one phase to another. In our case, since it is evident from (3.15) that
no such equilibrium has been postulated and, as a matter of fact, it could not be: heat
is conducted from the liquid to the solid phase and both phases are in motion. It is our
aim, however, to examine the behaviour of the solidifying system in the case in which

[Y] = g(t) #0, (3.17)

that is, when the jump in the (modified) Gibbs free energy of the two phases, which
still satisfies the inequality (3.15), is a function of time only. Toward this end, we apply
Hadamard’s lemma (2.8) to the function T which, in the bulk regions and on the basis
of the previous definitions, we will assume to be a function of 8(x,t), P(x,t), and U?.
We then have

SRR A R

By virtue of (3.17) the term on the left-hand side of (3.18) is zero. It is easy to show
moreover that, from the definition of jump and average of a function f, the following
identity holds:

[f1fo] = [f](f2) + ()] f2]. (3.19)

Using (3.19), we can rewrite (3.18) as
{55+ (G [+ 57 (o)l &
2
D )

and apply Hadamard’s lemma and (2.9) to the variables # and P : since they are contin-
uous across the interface, the second and fourth term in (3.20) will vanish such that

(516 [ ) - o

(3.20)
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However, from (3.16) we have

o _ac o _ec
00 08’ op Op’

and
or 0T 0 o 0T 0p, .0
so that {3.21) becomes
o) 08\ [ac (1, a0\ 7] foPY | [0 02
{[%] <ax> + (1+ g ) Usc| {5 =0 (3.22)

From the continuity of § and P across S(t) it also follows that

(0) = 6% =v(s,1),

(P) = P =P(s,1). (3:23)

Hence, applying (2.9) to # and P and by virtue of standard thermodynamic identities
for the function (6, p), (3.22) reduces to

09 1 P 19[U?]
[U]g - [p(l +pKTU2)] s 27 8s (3:24)
where 1 0p(0.p)
_ 1opY%p)
T = > op (3.25)

is the coefficient of isothermal compressibility. Clearly, in the limiting case of a static
interface (v, = 0) and in the absence of motion in the bulk phases (v, = 0) we have
P =p (and P = p) and (3.24) becomes

1] Op(s,t) . ,09(s,t)
l:/_)] ds =l ds

(3.26)

Equation (3.24) (or (3.26)) is the desired generalization of the classical Clapeyron’s equa-
tion (cf. Guggenheim [8]) but, despite the formal resemblance to its famous counterpart
from thermostatics, it is quite different from it. Equation (3.26) holds in the presence of
nonuniform fields of pressure, temperature, density, and velocity while Clapeyron’s equa-
tion is only valid under the condition of strict equilibrium (uniformity of every field). As
such, (3.26) provides the variation of the interface temperature as a function of the cor-
responding variation of pressure and interface speed along the singular surface and shows
that even in the presence of a constant pressure (along the interface) the surface tem-
perature can be varied by increasing (or decreasing) the velocity at which the process of
solidification is taking place.

When X # 0 and the surface tension is not constant the previous arguments can be
modified as follows. Without loss of generality, we will restrict our attention to the case
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I > 0. The condition given by (3.17) will still hold but the function ¢(¢) is now subject
to the constraint
I'g(t) > sup [20Nuy]|.
XES(t)

The function E and generalized pressure P are now given by

g lvoumP VP
2 2

P=p+plv—um]>=p+pV|®
Clearly, when o is not constant, Eq. (3.9) does not hold anymore but instead we have
F[Ut] =—t-Vo.
In this case it is a simple matter to show that (3.24) is replaced by

[]Qg_[ 1 JE)(P) 19V} < 1
Nas = |p(l+ pEr|V]®)| 8s 2 8s o(1+ pK7|V[2)

) 32 (2= (2.

(3.27)
For an anisotropic crystal the surface tension can vary with the surface temperature and
with the orientation of the crystal planes. Hence, since a given smooth surface can be
imbedded in a smooth family of surfaces, f = constant, we let

o =o(n,?9).

In the absence of the motion in the bulk phases, from (3.27) and the previous assumption

we obtain
09 1] 8(P) 1 On do On Qo Y
A 2({ = N[ = =) b, .
7] 55 [p] a5 <p> {083 * <3n s 99 05 (3:28)
In the two-dimensional case the singular surface reduces to a plane curve, and from the
first Frenet formula [9],

on
55 =
and from (3.28) we find

(-2 () 2 1) 22 o (1) (o2 ). o

4. The generalized Clapeyron’s equation for the Stefan problem. The gen-
erality of Eq. (3.27) is, to some extent, illusory. Certainly Eq. (3.27), which incorporates
curvature and anisotropy effects, already gives some information about the supercooling

effect, namely the variation of the freezing temperature with the curvature of the inter-
face. If, however, the singular surface has a nonzero curvature, as is apparent from (3.16),
a modified Gibbs free energy T which is independent of s is much less likely to appear:
if, in fact, the curvature is not constant, from (3.8) the jump in the pressure will depend
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upon the curvilinear coordinate s and, from (3.16), the jump in the modified Gibbs free
energy as well. An additional difficulty arises from the fact that, in the presence of a
nonzero curvature, the pressure field is no longer continuous across the interface and, as
apparent from (3.28), the variable P is replaced by the average (P) which, in general,
will depend upon the curvature of the interface. Thus, if we want to include curvature
effects into the basic physical framework and explicitly determine their influence, it is
necessary to modify the basic assumptions that lead to (3.15) and this can only be done
by allowing some degree of continuity in a dependent variable other than pressure.

An ideal setting which provides most of the previous requirements is given by the
Stefan model which postulates, as its basis, a negligible motion in the bulk phases. In
such a case (3.1), (3.4), (3.5), (3.6), and (3.7) reduce to

[p]un = 07 (4 1)

[p] = —20N, (4.2)

o = constant, (4.3)
—p*unfe] +[q-n] =0, (4.4)
—pFuafn) + [42] <. (45)

Since the normal velocity of the interface u, is generally different from zero, (4.1) tells us
that the density is continuous across the interface while, if we subtract (4.4) from (4.5)
we obtain

pun(¢] <0 (4.6)

where ¢ = ¢ — 67 is the Helmholtz free energy. It may then be of some interest to
explore, following the guidelines of the previous section, the case in which the jump in
the Helmoltz free energy is a nonzero function of time along the (now curved) interface
S(t).

We apply again Hadamard’s lemma (2.8) to the function ¢ which we will now suppose
to be a function of the temperature 6(x,t) and of the density p(x,t). We have

a¢ 00 O Op) Oz
b LRIV Z . 4.7
{[80 8x] + [apax 0Os (4.7)
Since both the temperature and the density are continuous across the interface, using
the same arguments as before and from (2.9) applied to 8 and p we find

¢ 99(s, 1) 09| 9p(s,t) _
[aeJ as [8,0] s O (48)
But
9¢(0,p) _ _ 9¢(6,0) _
L G dp 02’
so that, from (4.8) and (4.2) we obtain
99(s,t) __20R% Op(s, t) (4.9)

s Pl Os
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Equation (4.9) can be viewed as the counterpart, for the Stefan problem, of the general-
ized Clapeyron’s equation (3.24). Let us now apply Hadamard’s lemma to the pressure
p(8, p) : this gives

Olp] op| 89 _[dp] Op
Bs [ao] 9s [3,0 ds’ (4.10)
It is now easy to prove that
Op  pAc

where 3 is the coefficient of thermal expansion and Ac = ¢, — ¢, is the difference between
the specific heats at constant pressure and density, and by virtue of (4.2), Eq. (4.10) can

be rewritten as
Acl 09 1 Op _ ON
o + —20—.
,3 Js ds Js
If we now denote with D the determinant of the coefficients of the system given by (4.9)
and (4.12), that is,

(4.12)

D(9,R,s,t) = [2’;] [KT] 9 — R [Aﬁc} (4.13)

we need to consider two different cases.
If there exists an interval C* C C where the determinant D vanishes, from (4.13), we
obtain the interface temperature as

_20R [A !
[‘7’7] [ C] I:KT:| in C* (4.14)
while, from (4.12) and (4.9) we conclude that

ON

g:() inC*,

that is, R = f(¢) in the interval of interest. If we then substitute (4.14) into (4.9) and
take (4.3) and the previous results into account we find

5 () - (5[] ) »e

In the case in which D(d, N, s,¢) # 0, from (4.9) and (4.12) we obtain

09 209N on

8s  D(U,N,s,t)pds’ (4.15)
and 3 9 OR

p____plld R (4.16)

ds  D(9,X,s,t)p ds

Every coefficient in (4.15) and (4.16) is expected to depend upon the curvilinear coordi-
nates s and upon the time ¢; hence, unless this dependence is made explicit, the above
nonlinear system can, in general, be solved only by numerical means. However, some
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indications about the possible behaviour of the solutions, can be obtained by examining
a particular case in which all the thermomechanical variables appearing in (4.15) and
(4.16) are independent of ¢ with the additional constraint that

gR

Equations (4.15) and (4.16) then reduce to

ldp 1 dRx

& 4.1
pds 20[1/Kr) ds (4.17)
and &[] RN
_— = 17 —_——
ds = /Kl pds’ (4.18)
Hence, from (4.17) we obtain
1 /% 1 &R
p(s) = p(so) exp {—% /SO ma—qu} (4.19)

while (4.18) gives

- L R ) A0 S S L R
9s) = Dls) + 05 / /K] © p(2o ., WE] aqdq>Naud“' (4.20)

From (4.20) the interdependence between curvature and melting temperature becomes
explicit and it shows a somewhat unexpected feature: the average of the limiting values
of the density itself depends upon the geometry (curvature) of the interface. Equation
(4.20) moreover places no restriction upon the order of magnitude of the interfacial
curvature and differs from the linearizations usually adopted in the phase-transformations
literature.

5. An estimate for the average curvature. Consider the identity

Alg] = [8)(s,t) — [6)(s0,1) = / ’ %ds (5.1)

So

with s > s¢. It follows from (5.1) and from the Schwartz inequality that

(A[g])? < (/sj (%)2@) (s — sg). (5.2)

For the function ¢(6, p), Hadamard’s lemma. (2.8) reads
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1

By introducing the specific volume v = p~! we can rewrite (5.3) as

o) _ 09
g i (5.4)

We then substitute {5.4) into (5.2) and apply the Minkowski inequality to obtain

1/2

(A[8])? < (s — s0) (/s:[nﬁ(%)2ds>1/2+2a(/sou2<g:) ds) (5.5)

where (4.2) has been employed. It then follows from Hoélder’s inequality that

Q" ([eas) ( [ (g_ﬂ))
can (e ([ (52) )

If the thermal conductivity k is constant across the singular surface S(t) we also have

1/4

?;9 k(VO) -t =(kVO) -t = —(q)-t
and similarly
Op
35 (Vp) -t

such that, if we introduce the norm

-1l = ( / <>d) - (5.7)

we can rewrite (5.6) as

R {@WV IS (5.5)

(Vo) - tll L (s = s0)

The main conclusion we can draw from (5.8) is then the following: If equality were to hold

n (5.8), for a given (fixed) temperature and density field in the bulk phases, the average
curvature of the interface increases with the variation of the jump in the Helmholtz free
energy along the singular surface. Since, moreover, the condition

[(75](3’ t)=0

represents, for the Stefan problem, the condition of equilibrium between phases, any
departure from such a condition can be assumed as an approximate measure of the
degree of disequilibrium of the bulk phases.
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6. Spatial decay of the latent heat of melting. The energy equation for the

Stefan problem is given by the classical heat conduction equation, i.e.,

06
Pevgy = kAG.

(6.1)

If we assume that the specific heat at constant volume ¢, and the thermal conductivity
k are continuous across the singular surface S(t), by taking the jump of (6.1) across the

Since the temperature @ is continuous across S(t),

58]
T

so that, by definition of the displacement derivative,
), [0
ot  "|on]|’

It can then be shown that (cf. Chadwick and Powdrill [10])

s [2] 2],

Hence, from (6.2), (6.3), and (6.4) it follows that
pCy 001 8_29
(ZN k “") [(‘)n] - [8n2 ‘
However, using the identity (cf. Chadwick and Powdrill [10])
@ _—2U£ % _% % _+_u2 @
otz] "5t | On &t |on "lon? |’

equation (6.5) can be rewritten as

6T PCy o 1 bu, T Q
27 ¢ (E2u2 — 2Ry, + — 22 —
6t+<ku" 2Ry +un &)T—i—

o0 0%0
=7 ] =

We now want to consider the case in which

where

oT _
ot

0, u, = constant.

(6.2)
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It follows that
6T oT
— = Uy —.

ot on
We recall that if we define the metric tensor g on S(t) whose p-components are

gaﬂ = Yi.alig

the displacement derivative of the normal vector n is given by (cf. Truesdell and Toupin

[51) s

6—? = —g°Py qUn . (6.7)
If u,, 3 = 0, that is, if u, is constant on the surface S(t), then (6.7) and the definition of
the displacement derivative imply that the normal vector n is constant along the normal
trajectory, which means that the normal trajectories are straight lines. This in turn
implies that the family of surfaces {S(t)}ier will form a family of parallel surfaces. A
typical example of a similar situation is given by the polyhedral shapes where, in the
course of growth, the shape of the crystal is always similar to the original one. Let us
now suppose that at t = g the mean and Gaussian curvatures of the wavefront X(¢¢) are
given by Ng(s) and wy{s) respectively. Then, if the normal distance n is measured from

¥(tg), the mean curvature of S(t) is given by (cf. Thomas [11])

R(n,5) = Ro(s) — nwp(s)

T 2n(s) + e (s)’ o

By virtue of the previous results (6.6) becomes

oT Py Ry — nwy Q
2— —/ Uy — 2 n T — =0 :
on +( k u 1—2nN0+n2w0u +un (6.9)

where the dependence of the various coefficients in (6.9) upon s is understood. Since
n(tg) = ng = 0, we integrate (6.9) to obtain

Zo(s) exp( un " pey

- — d 6.10
(1 — 2nRg + n2wq)un/? 2 Jo Kk (n,s) n) (6.10)

T(n,s) = A(n,s) —

where A(n, s) is a particular integral of (6.9). Finally, from (4.2} and (4.4) we have
punlx] = —20Ru, + [q - n] = —20Ru, — k7T
and, from (6.10)

_kA(nys) 208 pot20% U / " G)dn
Pl p p(1 — 2nRy + n2wg)un/? o k7 ’

Xl(n, ) = :

(6.11)
which gives the decay law for the latent heat of melting [x]. The particular integral
A(n, s) will dominate the behaviour of the solution for large n while, in a neighborhood
of n = 0, the second and third term in (6.11) are the most significant. In such a range
and for a positive interface speed u,,, since the argument under the integral sign in (6.11)
is never negative, the latent heat decreases (at least) exponentially with the interface

speed u,, and with the norm of the kernel pc,/k.
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7. An equation of evolution for the interface temperature. Consider

and assume that, within the framework of the Stefan problem given by (4.1)-(4.5), the
Helmholtz free energy ¢ in the bulk phases is a function of temperature and density;
then, by arguments similar to those used in Sec. 3, we can rewrite (7.1) as

6l¢] _ _, ,8(6) . [20%] 8(p)
6t ] 5t p? | 6t
or, by using the property of continuity of # and p across the interface, as

) _ o0 20

where (8) = 9 and (p) = p. From Hadamard’s lemma however, we also have

olg] 09 208 0p
ds Y ds  p? Os’ (73)
If we now cross differentiate (7.2) and (7.3) and subtract the final result we find
20 0Rép 20 0pR  I[n] 89 6[7)]@_0' (7.4)

p28s 6t p2Osbét s 6t 6t Bs

Notice that in the absence of curvature, (7.4) admits the solution (cf. Courant and Hilbert

(12])
9 = 9([n]).

It follows from (7.2), (7.3), and (7.4) that
oK 69 6Ko9 11

D56t 5t Bs N (7:5)
where
_ orsle]_ nalg
Os N&t 6t Os (7.6)
K=In—.
7]
If we introduce the velocity V. defined as
oK oK
v=(%)/ (%)
from (7.5) we obtain
Y b4 oy I (oK'
5t_+un%_ cg—N—[n]‘(g) =1I". (7.7)
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Equation (7.6), whose form strongly resembles a transport equation, can be solved for
the unknown interface temperature ¢ only if the functional form of [¢] is known. To this
end, consider the case in which the quantity [¢] is conserved, that is,

d

— dsS =0 7.8
7 ol (78)

for every S(t). Since, as we already remarked, the jump in the Helmholtz free energy can
be taken to represent the driving force of the interfacial motion (recall that the condition
[¢] = 0 gives an interface in equilibrium) the case given by (7.8) may describe an interface
steadily driven throughout the field or, in other words, two bulk phases which, in spite
of their relative growth, preserve the same difference in the Helmoltz free energy with
each other.

From the transport theorem for singular surfaces, suitably simplified due to the zero
velocity of the particles on the singular surface (cf. Kosinski [7]), we have

/S(t) (%(f] B QNun[d’]) dS =0

or, since the surface S(t) is arbitrary

6[¢] _
5~ Mugfg] = 0. (7.9)
Notice that (7.9) admits the equilibrium solution [¢] = 0.

Let the surface S(t) be given by x = ¢(s,t). Then, for a function f(s,t), we have

Of(s,t) _ 8fld(s,t).1] Ofl(s,t),t] _ &flp(s,t), 1]

a0 ot YT e T &

where

0 0
) =m0
We set [¢] = ®(s,t) and obtain the solution of (7.9) in the form

B(s,t) = (s, 0)e2 fo Rundt’, (7.10)

On setting 6 = 6(s,t) we can rewrite (7.7) as

06 00
s Vels t) o = * y Y ) A1
5 V(St)(?s 7 (s,t) (7.11)
For t close to zero, we shall approximate (7.11) by

o0 a0
5 = = *(s,0). (7.12)

Now, suppose that
0= 61(s,t) + 02(s). (7.13)
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On substituting (7.13) into (7.12), we obtain

00, 00, 96,
= _/ _ = =g* . .14
DL V(s ) T~ Vils,0) 2 = 77 (5,0) (714)
We can ensure (7.14) provided
00, - 86,
— — = 1
VC(S,O)(Z—O; = —7*(s,0). (7.16)

Thus, for V.(s,0) # 0, the solution of (7.12) will be given by

= ds’ 7*(s',0) ,,
B(s,t) = t - 1
(6:8) =8 ( +/ vc<s’,0>) / Vi(s,0) ™ (7.17)
where O is an arbitrary function of the argument.
It follows from (7.6.2), (7.9}, (6.8), and (7.13) that

(0,0, s) = —uy {wo agi]o + %(MON%)} {[Tl]o% - No <%’]>0}_1 . (718)

The two terms that appear in (7.18) contain the basic quantities upon which the in-
terface temperature ¢ is expected to depend: the curvature R, the entropy of melting [n],
and the interface speed u,. The first term, which we may call the kinematical contri-
bution, takes into account the variation of the surface temperature due to the motion of
the surface, and its wave-like form shows that the surface temperature propagates along
a characteristic.

The second term, or the geometrical contribution, depends exclusively upon the surface
properties and on the normal speed w,. Equation (7.18) provides an expression for the

dependence of the interface temperature upon s under conditions away from equilibrium
and shows, moreover, that the kinetic supercooling can be included in the formulation
of the Stefan problem within the framework of continuum thermomechanics.
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