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Conditions of Parallelism of ∗-Ricci Tensor of Three Dimensional Real

Hypersurfaces in Non-flat Complex Space Forms

Georgios Kaimakamis* and Konstantina Panagiotidou

Abstract. This paper focuses on the study of three dimensional real hypersurfaces in

non-flat complex space forms whose ∗-Ricci tensor satisfies conditions of parallelism.

More precisely, results concerning real hypersurfaces with vanishing, semi-parallel and

pseudo-parallel ∗-Ricci tensor in complex hyperbolic space are provided. Furthermore,

new results concerning ξ-parallelism of ∗-Ricci tensor of real hypersurfaces in non-flat

complex space forms are presented.

1. Introduction

A complex space form is an n-dimensional Kähler manifold of constant holomorphic sec-

tional curvature c. A complete and simply connected complex space form is complex

analytically isometric to complex projective space CPn if c > 0 or to complex Euclidean

space C
n if c = 0 or to complex hyperbolic space CHn if c < 0. The complex projective

and hyperbolic spaces are called non-flat complex space forms and the symbol Mn(c),

c 6= 0, is used to denote them if it is not necessary to distinguish them. The complex

projective space CPn is of constant holomorphic sectional curvature c = 4 and the com-

plex hyperbolic space CHn is of constant holomorphic sectional curvature c = −4. In this

paper we are focused on the study of real hypersurfaces in CP 2 and CH2, so c 6= 0. The

case of c = 0 is not investigated in this study, but it would be of high interest, since the

formulas will change and different methods are used.

A real hypersurface M is an immersed submanifold with real co-dimension one in

Mn(c). The Kähler structure (J,G), where J is the complex structure and G is the

Kähler metric of Mn(c), induces on M an almost contact metric structure (ϕ, ξ, η, g),

which consists of the tensor field of type (1, 1) ϕ called structure tensor, the 1-form η, the

vector field ξ called structure vector field and the induced Riemannian metric g (for more

details on the definitions of the latter see Section 2). A real hypersurface is called Hopf
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hypersurface when the structure vector field ξ is an eigenvector of the shape operator

A at every point of the real hypersurface M with corresponding pointwise eigenvalue

α = g(Aξ, ξ).

The study of real hypersurfaces M in Mn(c) was initiated by Takagi, who classified

homogeneous real hypersurfaces in CPn and divided them into six types, namely (A1),

(A2), (B), (C), (D) and (E) in [17]. These real hypersurfaces are Hopf ones with constant

principal curvatures. In the case of CHn the study of real hypersurfaces with constant

principal curvatures was initiated by Montiel in [11] and completed by Berndt in [1]. They

are divided into two types, namely (A) and (B), depending on the number of constant

principal curvatures and they are homogeneous and Hopf hypersurfaces.

Real hypersurfaces in non-flat complex space forms in terms of certain geometric con-

ditions have been studied by many geometers. An important condition is that of the shape

operator A commuting with the structure tensor field ϕ. The following Theorem has been

proved and is due to Okumura [14] for the case of CPn and to Montiel and Romero [12]

for the case of CHn.

Theorem 1.1. Let M be a real hypersurface of Mn(c), n ≥ 2. Then Aϕ = ϕA, if and only

if M is locally congruent to a homogeneous real hypersurface of type (A). More precisely,

in case of CPn,

(A1) a geodesic hypersphere of radius r, where 0 < r < π/2,

(A2) a tube of radius r over a totally geodesic CP k, (1 ≤ k ≤ n− 2), where 0 < r < π/2.

In case of CHn,

(A0) a horosphere in CHn, i.e., a Montiel tube,

(A1) a geodesic hypersphere or a tube over a totally geodesic complex hyperbolic hyperplane

CHn−1,

(A2) a tube over a totally geodesic CHk, (1 ≤ k ≤ n− 2).

Generally, the Ricci tensor S of a Riemannian manifold is given by the relation

S(X,Y ) = trace {Z → R(Z,X)Y } ,

where X, Y are tangent vectors on M . The definition is the same for real hypersurfaces

in non-flat complex space forms. Real hypersurfaces in Mn(c), n ≥ 2, in terms of their

Ricci tensor satisfying geometric conditions such as parallelism and commutativity with

other tensor fields of real hypersurfaces, have been studied. A review of known results

concerning the Ricci tensor of the real hypersurfaces can be viewed in [13].
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In [3] Hamada, motivated by Tachibana’s work in [16], where the ∗-Ricci tensor of

almost Hermitian manifolds was defined, introduced the latter notion in case of real hy-

persurfaces in non-flat complex space forms. Therefore, the ∗-Ricci tensor S∗ of real

hypersurfaces in non-flat complex space forms is given by

S∗(X,Y ) =
1

2
trace(Z → R(X,ϕY )ϕZ)

for any vector fields X, Y tangent to M (ϕ is defined in Section 2).

Due to the work that has been done in case of studying real hypersurfaces in terms of

their Ricci tensor, the authors have started studying real hypersurfaces in non-flat complex

space forms in terms of their ∗-Ricci tensor. More precisely, in [8] real hypersurfaces in

M2(c), c 6= 0 with parallel ∗-Ricci tensor, i.e., (∇XS∗)Y = 0, for any tangent vectors X,

Y to M were classified. In [7] real hypersurfaces in complex projective space CP 2 whose
∗-Ricci tensor is (1) semi-parallel, i.e., (R(X,Y ) · S∗)Z = 0, and (2) pseudo-parallel i.e.,

(R(X,Y ) · S∗)Z = L {[(X ∧ Y ) · S∗]Z}, where L is a nowhere vanishing function, have

been studied.

It has been proved for the case of real hypersurfaces with semi-parallel ∗-Ricci tensor

it has been proved

Theorem 1.2. There do not exist real hypersurfaces M in CP 2, whose ∗-Ricci tensor is

semi-parallel.

In the case of real hypersurfaces with pseudo-parallel ∗-Ricci tensor it has been proved

Theorem 1.3. Every real hypersurface M in CP 2, whose ∗-Ricci tensor is pseudo-parallel

is a Hopf hypersurface. More precisely, M is locally congruent

• either to a geodesic hypersphere of radius r, where 0 < r < π/2, and L = cot2(r),

• or to a non-homogeneous real hypersurface, which is considered as a tube of radius

π/4 over a holomorphic curve and L = 1.

In this paper first we complete the work in [7] by studying real hypersurfaces in complex

hyperbolic space CH2 with (1) semi-parallel ∗-Ricci tensor, and (2) pseudo-parallel ∗-Ricci

tensor. More specifically, we provide a detailed proof of Propositions 2 and 3 in [7] and

we study Hopf hypersurfaces in CH2 satisfying the above geometric conditions. The

combination of the new results with Theorems 1.2 and 1.3 implies the following results.

Theorem 1.4. The only real hypersurface in any M2(c), c 6= 0, with semi-parallel ∗-Ricci

tensor is the geodesic hypersphere of radius r satisfying coth(r) = 2 in CH2.

Theorem 1.5. Every real hypersurface in M2(c), c 6= 0, with pseudo-parallel ∗-Ricci

tensor is a Hopf hypersurface. Furthermore, M is locally congruent to either a real hyper-

surface of type (A) or to a Hopf hypersurface satisfying relation Aξ = 0, with L constant.
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Furthermore, in this paper it is first examined if there are three-dimensional real

hypersurfaces in M2(c), c 6= 0, whose ∗-Ricci tensor is ξ-parallel, i.e.,

(∇ξS
∗)X = 0 for any tangent vector X on M.(1.1)

The following theorem is proved.

Theorem 1.6. Every real hypersurface in M2(c), c 6= 0, with ξ-parallel ∗-Ricci tensor

is a Hopf hypersurface. Moreover, M is locally congruent to (i) a real hypersurface of

type (A) or (ii) to a real hypersurface of type (B) or (iii) to a Hopf hypersurface whose

principal curvatures corresponding to the holomorphic distribution are non-constant and

the derivative of them in the direction of ξ is equal to zero.

This paper is organized as follows: In Section 2 basic relations and results about real

hypersurfaces in M2(c) are given. In Section 3 analytic proofs of Theorems 1.4 and 1.5

are presented. Finally, in Section 4 proof of Theorem 1.6 is provided.

2. Preliminaries

Throughout this paper all manifolds, vector fields, etc. are assumed to be of class C∞ and

all manifolds are assumed to be connected.

Let M be a real hypersurface without boundary immersed in a non-flat complex space

form (Mn(c), G) with complex structure J of constant holomorphic sectional curvature c.

Let N be a locally defined unit normal vector field on M and ξ = −JN be the structure

vector field of M . The shape operator A of the real hypersurface M in Mn(c) with respect

to N is defined by

∇XN = −AX.

For any vector field X tangent to M relation

JX = ϕX + η(X)N

holds, where ϕX and η(X)N are respectively the tangential and the normal component

of JX. The Riemannian connections ∇ in Mn(c) and ∇ in M satisfy the relation

∇XY = ∇XY + g(AX, Y )N,

where g is the Riemannian metric induced from the metric G and for any vector fields X,

Y on M .

The real hypersurface is equipped with an almost contact metric structure (ϕ, ξ, η, g),

that is induced by J of Mn(c), where ϕ is a tensor field of type (1, 1) and η is a 1-form.
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The following relations hold:

g(ϕX, Y ) = G(JX, Y ), η(X) = g(X, ξ) = G(JX,N),

ϕ2X = −X + η(X)ξ, η ◦ ϕ = 0, ϕξ = 0, η(ξ) = 1,

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), g(X,ϕY ) = −g(ϕX, Y ).

Moreover, J being parallel implies ∇J = 0 and this leads to

∇Xξ = ϕAX and (∇Xϕ)Y = η(Y )AX − g(AX, Y )ξ.

The ambient space Mn(c) is of constant holomorphic sectional curvature c and this results

in Gauss and Codazzi equations are respectively given by

R(X,Y )Z =
c

4

[

g(Y, Z)X − g(X,Z)Y + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY

− 2g(ϕX, Y )ϕZ
]

+ g(AY,Z)AX − g(AX,Z)AY,
(2.1)

(∇XA)Y − (∇Y A)X =
c

4
[η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ] ,(2.2)

where R denotes the Riemannian curvature tensor on M and X, Y , Z are any vector fields

on M .

The tangent space TPM at every point P ∈ M is decomposed as

TPM = span {ξ} ⊕ D,

where D = ker η = {X ∈ TPM : η(X) = 0} and is called (maximal) holomorphic distribu-

tion (if n ≥ 3). Due to the above decomposition the vector field Aξ can be written

Aξ = αξ + βU,

where β = |ϕ∇ξξ| and U = − 1
β
ϕ∇ξξ ∈ ker(η) is a unit vector field.

If β = 0 at every point P of M then ξ is an eigenvector of the shape operator and M

is a Hopf hypersurface. If β 6= 0 in the neighborhood of every point P of M then M is

called non-Hopf real hypersurface.

Let M be a non-Hopf real hypersurface in M2(c) and P a point of M with local

orthonormal basis {U,ϕU, ξ}. Then the following lemma holds.

Lemma 2.1. Let M be a non-Hopf real hypersurface in M2(c). The following relations

hold in the neighborhood of P :

(2.3)

AU = γU + δϕU + βξ, AϕU = δU + µϕU, Aξ = αξ + βU.

∇Uξ = −δU + γϕU, ∇ϕUξ = −µU + δϕU, ∇ξξ = βϕU,

∇UU = κ1ϕU + δξ, ∇ϕUU = κ2ϕU + µξ, ∇ξU = κ3ϕU,

∇UϕU = −κ1U − γξ, ∇ϕUϕU = −κ2U − δξ, ∇ξϕU = −κ3U − βξ,

where α, β, γ, δ, µ, κ1, κ2, κ3 are smooth functions on M .
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Remark 2.2. The proof of Lemma 2.1 is included in [15].

The Codazzi equation (2.2) for X ∈ {U,ϕU} and Y = ξ because of Lemma 2.1 implies

ξδ = αγ + βκ1 + δ2 + µκ3 +
c

4
− γµ− γκ3 − β2,(2.4)

(ϕU)α = αβ + βκ3 − 3βµ,(2.5)

(ϕU)β = αγ + βκ1 + 2δ2 +
c

2
− 2γµ+ αµ,(2.6)

and for X = U and Y = ϕU ,

(2.7) Uδ − (ϕU)γ = µκ1 − κ1γ − βγ − 2δκ2 − 2βµ.

Since in Gauss and Codazzi equation there is c/4 instead of c and n = 2, the ∗-Ricci

tensor of M in M2(c) becomes

(2.8) S∗X = −[cϕ2X + (ϕA)2X] for X ∈ TM.

If M is a non-Hopf real hypersurface in M2(c) and {U,ϕU, ξ} is a local orthonormal basis

of it at some point P , the ∗-Ricci tensor for X ∈ {U,ϕU, ξ} due to (2.3) and (2.8) takes

the form

(2.9) S∗ξ = βµU − βδϕU, S∗U = (c+ γµ− δ2)U and S∗ϕU = (c+ γµ− δ2)ϕU.

Finally, the following theorem, which in the case of CPn is owed to Maeda [10] and in

the case of CHn is owed to Ki and Suh [9] (also Corollary 2.3 in [13]), is provided.

Theorem 2.3. Let M be a Hopf hypersurface in Mn(c), n ≥ 2. Then

(i) α = g(Aξ, ξ) is constant.

(ii) If W is a vector field which belongs to D such that AW = λW , then

(

λ−
α

2

)

AϕW =

(

λα

2
+

c

4

)

ϕW.

(iii) If the vector field W satisfies AW = λW and AϕW = νϕW then

(2.10) λν =
α

2
(λ+ ν) +

c

4
.

Remark 2.4. In case of three-dimensional Hopf hypersurfaces we can always consider a

local orthonormal basis {W,ϕW, ξ} at some point P ∈ M such that AW = λW and

AϕW = νϕW (see [4,6]). Thus, relation (2.10) holds. Furthermore, the ∗-Ricci tensor for

X ∈ {W,ϕW, ξ} satisfies the relation

(2.11) S∗ξ = 0, S∗W = (c+ λν)W and S∗ϕW = (c+ λν)ϕW.
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3. Proofs of Theorems 1.4 and 1.5

Before proving Theorems 1.4 and 1.5 the extension of Theorem 5 in [7] in case of real

hypersurfaces in CH2 is given. More precisely, the following theorem is obtained.

Theorem 3.1. The only real hypersurface in M2(c) with vanishing ∗-Ricci tensor is the

geodesic hypersphere of radius r satisfying coth(r) = 2 in CH2.

In order to prove that every real hypersurface in M2(c), with vanishing ∗-Ricci tensor,

i.e., S∗X = 0, for any X ∈ TM is a Hopf one, we follow the same steps as in the proof of

Theorem 5 in [7]. The case of Hopf hypersurfaces in CP 2 with vanishing ∗-Ricci tensor is

also included in the above proof. Hence, the case of Hopf hypersurfaces in CH2 remains

to be examined, so that the proof of Theorem 3.1 of the present paper is completed.

Since M is a Hopf hypersurface in M2(c) Theorem 2.3 and Remark 2.4 hold. Since

S∗ = 0 relation (2.11) implies that

c+ λν = 0.

The above relation, taking into account relation (2.10), yields that the real hypersurface

has constant principal curvatures and this leads to the conclusion that a three-dimensional

Hopf hypersurface with vanishing ∗-Ricci tensor is locally congruent to a real hypersurface

of type (A) or type (B).

The eigenvalues which correspond to three-dimensional Hopf hypersurfaces in CH2

according to [1,2], after making the necessary adjustments since instead of c we have c/4,

are displayed in the following table. The type (A1,1) refers to a geodesic hypersphere and

the type (A1,2) refers to a tube over a totally geodesic complex hyperbolic hyperplane

CH1. Moreover, α, λ and ν are the principal curvatures corresponding to ξ and the

holomorphic distribution respectively, and mα, mλ and mν are their multiplicities.

Type α λ ν mα mλ mν

(A0) 2 1 − 1 2 −

(A1,1) 2 coth(2r) coth(r) − 1 2 −

(A1,2) 2 coth(2r) tanh(r) − 1 2 −

(B) 2 tanh(2r) tanh(r) coth(r) 1 1 1

Substitution of the above eigenvalues in relation c+λν = 0 and because of c = −4 leads

to the conclusion that only the eigenvalues of the geodesic hypersphere satisfies the latter.

Furthermore, the radius r of the geodesic hypersphere satisfies the relation coth(r) = 2.
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3.1. Semi-parallel ∗-Ricci tensor and proof of Theorem 1.4

The ∗-Ricci tensor is called semi-parallel when (R(X,Y ) · S∗)Z = 0, where R is the

Riemannian curvature, which acts as derivation on S∗. More analytically, the above

relation is written

(3.1) R(X,Y )S∗Z = S∗(R(X,Y )Z)

for any vector fields X, Y and Z tangent to M .

Let N be the open subset of M such that

N = {P ∈ M : β 6= 0 in a neighborhood of P} .

The inner product of relation (3.1) for X = U , Y = ϕU and Z = U with ϕU , due to

(2.1) and (2.9) yields

g(AU,ϕU) = g(AϕU,U) = δ = 0,

and relation (2.9) becomes

(3.2) S∗ξ = βµU, S∗U = (c+ γµ)U and S∗ϕU = (c+ γµ)ϕU.

Furthermore, relation (3.1) for X = ϕU , Y = ξ and Z = ϕU due to (2.1) and (3.2)

implies

µ
( c

4
+ αµ

)

= 0 and (c+ γµ)
( c

4
+ αµ

)

= 0.

Suppose that c/4 6= −αµ then the first of the above relations implies that µ = 0 and

the second due to the latter results in c = 0, which is a contradiction.

Therefore, on N relation c/4 + αµ = 0 holds. The inner product of the relation (3.1)

for X = U , Y = ξ and Z = U with U because of (2.1) and (3.2) yields

µ
( c

4
+ αγ − β2

)

= 0.

If c/4+αγ 6= β2 then we obtain µ = 0 and relation c/4+αµ = 0 leads to c = 0, which

is a contradiction. So on N relation c/4 + αγ = β2 holds.

The structure Jacobi operator l = Rξ of a real hypersurface in Mn(c), n ≥ 2, is given

by

lX = RξX = R(X, ξ)ξ.

In the case of non-Hopf hypersurfaces M in M2(c), taking into account relations (2.1) and

(2.3), the structure Jacobi operator is given by

lU =
( c

4
+ αγ − β2

)

U + αδϕU, lϕU = αδU +
( c

4
+ αµ

)

ϕU and lξ = 0.
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Since δ = 0, c/4 + αµ = 0 and c/4 + αγ = β2 we obtain

lU = lϕU = lξ = 0.

It is known that real hypersurfaces do not exist in Mn(c), n ≥ 2, with vanishing

structure Jacobi operator (see Lemma 9 in [4]). Thus, N is empty and the following

proposition is proved.

Proposition 3.2. Every real hypersurface in M2(c) whose
∗-Ricci tensor is semi-parallel

is a Hopf hypersurface.

Since M is a Hopf hypersurface, Theorem 2.3 and Remark 2.4 hold. The case of

Hopf hypersurfaces in CP 2 with semi-parallel ∗-Ricci tensor has been studied in [7]. It

remains to examine if there are Hopf hypersurfaces in CH2 with semi-parallel ∗-Ricci

tensor. Relation (3.1) for X = W , Y = ξ and Z = W and for X = ϕW , Y = ξ and

Z = ϕW because of relations (2.1) and (2.11) implies

(3.3) (λν − 4)(αλ− 1) = 0 and (λν − 4)(αν − 1) = 0.

Combination of the above relations implies that

α(λ− ν)(4− λν) = 0.

Suppose that α(λ − ν) = 0, then we have two cases either α = 0 or λ = ν. If α = 0

then relation (2.10) implies λν = −1. Substitution of the latter relation in the first of

(3.3) leads to −5 = 0, which is a contradiction. If λ = ν, then the shape operator A

commutes with the structure tensor ϕ and because of Theorem 1.1 M is locally congruent

to a real hypersurface of type (A). Moreover, combining relations (2.10) and the first of

(3.3) results in λ2(λ2− 4) = 0. Because of the table in Section 3 we conclude that λ2 = 4.

This occurs in case of geodesic hypersphere in CH2.

Finally, if λν = 4 then relation (2.11) implies that the ∗-Ricci tensor vanishes and

because of Theorem 3.1 it is concluded thatM is a geodesic hypersphere and this integrates

the proof of Theorem 1.4.

3.2. Pseudo-parallel ∗-Ricci tensor and proof of Theorem 1.5

The ∗-Ricci tensor is called pseudo-parallel when (R(X,Y ) · S∗)Z = L {[(X ∧ Y ) · S∗]Z},

where R is the Riemannian curvature and acts as derivation on S∗ and L is a nowhere

vanishing function. More analytically, the above relation is written as

R(X,Y )S∗Z − S∗(R(X,Y )Z)

= L {g(Y, S∗Z)X − g(X,S∗Z)Y − S∗[g(Y, Z)X − g(X,Z)Y ]}
(3.4)
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for any vector fields X, Y and Z tangent to M .

We consider N to be the open subset of M such that

N = {P ∈ M : β 6= 0 in a neighborhood of P} .

The inner product of relation (3.4) for X = U , Y = ϕU and Z = U with ϕU because

of (2.1) and (2.9) yields

δ = 0,

and relation (2.9) becomes

(3.5) S∗ξ = βµU, S∗U = (c+ γµ)U and S∗ϕU = (c+ γµ)ϕU.

Relation (3.4) for X = U , Y = ϕU and Z = ξ because of (2.1) and (3.5) yields

µ = 0.

Moreover, relation (3.4) for X = ϕU , Y = ξ and Z = ϕU due to (2.1) and (3.5) implies

c

4
= L.

Relation (3.4) for X = U , Y = ξ and Z = U due to (2.1), (3.5), µ = 0 and c/4 = L

yields

αγ = β2.

On N relation (2.4), (2.5), (2.6) and (2.7) because of δ = µ = 0 become

γκ3 = βκ1 +
c

4
, (ϕU)α = β(α+ κ3), (ϕU)β = β2 + βκ1 +

c

2
, (ϕU)γ = κ1γ + βγ.

Differentiation of αγ = β2, with respect to ϕU and taking into account all the above

relations, results in c = 0, which is a contradiction.

Thus, N is empty and the following proposition is proved.

Proposition 3.3. Every real hypersurface in M2(c) whose
∗-Ricci tensor is pseudo-parallel

is a Hopf hypersurface.

Since M is a Hopf hypersurface, Theorem 2.3 and Remark 2.4 hold. The case of Hopf

hypersurfaces in CP 2 with pseudo-parallel ∗-Ricci tensor has been studied in Theorem 3

in [7]. It remains the case of Hopf hypersurfaces in CH2. Relation (3.4) for X = W ,

Y = ξ and Z = W because of relations (2.1) and (2.11) implies

(λν − 4)(αλ− 1− L) = 0.

Suppose that λν = 4, then relation (2.11) yields S∗X = 0 for any vector fieldX tangent

to M . The only real hypersurface with vanishing ∗-Ricci tensor because of Theorem 3.1

is the geodesic hypersphere in CH2 with coth(r) = 2.
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Next the case L = αλ − 1 is examined. Relation (3.4) for X = ϕW , Y = ξ and

Z = ϕW because of (2.1) and (2.11) implies

(λν − 4)(αν − 1− L) = 0.

Suppose that λν = 4, then relation (2.11) implies that S∗ = 0 and due to Theorem 3.1

M is geodesic hypersphere. Secondly, if L = αν − 1 combination of the latter relation

with L = αλ− 1 results in

α(λ− ν) = 0.

Thus, on M either α = 0 or λ = ν. If α = 0 then M is locally congruent to a real

hypersurface in CH2 with Aξ = 0 (for the construction of these real hypersurfaces see [5]).

If λ = ν it implies that the shape operator A commutes with the structure tensor ϕ and

because of Theorem 1.1 it is concluded that M is locally congruent to a real hypersurface

of type (A) in CH2.

Conversely, it is easily proved that the latter real hypersurfaces in CH2 have pseudo-

parallel ∗-Ricci tensor and that L is constant given by L = αλ− 1. Furthermore, substi-

tution of the eigenvalues of table in Section 3 implies the following

• if M is locally congruent to a horosphere then L = 1,

• if M is locally congruent to geodesic hypersphere then L = coth2(r), where r > 0,

• if M is locally congruent to tube over CH1 then L = tanh2(r), where r > 0,

• if M is locally congruent to Hopf hypersurface with α = 0 then L = −1.

4. Proof of Theorem 1.6

LetM be a real hypersurface inM2(c) whose
∗-Ricci tensor is ξ-parallel. More analytically,

relation (1.1) is written as

(4.1) ∇ξ(S
∗X) = S∗(∇ξX) for any X ∈ TM.

Let N be the open subset of M such that

N = {P ∈ M : β 6= 0 in a neighborhood of P} .

On N the inner product of relation (4.1) for X = ξ with ξ and ϕU because of (2.9)

and relations of Lemma 2.1 implies respectively

(4.2) δ = 0 and µκ3 = c+ γµ.
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Hence, relation (2.9) becomes

(4.3) S∗ξ = βµU, S∗U = (c+ γµ)U and S∗ϕU = (c+ γµ)ϕU.

The inner product of relation (4.1) for X = ϕU with U due to relation (4.3) and

relations of Lemma 2.1 yields

µ = 0.

Substitution of the above relation in the second of (4.2) results in c = 0 which is a

contradiction. Therefore, the following proposition has been proved.

Proposition 4.1. Every real hypersurface in M2(c) with ξ-parallel ∗-Ricci tensor is a

Hopf hypersurface.

Since M is a Hopf hypersurface Theorem 2.3 and Remark 2.4 hold. Using the fact

stated in Remark 2.4 and taking notice that

∇ξW = κϕW and ∇ξϕW = −κW,

relation (2.2) for X = ξ and Y = W and for X = ξ and Y = ϕW implies respectively

ξ(λ) = 0 and ξ(ν) = 0.

Relation (2.4) taking into account (2.10) yields

(λ− ν)
(α

2
− κ

)

= 0.

If λ = ν, then Aϕ = ϕA. The last relation because of Theorem 1.1 implies that M is

locally congruent to a real hypersurface of type (A).

If λ 6= ν, then since M is a three-dimensional real hypersurface we have two cases:

Case 1: λ or ν is constant. In this case, if one of them is constant, then relation (2.10)

implies that the other one is also constant. So, the real hypersurface is locally congruent

to a real hypersurface of type (B) both in CP 2 and CH2. So, the ∗-Ricci tensor of real

hypersurfaces of type (B) is ξ-parallel.

Case 2: both λ and ν are non-constant. In this case the Hopf hypersurface satisfies

the relations

ξ(λ) = 0, ξ(ν) = 0 and κ =
α

2
.

Furthermore, the inner product of relation (2.2) for X = W and Y = ϕW with W and

ϕW results in respectively

ϕW (λ) = (λ− ν)g(∇WW,ϕW ) and W (ν) = (λ− ν)g(∇ϕWW,ϕW ).
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Therefore, the ∗-Ricci tensor of Hopf hypersurfaces with non-constant principal curva-

tures λ and ν, which satisfy all the above relations, have ξ-parallel ∗-Ricci tensor. Specific

examples of such real hypersurfaces are Hopf hypersurfaces with Aξ = 0, which in the

case of CP 2 is a tube of radius of radius r = π/4 over a holomorphic curve and in the case

of CH2 it was first constructed in [5]. This integrates the proof of Theorem 1.6.
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