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Conditions under which Velocity-Weakening Friction Allows 

a Self-healing versus a Cracklike Mode of Rupture 

by Gutuan Zheng and James  R. Rice  

Abstract Slip rupture processes on velocity-weakening faults have been found in 

simulations to occur by two basic modes, the expanding crack and self-healing 

modes. In the expanding crack mode, as the rupture zone on a fault keeps expanding, 

slip continues growing everywhere within the rupture. In the self-healing mode, 

rupture occurs as a slip pulse propagating along the fault, with cessation of slip behind 

the pulse, so that the slipping region occupies only a small width at the front of the 

expanding rupture zone. 

We discuss the determination of rupture mode for dynamic slip between elastic 

half-spaces that are uniformly prestressed at background loading level r0 b outside a 

perturbed zone where rupture is nucleated. The interface follows a rate and state law 

such that strength z-strength approaches a velocity-dependent steady-state value z-s,(V) 

for sustained slip at velocity V, where dz-ss(V)/dV <= 0 (velocity weakening). By 

proving a theorem on when a certain type of cracklike solution cannot exist, and by 

analyzing the results of 2D antiplane simulations of rupture propagation for different 

classes of constitutive laws, and for a wide range of parameters within each, we 

develop explanations of when one or the other mode of rupture will result. The 

explanation is given in terms of a critical stress level z-pulse and a dimensionless 

velocity-weakening parameter T that is defined when ro b --> z-pulse. Here Z'puls e is the 

largest value of z0 b satisfying z-o b - (,u/2c)V <- Ls(V) for all V > 0, where ,u is the 

shear modulus and c is the shear wave speed. Also, T = [-dz-~(V)/dV]/(,u/2c) eval- 

uated at V = Vdyna , which is the largest root of z-o b - (,u/2c)V = rs~(V); T = 1 at 

z-b = Z-pulse, and T diminishes toward 0 as z-o b is increased above z-pulse- 

We thus show that the rupture mode is of  the self-healing pulse type in the low- 

stress range, when z-o b < z-pulse o r  when Zo b is only slightly greater than z- pulse, such 

that T is near unity (e.g., T > 0.6). The amplitude of slip in the pulse diminishes 

with propagation distance at the lowest stress levels, whereas the amplitude increases 

for z-o b above a certain threshold z-west, with z-arrest < z-pulse in the cases examined. 

When z-o b is sufficiently higher than z-pulse that T is near zero (e.g., T < 0.4 in our 2D 

antiplane simulations), the rupture mode is that of an enlarging shear crack. 

Thus rupture under low stress is in the self-healing mode and under high stress in 

the cracklike mode, where our present work shows how to quantify low and high. 

The results therefore suggest the possibility that the self-healing mode is common 

for large natural ruptures because the stresses on faults are simply too low to allow 

the cracklike mode. 

Introduction: Self-healing Pulse versus 

Cracklike Slip Rupture Mode 

Computational simulations (Cochard and Madariaga, 

1994, 1996; Perrin et aL, 1995; Beeler and Tullis, 1996) 

have shown that dynamic slip on homogeneous velocity- 

weakening faults may occur by either an enlarging crack 

mode or a self-healing slip pulse mode. Our goal here is to 

establish conditions, in terms of applied loading and features 

of the constitutive response, under which one or the other 

mode occurs. The study is for slip on the interfacial fault, 

on the plane y = 0, between two identical elastic half- 

spaces. In the most general 3D circumstances, the slip c~ var- 

ies with both coordinates in the fault plane, fi = 3(x, z, t). 

We develop some general results for that 3D context, but 
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the specific numerical simulations reported are done for the 

2D antiplane case, in which slip is constrained to be in the 

z direction, and to be uniform in z, so that fi = fi(x, t). Fric- 

tional constitutive properties are taken as uniform along the 

fault. 

A classification of the rupture modes may be given as 

follows. Suppose that a rupture process is nucleated on a 

portion of a fault that is uniformly loaded outside that nu- 

cleation zone and that the rupture still continues somewhere 

on the fault after an arbitrarily long time. Then two things 

can happen at that nucleation portion: (1) Slip is completely 

arrested, so that the slipping patch is split into two in the 2D 

case (or into an annular zone in the 3D case). It is then 

plausible to expect that arresting signals from the nucleation 

portion are sent out, and the fault heals behind the rupture 

fronts, therefore resulting in traveling slip pulses propagat- 

ing away from the nucleation portion and a self-healing 

mode of rupture. (2) Slip in the nucleation portion persists, 

resulting in a cracklike rupture mode. In this case, the max- 

imum velocity is associated with the rupturing front, and 

each position on the fault, once triggered, continues to slip, 

exhibiting an indefinitely enlarging crack. 

The cracklike rupture mode has been widely observed 

in numerical simulations. These include cases of prescribed 

uniform strength drop on the fracture surface in models with 

singularities at the rupture front (e.g., Kostrov, 1966; Ma- 

dariaga, 1976; Freund, 1979; Day, 1982) or with nonsingular 

slip weakening (e.g., Ida, 1972; Andrews, 1976a,b, 1985; 

Harris and Day, 1993). There is, however, a paucity of re- 

suits in the early literature that display the self-healing rup- 

ture mode. Other than being due to the simplicity of rupture 

models, such absence relates to the relatively recent focus 

on the shortness of rupture duration, principally due to Hea- 

ton (1990), which he argues to be required by inversions that 

fit slip histories to the high-frequency seismic signals sent 

out from propagating ruptures. Theoretical and simulation 

studies of conditions leading to self-healing pulses,in models 

that include velocity weakening of friction strength, have 

been given by Cochard and Madariaga (1994, 1996), Perrin 

et al. (1995), and Beeler and Tullis (1996). Still, not all 

velocity-weakening models lead to self-healing. For exam- 

ple, dynamic simulations of Okubo (1989), Rice and Ben- 

Zion (1996), and Ben-Zion and Rice (1997) based on the 

classical logarithmic dependence on slip velocity, as extrap- 

olated from much lower-speed laboratory experiments, 

showed the cracklike mode. This study shows why such re- 

sults occur and also that for a given velocity-weakening law, 

the self-healing rupture mode occurs at a lower stressing level 

than the cracklike mode, and the slip magnitude is, corre- 

spondingly, much smaller. Further, as Perrin et al. (1995) 

proved, a steadily propagating slip pulse in the self-healing 

mode can exist only if the constitutive relations allow for 

ageing, that is, for restrengthening of the fault in stationary 

contact. The self-healing mode has been proposed as a mech- 

anism that may seal in complex stress distributions on the 

fault after each rupture (Cochard and Madariaga, 1996). 

Heaton found that the slip duration, derived as the dis- 

location rise time, is only of the order of about 10% of the 

overall duration of the earthquake. He argued that the rupture 

mode on the fault surface is in the form of a self-healing 

pulse. Further, he postulated that the slip pulse is possible if 

the friction weakens with the slip rate. This conforms with 

the Brune (1976) idea that a pulse may exist if the fault 

strength is low immediately behind the rupture front and 

builds up quickly at finite distance from the front. Heaton 

(1990) also cited a model by Freund (1979) to show that a 

healing slip pulse, which causes a finite dislocation, can 

propagate at a constant velocity within an unbounded solid. 

The Freund model, which envisions spatially uniform fric- 

tion strength on the fault during slip, requires that the healed 

portion sustain greater stress than it did immediately before, 

while slipping. 

Although our purpose here is to investigate the relation 

between velocity-weakening friction and short-duration slip 

pulses due to self-healing, it is important to understand that 

other mechanisms exist. One involves geometric confinement 

of the rupture domain by unbreakable regions. Day (1982) 

found such pulselike behavior in his 3D numerical elasto- 

dynamic rupture models with constant stress drop, when the 

rupture process was confined within a long but narrow re- 

gion by unbreakable barriers (the formulation would lead to 

a cracklike mode in the absence of barriers). He observed 

that the rupture starts in a classical cracklike mode near the 

epicenter and propagates in all directions but that arresting 

signals come in from the borders that effectively relock the 

fault behind the rupture front, and the result is two slip 

pulses. Johnson (1992) studied faulting in a 2D model of a 

brittle crustal plate that is coupled to a nonbrittle substrate 

and found slip-pulse generation by a similar mechanism to 

that of Day. Johnson (1990) also studied rupture in models 

without the feature of confinement of slip to a narrow chan- 

nel; he noticed that if the rupture initially propagates bilat- 

erally and is then arrested by a strong barrier at one end, the 

healing wave, combined with the propagation of the other 

end, forms a pulselike rupture pattern. Perrin et al. (1995) 

also illustrate this barrier-based mechanism of self-healing 

in a case that would, otherwise, result in cracklike rupture. 

Beroza and Mikumo (1996) re-examined the 1984 Mor- 

gan Hill, California, earthquake using strong-motion data. 

They suggested that spatially heterogeneous fault strength, 

in absence of any significant velocity weakening at slip rates 

during rupture, may control the rupture behavior and give 

rise to the short-duration slip pulse. By using a velocity- 

independent failure model, they inverted for the heteroge- 

neous distribution of a (grid-sensitive) stress increase needed 

to initiate slip and stress drop describing strength after ini- 

tiation, so that results of a spontaneous dynamic rupture 

analysis would give a slip history consistent with what had 

been obtained by an earlier kinematic inversion of the 

strong-motion data. Their results show confinement of rapid 

slip to the vicinity of the rupture front. Apparently, the 

strong heterogeneities generate local arrest waves analogous 
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to those of Day (1982) and Johnson (1990, 1992) discussed 

earlier. Recently, Olsen et  al. (1997) also reported such be- 

havior in a slip-weakening model of the 1992 Landers, Cali- 

foruia, earthquake, and Day et  al. (1998) reported similar 

results for that event as well as for the 1994 Northridge and 

1995 Kobe earthquakes. 

Another mechanism for self-healing pulse generation, 

even in the absence of velocity or displacement dependence 

of friction, relates to the possible moderate dissimilarity of 

material properties across a fault plane. Andrews and Ben- 

Zion (1997) found a dynamic slip pulse on a fault of constant 

Coulomb friction coefficient when the interface separates 

materials of different elastic properties and densities, noting 

that such an effect had been suggested much earlier by 

Weertman (1980) based on his analysis of steadily moving 

interracial dislocations. The effect occurs for in-plane slip, 

which couples to alteration of normal stress when there is 

material dissimilarity. The difference in material induces dif- 

ferent normal stress polarities, and slip effectively occurs 

only in a narrow region where the large dynamic normal 

stress variations weaken the resistance to sheafing. Such ef- 

fects have also been studied by Harris and Day (1997), who 

emphasize that it may come into play also for slippage along 

the border between a compliant fault core and surrounding 

crustal rock. The effect is related to the remarkable recent 

discovery by Adams (1995) that steady-state sliding along 

the interface of two elastic half-spaces of different material 

properties is unstable to perturbation, in the sense that the 

real parts of eigenvalues, for exponential time dependence 

of a Fourier spatial perturbation, are positive for a very broad 

range of material pairs and friction coefficients. Subse- 

quently, Adams (1998) showed that pulses of constant slip 

velocity can move at a generalized Rayleigh speed along 

such dissimilar material interfaces, with constant friction co- 

efficients, under remotely applied shear stress levels that are 

arbitrarily less than the friction strength based on the re- 

motely applied normal stress, an effect that Rice (1997) has 

shown to follow simply from the Weertman (1980) analysis. 

Thus, there are other plausible candidate mechanisms, 

in addition to the velocity-weakening mechanism, for self- 

healing slip pulses, and it is important to learn more about 

the characteristics of each. In this article, we conduct an 

analysis of a homogeneous velocity-weakening fault embed- 

ded between two identical elastic half-spaces, and develop 

new criteria to classify the fault-rupture modes. Then we 

investigate by simulations, for the 2D antiplane case, the 

stress and slip variations for specific types of velocity- 

weakening laws and for a broad range of parameters in each, 

thus illustrating the rupture mode selection and providing 

confirmation of the theoretical work. 

t), slip rate V(x, z, t) = off~at, and shear stress z(x, z, t) in 

the slip direction be related by 

/~ V(x , z , t ) .  (1) z ( x , z , t )  = Zo(X,Z,t) + qS(x,z,t) - ~cc 

The first term, Zo(X, z, t), denotes the loading condition, that 

is, the stress that would be sustained if the fault were con- 

strained against any slip. The last term represents radiation 

damping (Rice, 1993), where/z is the elastic rigidity and c 

is the shear wave speed. The middle term ~b(x, z, t) is a linear 

functional of fi(x', z', t') for all x', z', t' within the elasto- 

dynamic wave cones with apex at x, z, t. Cochard and Ma- 

dariaga (1994) introduced such a function ~b(x, t) for the 2D 

antiplane case and expressed it as a space-time convolution 

integral on slip fi(x', t') for all x', t' satisfying c( t  - t ' )  > 

Ix - x'l. Later, Perrin et al. (1995) introduced a spectral 

representation of qS(x, t) in that 2D case, which we adopt for 

our simulations here and briefly outline in Appendix 1. In 

the general 3D context, the spectral representation of qS(x, z, 

t) is given by Geubelle and Rice (1995) and a space-time 

convolution integral representation is given by Cochard and 

Rice (1997a) and by Fukuyama and Madariaga (1998). Ear- 

lier 2D and 3D integral representation of elastodynamic 

response (e.g., Andrews, 1976a,b, 1985; Das, 1980; Das and 

Kostrov, 1987) can be expressed in a form that similarly 

extracts the instantaneous response term - I z V / 2 c  to leave a 

functional ~b as above. 

We take the loading Zo(X, z, t) for t > 0 to be uniform 

at a background loading level zg, except that we perturb that 

uniform level in some small region as required to nucleate 

a rupture. Thus, for example, in our 2D simulations, 

Zo(X,t) = { rb for t < 0 
rbo + rg(x) f o r t >  O' (2) 

where z~(x) is a perturbation term that acts over a localized 

zone so as to nucleate the rupture. We use a simple boxcar 

perturbation (Fig. 1) like in Perrin et  al. (1995). 

Two properties of the functional 4(x,  z, t) are important 

to the subsequent theorem on when certain types of solutions 

are disallowed. The first property is that the part of the stress 

represented by 4~ is conserved, that is, shifted from place to 

place by waves but not created or destroyed: 

+ o o  @ ~  

ff 
- - c o  - - ~  

OS(x,z,t)dxdz = 0 for all slip histories c~(x,z,t). (3) 

Elastodynamic Representation 

and Background Loading 

The elastodynamic interactions between the fault sur- 

face and its elastic surroundings require that the slip fi(x, z, 

This is derived once we realize that the integral is the Fourier 

transform, ~(k, m, t), of ~b(x, z, t) at wavenumbers k = m 

= 0; Geubelle and Rice (1995) show that q~(k, m, t) is given 

by a convolution on time of a certain function with S(k, m, 

t) and that function vanishes identically when k = m = 0. 
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The corresponding 2D antiplane result follows similarly 

and is 

q-co 

I 
moo 

c~(x,t)dx = 0 for all slip histories 6(x,t). (4) 

The second property refers to the functional ~b in re- 

sponse to a state of  spatially uniform slip, 6(x, z, t) = g(t) 

for all t, and is 

(o(x,z,t) = 0 when 6(x,z,t) = g(t). (5) 

To see why, note that in this case, the walls of the fault 

displace by u(x, 0 +, z, t) = g(t)/2 and u(x, 0 - ,  z, t) = - g ( t ) /  

2, where u is the fault-parallel displacement component. The 

requisite governing equations in the adjoining half-spaces 

are then met if u(x, y, z, t) =- u(y, t) satisfies c202u/Oy z = 

Oeu/Ot 2, with solution u(y, t) = O(t - y/c)/2 in y > 0, u(y, 

t) = - ~ ( t  + y/c)/2 in y < 0. The stress alteration, corre- 

sponding to r - r0, associated with these waves is tlOu/Oy 

at y = 0 (the result is continuous as y ~ 0 + and 0 - ) ,  which 

is just - I ~ ( t ) / 2 c  = -IzV(t ) /2c .  Thus, comparison with 

equation (1) shows that q~ = 0 in this case. This discussion 

follows an explanation of the origin of  the radiation damping 

factor given by Rice (1993). 

rob(X) 

"CO b . . . . . . . . . . . . . . . . . . . . . . . .  -I (a)  

x 

+ 

Po(X,t > 0) ~ (b)  

r-1 x 

II 

% (x, t > 0) ] 

Figure 1. (a) Uniform background loading r0 b on a 
fault. (b) Perturbation N(x,t > 0) used to nucleate a 
rupture in the numerical simulations shown subse- 
quently. The simulations also included a decrease of 
stress at the ends of a segment to form barriers that 
ultimately stop the rupture, although we do not dis- 
cuss stopping effects here. (c) Net loading stress %(x,t 
> 0) prevailing for simulated ruptures. The dashed 
line represents an exactly or approximately defined 
stress level above which rapid slip will initiate. 

V e l o c i t y - W e a k e n i n g  Cons t i tu t ive  L a w s  in the Rate-  

and S t a t e - D e p e n d e n t  F r a m e w o r k  

We introduce specific constitutive laws later for use in 

the 2D simulations. Here, general properties are of  interest. 

We consider situations of  slip under constant effective nor- 

mal stress. In that case, the strength is given by an equation 

of the form 

7Jstrength = F ( V , O )  (6) 

where OF(V,O)/OV > 0, and where 0 is a state variable that 

evolves during the slip history and represents, for example, 

the average age of the current population of asperity con- 

tacts. To complete the constitutive framework, a state evo- 

lution equation of form 

dOIdt = G(V,O) (7) 

is introduced (a commonly used form is the Dieterich-Ruina 

ageing, or slowness, law, in which G ~- 1 - VO/L, where 

L, sometimes called d c, is a characteristic sliding distance 

for renewal of  the population of asperity contacts). It is as- 

sumed that for fixed V, solutions of  (7) evolve toward a 

steady-state value 0~ = 0s~(V), which is the solution of 

G(V, Os~ ) = 0. (8) 

Further, the steady-state strength is 

Z'strength = "Css(W ) ~- F[V,0,s(V)], (9) 

and we assume, for the cases of  interest here, that dr,~(V)/ 

d V  < 0 (velocity weakening). Features of  such response are 

illustrated in Figure 2, for which the heavy line shows the 

steady-state strength and the light lines the variations of  

strength when the sliding velocity is suddenly changed from 

that of  a steady-state at V1 to some new velocity V2. The slip 

distance L for state evolution is defined such that 

dO~dr ~ - (V/L) [0 - 0,~(V)] (10) 

S t e a d y  state,  
• R e s p o n s e  at  c o n s t a n t  

~ / ' C s s ( V ) / s t a t e O ,  V1--+V2 

" K ~ ~ g - - - ~ , , , ,  S ta te  e v o l u t i o n  at V = V 2 

~ o v e r  cha rac t e r i s t i c  s l ip  L 
I ! 

v2 v 

Figure 2. Illustration of friction law. Heavy line 
shows steady-state strength. Light lines show re- 
sponse when slip rate V is changed suddenly (i.e., at 
constant state 0) from V1 to V2. 
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for 0 near 0~(V). Using (7), and subtracting from it the equa- 

tion 0 = G[V, 0~(V)], one sees from 

dO/dt = G(V,O) - G[V,0~(V)] 

[OG(V,O)/OOlo=o~(v)[O - 0~(V)] (11) 

that the formal definition of L[ = L(V)] is 

L = - V/[OG(V, 0)/00]o = 0~(v)- (12) 

This is consistent with L in the Dieterich-Ruina ageing law. 

The distance L as measured in laboratory friction studies 

generally falls into the range of 1 to 100/zm (and most often 

of order 5 to 10/zm). It is much smaller than slips during 

ruptures that will be of interest to us, and one might wish to 

ignore the entire state evolution process, set L = 0, and just 

w r i t e  Tstrength = Zss(V),  which is a pure velocity-weakening 

law. However, various studies of frictional stability and rup- 

ture dynamics for sliding between elastic continua (Rice and 

Ruina, 1983; Dieterich, 1992; Rice, 1993; Perrin et al., 1995; 

Rice and Ben-Zion, 1996) suggest that problems may not be 

well posed if we set L = 0. Further, Perrin et al. (1995) 

showed that self-healing rupture solutions, as steadily prop- 

agating slip pulses between elastic half-spaces, do not exist 

for pure velocity-weakening laws but rather require some 

feature of state evolution so that %t~ngth can increase at least 

moderately with time on the relocked part of the fault. Also, 

the state evolution features allow for effects like a finite frac- 

ture energy near the rupture tip (analogously to the way slip- 

weakening models correspond to a fracture energy; Ida, 

1972; Palmer and Rice, 1973), so that the rupture speed can 

be less than the shear wave speed for antiplane strain or less 

than the Rayleigh speed for in-plane strain. So we include 

the state evolution features of the laboratory-based rate- and 

state-dependent description of velocity weakening here. 

Nevertheless, for a well-developed cracklike ruptUre, 

with slips ~ that are much larger than L, the analysis by Rice 

and Tse (1986) of inertia-controlled dynamic instability 

within the rate and state framework shows that the consti- 

tutive law will give %tre~gth ~ z~,(V) everywhere except near 

the rupture tip, at least when slip rates satisfy L/V << V/IV1. 

That is because L/Vis a characteristic time for state to evolve 

toward 0~(V) and strength toward z~(V), whereas V/IfA is a 

characteristic time over which the targets, 0~(V) and z~(V), 

for the state evolution change. Hence, if L/V << V/l~, or if 

I~L/V z << 1, there is enough time to evolve toward what are 

essentially steady-state conditions associated with the in- 

stantaneous V, and Zstrength ~ z~(V). If  a particular point on 

the cracldike ruptUre considered has been slipping for a time 

t, then we may roughly estimate IV1 as V/t. Hence, at posi- 

tions on the rupture for which L/Vt << 1, which essentially 

means positions for which L/6 << 1 (where ~ is slip at that 

location), we will have Zst~gth ~-- z,~(V). This region includes 

all the rupture except for small regions, of a size that scales 

with L, near the tip in which a state evolution process anal- 

ogous to slip-weakening takes place. This feature of the 

cracldike rupture mode is important, as now seen, to under- 

standing conditions under which the cracklike mode cannot 

OCCUr. 

Understressing and Impossibi l i ty  of  the Cracklike 

Rupture Mode  for Background Loading below Zpuls ~ 

An important range of understressing is defined as that 

for which the background loading z0 b is less than a critical 

stress level that we call Zpulse. Here Zpuls e is the maximum 

value of Zo b that satisfies 

zbo -- ~ /2c)V  <-- T~(V) for all V -- 0. (13) 

The Zpu~se thus defined is illustrated in Figure 3a, which also 

shows the line z = zbo -- (It/2c)V for a z~ < Tpulse. 

We now argue that no rupture solution in the form of 

an indefinitely expanding crack can exist when rob < zpuzs e. 

The precise theorem we prove is this: Let Sour(t) be the part 

of the interface y = 0 between half-spaces that lies outside 

the slipping region of a tentatively hypothesized cracklike 

rupture solution at time t. Then we prove that no solution 

can exist, when z b < Tpulse, with the property 

f fSo [r(x,z,O - zb]dxdz >- O. (14) 
ut(t) 

That is, no solution that increases (or fails to decrease) the 

shear force sustained by unruptured material outside the 

crack can actually exist. In the 2D case, the analogous prop- 

erty is 

~ p u l s e  - 

"c Z = Tss(V) [ (a) •b < Zpulsel 

(12 / 2c)  V 

V 

T b 
o -  

T puls e - 

T T = T s s ( V )  [ ( b ) T b > T p u l s e l  

~ - ( p / 2 c ) V  

Vdyna V 

Figure 3. (a) Relative position of the radiation 
damping line z = z0 b - (lt/2c)V and the steady-state 
friction z = zss(V) for the understressing condition, 
Zo b < zpulse. (b) Relative position for z b > Tpulse, the 
highest velocity intersection defines Vdyna- 
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fs r (x , t )  - ~0 b] dx >= o. 
o.t(O 

( 1 5 )  

One commonly thinks of cracklike ruptures as shifting 

force onto the uncracked prolongation of the rupture zone, 

so that inequality (14) or (15) might be assumed to be a 

property of any crack solution. (Of course, the integrand of 

(14) and (15) vanishes at points beyond where waves have 

yet carried alterations of stress.) However, we emphasize 

that we have been able to rigorously prove that (15) holds 

for all possible crack solutions only in the antiplane case. 

See the discussion in Appendix 2. 

Let us tentatively hypothesize, then, that an indefinitely 

expanding crack solution exists, radiating stresses ahead of 

it that satisfy (14) or (15). We will now observe that if rob < 

Zp.l~e, the hypothesized solution violates (3) and hence can- 

not actually exist. To see this, observe from (1) that the func- 

tional 05 must always meet 

05(x,z,t) = r(x,z,t) - rob + ~/2c)V. (16) 

In the region Sout(t ) lying outside the ruptured region at time 

t, V = O, and so the property (14) implies that 

f fs 05(x,z,t)dxdz >--_ O. (17) 
out(t) 

Now, as the crack becomes large so that slip satisfies 3 >> 

L everywhere except for the small regions of rapid state evo- 

lution near the rupture front, the stress is z ~ z~(V), as ex- 

plained earlier, and so (16) gives 

05 ~ r . ( v )  - [~ob - ~/2c)V].  ( 1 8 )  

However, by our definition of r~ulse (see Fig. 3), the quantity 

on the fight is positive when z0 ~ < Zp,lse, so that 05 > 0 on 

the zone S~upt(t), which has been engulfed by the hypothe- 

sized cracklike rupture at time r Thus, 

f~s > 0. (19) 05(x,z, Odxaz 
rupt(t) 

This statement ignores that z differs from z~(V) within 

the state evolution zone. However, because that zone is of a 

size that is determined by L and does not increase as the 

rupture enlarges, it ultimately makes a negligible contribu- 

tion to the total integral over Sr~pt. Further, the nature of the 

constitutive description, with OF(V, O)/OV > 0, is such that 

increases substantially over r~s(V) in the region of rapidly 

accelerating slip at the tip of the rupture, so 05 is even larger 

than the value in (18) and thus also contributes values 05 > 

0 to the integral. 

By combining (17) and (19), and recognizing that Sr~pt 

+ Sout constitutes the entire plane between the half-spaces, 

we have that the integral of 05 over the plane must be positive 

if the hypothesized cracklike rupture solution exists. But we 

know that 05 must integrate to zero, as in (3). Hence, there 

is a contradiction, and the hypothesized solution cannot ex- 

ist. An analogous argument applies to the 2D case. 

Thus, rupture solutions in the form of indefinitely grow- 

ing shear cracks cannot occur when zo b < 27puls e. Again, pre- 

cisely this theorem rules out cracklike rupture solutions that 

satisfy (14) or (15). We have not been able to eliminate for 

all circumstances (i.e., other than the antiplane case) the pos- 

sible existence of some anomalous rupture solution that 

somehow violated (14) or (15) and decreased the total shear 

force carried outside the ruptured zone, although we are un- 

aware of any such solution ever being found. 

Parameter T Characterizing Response for 

Background Loadings above q~pulse 

Suppose now that the background loading z~ > Zpul~e, 

like for the higher loading level in Figure 3b. Then, if we 

assume that vs,(V) >--_ 0, the equation 

r~,(v) = ~ - ~ / 2 c ) V  (20) 

has at least one solution for V, and we denote by Vdyna the 

largest such solution (Fig. 3b). We may observe that V = 

Vdyna and r = r~(Vdyn~) is the solution for steady-state slid- 

ing under spatially uniform slip everywhere on the interface, 

because then r = z~(V) and, from (5), 05 = 0 so that (1) 

reduces to (20). We prove in Appendix 3 that the solution 

at Vdyna, which necessarily satisfies 

/M2c + [d~ss(g)[dV]g=Vdyna > O, (21) 

is a stable solution for spatially uniform slip, whereas a 

lower-velocity solution to (20), if any exist, that violates the 

inequality (21) is unstable. 

It seems plausible that if there is very little velocity 

weakening at this characteristic slip rate Vdyna, then the rup- 

ture should behave like for a fault with friction that is in- 

dependent of velocity (e.g., like classical slip-weakening 

models) and therefore give a cracklike mode of rupture. This 

expectation is well supported by our numerical simulations, 

to be discussed. It therefore suggests use of the dimension- 

less measure 

T = ([-drss(V)/dV]v=Vdyn,)/(/2/2c) (22) 

of the effective velocity weakening that remains active at 

the characteristic speed Vdyna (which speed is defined when 

rob > rpuls e and depends on the level of zb). 

This single parameter T does nicely correlate the results 

of our simulations for rob > rpuls e. AS will be seen, they show 

that when Vo b is only slightly larger than rpulse, so that T is 

near 1 (note that T = 1 when Tob = "Cpulse), the rupture mode 

is always found to be of the self-healing type. On the other 

hand, when Zo b is significantly enough greater than Zp,ls e that 
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T is near to zero, we find the expected cracklike rupture 

mode. Between these extreme values of  T, there must be a 

transition. It is not found to be a sharp one, but, for the 2D 

cases we have examined, that transition from self-healing to 

cracklike rupture is found for T in the vicinity of  0.5. Lower 

values of  T around 0.2 to 0.3, that is, higher values of  z0 b, 

seem to be needed for transition in 3D simulations (Cochard 

and Rice, 1997b). 

Our results therefore lead us to associate the self-healing 

rupture mode with low background stresses, z~ < zpu~s e, or 

possibly a little greater, 2-b > Zpulse ' but such that T is still 

not too much less than unity. The crack mode is associated 

with high stresses, 2-0 b, sufficiently large compared to zpnls~ 

that T is small. 

V e l o c i t y - W e a k e n i n g  Fr ic t ion  L a w s  

U s e d  in S imula t ions  

The laws we use are adaptations of  the Dieterich-Ruina 

slowness or ageing law (Dieterich, 1979, 1981, 1992; Ruina, 

1983), which is expressed as 

1"strength = 2"* -~- A lnCV/l?0) + B ln( fZoO/L),  (23) 

d O / d t  = 1 - VO/L .  

Here, z*, A ,  B,  f z  o, a n d  L are  constants (the first three pro- 

portional to normal stress, assumed constant). The law must 

be regularized near V = 0 for some applications, as done in 

different ways by Perrin e t  a L  (1995) and by Rice (1993) 

and Rice and Ben-Zion (1996). The latter understand the In 

V to originate from an Arrhenius activated rate process when 

only forward jumps are considered and regularize near V = 

0 by considering both backward and forward jumps. [Such 

amounts, essentially, to rewriting the first of  equations (23) 

in the form V = g(O)exp(zs t~ength /A)  and then replacing 

exp(Zstrength/A) by 2sinh(%t~ngth/A ), which is of  no conse- 

quence in the normal range for which Z~tr~ngth >> A. We can, 

further, allow negative V by this procedure when, also, V in 

the equation for d O / d t  is replaced by IV].] The law of  equation 

(23) approximately represents data over typical slip rates 

from 10 -1° to 10 -3 m/sec (Dieterich, 1981; Ruina, 1983; 

Kilgore e t  aL ,  1993), as are important for nucleation. It is 

not known at present how to suitably generalize it for the 

much higher rates of  spontaneous ruptures. We now consider 

two alternatives. 

Perrin-Rice-Zheng (PRZ) Law 

Perrin e t  al .  (1995) proposed a modified version for the 

study of ruptures that are suddenly nucleated by overstress- 

ing or for which nucleation is not considered but only prop- 

agation. This PRZ law retains the ability to restrengthen after 

rupture is arrested and introduces two cutoff velocity param- 

eters Vo and Vo/c :  

%t~e.gm + A L Voh -+ 

[ Vo(1 - e) 1 dO (Vo  + V)O 
In 1 + 0 -e/~ ' d t  - 1 - L 

(24) 

In (24), V0 acts as a characteristic speed for velocity weak- 

ening, with no weakening at slip rates V << Vo, and, in this 

form, V = 0 is also allowed. In addition, V 0 gives an upper 

limit to a contact-time-like state variable 0 _-< L/V0, and there 

is an upper limit speed Vo/e  above which there is essentially 

no further velocity dependence, where e << 1. 

At the steady state, that is, d O / d t  = 0, the fault strength 

is 

zss(V) = z* + ( A -  B) ln[ 1 + V / V o ]  
+ e V / V o J '  (25) 

where 2-* = 2-~pp+r = z'  + (B - A)ln(1/e). We plot 2-ss(V)/ 

z* in Figure 4 for B / z *  = 0.038, e = 0.001, for various A~ 

B and Vo. We see that the total strength drop is only a small 

fraction of z* f o r A / B  = 0.2. We can make B / z *  much larger 

and thus have much greater strength drop, but, in the end, B 
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Figure 4. Steady-state strength for the PRZ law 
with B / z *  = 0.038, e = 0.001: (a) A / B  = 0.2 and 
various Vo; (b) Vo = 1 0  - 3  m]s and various A/B .  
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can be normalized out of the results to the extent that (for 

given B/A and e) results depend only on the dimensionless 

IIVo/Bc. Also, the velocity weakening occurs in a way that 

is evident on the logarithmic scale over a quite broad range 

of slip rate. For the curve with V0 = 10 -3 m/s, weakening 

occurs from V = 10 - 4  to 1 m/sec. 

The law in (24) can be made to coincide approximately 

with the logarithmic law like in (23) often used to represent 

laboratory friction data, but, in such case, the cutoff Vo for 

the velocity-weakening range should be chosen much 

smaller than any laboratory rate for which the logarithmic 

law applies, say, V0 = 10-10 m/sec or less to judge from 

the granite data of Kilgore et al. (1993). Also, to extend such 

logarithmic law to speeds as high as, say, 1 mm/sec, we must 

make e sufficiently small ( 10  - 7  o r  less) so that Vole = 1 

mm/sec. Also A/r* and B/T* should then be associated with 

the small quantities typically denoted a and b [e.g., in Rice 

(1993)], at least when divided by the friction coefficient f*  

corresponding to ~*. The strength is, however, then essen- 

tially a constant at typical slip rates during seismic events, 

and such seems to allow only cracklike rupture modes on a 

uniform fault without barriers, as seen by Okubo (1989) and 

Rice and Ben-Zion (1996). 

Thus, to address the way that velocity weakening at 

higher speeds than the normal laboratory range (i.e., higher 

than 1 mm/sec or so) may promote self-healing pulses, we 

use (24) in the spirit of Perrin et al. (1995), with V0 simply 

being a parameter to mark a representative onset speed for 

some additional velocity weakening at the higher rates. 

When we use the law in that way, with V0 larger than the 

typical laboratory range, the strength is velocity independent 

at the very small (compared to V0) slip rates of the laboratory 

range. Thus, we cannot use (24) with such V0 to address 

nucleation of instability [indeed, we find that the fault sur- 

face slips stably, as expected, when we use such law in fault 

models like that of Rice (1993) or Rice and Ben-Zion (1996), 

which are driven by an imposed plate rate that is much 

smaller than Vo]. So, we make use of (24) only for simula- 

tions of dynamic rupture in which the details of nucleation 

under slow load increase are not modeled, and, instead, we 

nucleate the rupture by overstressing some small region 

along the fault. The normal expression for nucleation size of 

Rice (1993), namely, h* = 2tzL/rc(B - A), continues to 

apply so long as we understand h* as the critical cell size in 

the numerical grid to avoid single-cell instabilities when a 

(several cell) region of fault is slipping near steady state at 

rates between V0 and Vole. 

For fixed e and A/B, we may nondimensionalize the ve- 

locity by Vo and stress and strength by B. Then the specifi- 

cations of (1) and (24) leave a free parameter lzVo/Bc on 

which solutions may depend (see Perrin et al., 1995). That 

parameter is the ratio of V0 to a characteristic dynamic slip 

velocity, cB/#, in a continuum-sustaining stress reduction of 

order B. As shown in Figure 4, V0 and, therefore, the param- 

eter/z Vo/Bc (we keep cB/# constant), characterize the weak- 

ening behavior of the friction law. So long as e is made 

sufficiently small that Vole remains significantly larger than 

any slip rate experienced during the dynamic rupture, then 

e becomes an irrelevant variable, and the only remaining 

parameters controlling the dynamics and rupture mode, in 

addition to ¢tVoIBc, are AIB and some suitable nondimen- 

sional measure of the remote loading ro b. 

Enhanced Velocity-Weakening Law 

Here the approach is to develop enhanced velocity- 

weakening laws that incorporate the Dieterich and Ruina 

logarithmic representation of the rock friction experimental 

data like in (23) at low slip rates of the normal laboratory 

range but also allow the possibility of some significantly 

enhanced weakening at higher rates. Frictional weakness is 

reported by Prakash and Clifton (1992, 1993) at slip rates of 

order 5 to 30 mJsec in their experiments on oblique shock 

impact of hard metals against cutting tools, and Frutschy and 

Clifton (1997) point out that continuing weakening is dem- 

onstrated over the slip rate ranges of some such experiments. 

Also, Tsutsumi and Shimamoto (1997), in high rotary slip 

experiments on gabbro at low normal stress (1.5 MPa), show 

the onset of pronounced velocity weakening at slip rates of 

order 1 m/sec, both in situations with and without formation 

of a melt layer. 

We start by recasting the Dieterich-Ruina law of (23) 

in an approximately equivalent quotient form. Recalling that 

A/T* and B/T* are of order 0.01 to 0.04 in the experimental 

range, with slip rates V = 10 -3 to 103170 for 170 = 1/ tm/ 

sec, the law of (23) is essentially indistinguishable from 

1 + (A/T*)ln(V/f/o) dO VO 
%~n~th = ~* - 1 - - -  (26) 

1 + (B/~*)ln(L/f/oO) ' dt L" 

Again, the ln(V/17o) can be regularized near V = 0 as dis- 

cussed earlier. In principle, 0 (which is essentially an average 

lifetime of contacting frictional asperities along the fault) 

can become so large that the denominator approaches zero 

and then turns negative. For realistic B/r*, such happens 

only for 0 of order many tens of thousands to millions of 

years and does not concern us here. (The effect could be 

dealt with, if need be, by simply truncating the dependence 

on 0 when, say, Tstrength for V = rV o reaches the strength of 

unfaulted rock.) Our concern here is, instead, with inade- 

quacies of (26) at the sorts of 0 values occurring during 

dynamic rupture, which may be 2 to 10 orders of magnitude 

smaller than 0 values in typical laboratory tests over the 

range previously noted. 

If  we chooseA = 0.015(~r n - p ) a n d B  = 0.019(an - 

p), T* = 0.6(cr~ - p), with ~r n - p being the effective 

normal stress, then Tss(1.0 m/sec) = 0.94rss(1.0 × 10-6111/  

sec), which means that rss decays very slowly with velocity. 

Such a slow weakening implies high stress on the fault dur- 

ing slip and, in turn, a high heating rate due to friction. We 

allow for significantly enhanced high-speed weakening, 

compared to (26), by rewriting it in the form 
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1 + (A/z*)ln(V/fZo) 
r~t~gth = r* (27) 

1 + (B/v*)ln(L/9oO) + H(O)' 

where H(O) is significant only at the very short contact times 

during rapid slip. We retain the same expression for dO/dt. 

A particular choice we explore is 

H(O) = L/Vw~akO (28) 

where the new parameter Vw,~k is chosen >> 1 × 10 - 3  m] 

sec to assure agreement with the Dieterich-Ruina law for 

the laboratory 0 range. Then the steady-state strength is 

1 + (A/T*)ln(V/~'o) 
r~(V) = T* (29) 

1 + (B/z*)ln(V/fZo) + V/Vweak" 

This implies a direct enhanced weakening effect parameter- 

ized by Vw~k (Fig. 5). In fact, because the logarithmic term 

becomes essentially independent of V at large V, this weak- 

ens like 1/(1 + V/constant), a form employed in various 

earlier studies (Carlson and Langer, 1989; Cochard and Ma- 

dariaga, 1994). Note that the linear plot, in particular, in 

Figure 5 can be deceiving; that is a plot of steady-state 

strength, and some slip displacement (for state evolution) 

must be undergone to actually realize what is depicted as a 

very abrupt drop of strength near V = 0. 

Discretization Considerat ions 

We need a guideline for proper numerical discretization 

of the governing continuous equations. A key parameter to 

address those issues is the critical spring stiffness for stable 

steady sliding, as determined for a broad class of rate and 

state laws by Ruina (1983) and Rice and Ruina (1983). 

Related to that is the critical size of a fault segment, 

corresponding to stiffness Or/segment size, and the critical 

cell size of a numerical grid such that single-cell instability 

is precluded and unstable slip episodes involve the cooper- 

ative, coherent motion of groups of cells. Rice (1993) de- 

noted the former by h*; it also can be regarded as a nucle- 

ation size, which he called it, or as a coherent slip patch size 

(Rice and Ben-Zion, 1996). For a one-state-variable law of 

the rate and state class, with velocity weakening, and for the 

cellular basis set (i.e., segments of locally uniform slip), Rice 

(1993) obtained 

2 /z 
h* - L. (30) 

n V ( d r J d V )  

For the Dieterich-Ruina law of (23), - V(dzsJdV)  -~ B 

- A is independent of the velocity at which h* is evaluated. 

Then we have 

2 ¢t 
h * _  A - - -  L. (31) 

n B  - A  
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Figure 5. Steady-state strength for the enhanced 
velocity-weakening law with 170 = 10 - 6  m/sec and 
various Vwe~k, shown respectively on (a) a logarithmic 
scale and (b) linear scale for velocity. 

However, outside the central velocity range of the PRZ law 

of (24) or at high slip rates in the enhanced velocity-weak- 

ening law of (27), the quantity - V(dz, ,IdV) is a function of 

velocity. This dependency is important in properly modeling 

the dynamics of rupture with those laws, because it reflects 

the weakening behavior at various velocities. Rather than 

using a varying parameter h* that differs for different ve- 

locities, it is convenient if one h* can be chosen and the 

simple h*_ A is not sufficient. Given the discussion on the 

dynamics of a uniformly slipping fault in a previous section, 

a candidate that can act as the representative velocity is Vdyna, 

at least in cases for which it is defined (Fig. 3b). Then (22) 

and (30) lead us to 

2 I t  4 cL 

hd*yna --  7~ [ - -  V(dr,s/dV)]lv=va,n, L - 1"C Vdyna T" (32) 

This makes sense only when T b > "/7pulse, SO that T is defined, 

and we have no good alternative in other cases. We want h* 

at rapid slip rates to be large compared to cell size h, which 

condition we can meet approximately, when T is defined, by 

making h~yna of order 10 to 100 cell sizes, although in some 

cases, as will be seen, even this is not stringent enough. The 
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problem of accurate numerical discretization is exacerbated 

by the tendency of  the zone near the rupture tip, over which 

there is rapid state evolution, to contract significantly as the 

rupture speed approaches the limiting speed (c for antiplane 

strain). This is analogous to the contraction, at high speeds, 

of  the near-tip breakdown zone in slip-weakening descrip- 

tions of  dynamic rupture (Rice, 1980). 

Examples  wi th  PRZ L a w  

For the PRZ law, the upper bound of  the fault strength 

is Zuppe~ -- ~ ( 0 )  = Z*, and the lower bound is Zlow~ -= z~(~) 

= z* - ( B  - A) In(l/e). Then the maximum stress change 

is Az = Zuppe ~ - zl . . . .  = (B - A)ln(1/e). It follows that a 

good way to nondimensionalize the stress in this problem is 

f(x, t) = z(x, t) - Ziow~r/Az, which leads to a dimensionless 

strength threshold f~pp~r = 1.0. In this section and the next 

one, we use nondimensional notations to describe the pre- 

viously defined stress variables. The slip is nondimension- 

alized as 3 = fi/L, where L is the characteristic length of  our 

constitutive law. 

The radiation damping line and the steady-state strength 

can be rewritten as 

Iz Vo/BC V 

frump(V) = fob -- 2(1 -- a/B)ln(l/e)Voo' 

fss(V) = 1 
1 In( 1 + V/Vo I 

In(l/e) \1 + eV/Vo]' 

(33) 

where fo = fob except within a small region that is over- 

stressed to nucleate the rupture. So if parameters A/B and 

fo b are further specified, only #Vo/Bc, which controls the 

weakening behavior, is left as a parameter to be varied. 

We discuss results for a fault consisting of  Nele = 2048 

elements, replicated periodically with repeat length 2 = 

2048h, where h is the length of  one element. We also choose 

a constitutive parameter e = 0.001. The fault is everywhere 

in the initial state 0 = L/Vo, as it would be after a long time 

at rest. The uniformly applied stress fb, slightly below the 

static strength threshold f~pp~, acts for t < 0 on the fault 

segment. We also keep stress much lower outside a segment 

of  that repeat length 2 (Fig. 1) so that the borders of  the 

segment act as barriers to rupture, allowing us to study the 

arrest process. We do not address the arrest results here, but 

they are shown (together with many more examples than we 

are able to present here) in the Ph.D. thesis by Zheng (1997). 

We now illustrate results for two different values of  

A/B, each at different fob, for a wide range of  values of  

/.tVo/Bc. The higher values ofttVo/Bc are such that the back- 

ground loading corresponds to fo b < fpul~, whereas the lower 

values of  tzVo/Bc cause fob > fpul~ and hence should allow 

the possibility of  a cracklike solution. In fact, the range of  

/zVo/Bc considered is chosen to fully illustrate the transition 

from self-healing to cracklike mode. The value of#Vo/Bc at 

transition will be seen to differ by an order of  magnitude 

between the two cases, but when analyzed in terms of  our 

parameter T, the transition will be seen to take place at 

roughly the same T value, around 0.5. These two cases are 

chosen at the extremes of  a fuller set of  cases presented by 

Zheng (1997). 

Case 1: A/B = 0.2 and fo b = 0.977 

We show the slip histories in this first case with A/B = 

0.2, and background loading fb = 0.977. Here, Az = 

5.526B and z b = Zupper -- 0.126B. This loading fb is very 

close to the strength threshold, being 0.023 smaller. The per- 

turbation ~o is chosen to be nonzero (0.362) over a small 

portion [size 80h, or 3.3h~_ A, where z~(x, t = 0) = 2.0B 

locally] within the fault segment and brings the total stress 

f0(x, t) to 1.362 in the nucleation portion. 

The constitutive laws and radiation damping line are 

plotted in Figure 6 for#Vo/Bc = 4.0, 2.0, 1.0, 0.5, and 0.1. 

The parameter T is shown in Figure 7; it is not defined, so 

that the understressing condition is satisfied, if IzVo/Bc > 

0.86. Figure 7 shows that T increases smoothly from 0.0 to 

1.0, as#Vo/Bc goes from 0.0 to 0.86. In comparison, in the 

next case, we see that for the same range of  Tincrease, l~Vo/ 

Bc goes from 0.0 to 0.07. 

The resulting rupture patterns are shown in Figure 8. 

Upon decreasing pVo/Bc from 4.0, we find, respectively, a 

self-healing pulse with nearly uniform but gradually dimin- 

ishing amount of  slip, self-healing pulses with growing slip, 

then a transitional rupture, and finally a cracklike rupture. 

The transition occurs around ItVo/Bc = 0.5 in this case; 

ruptures propagate in a classical cracklike mode for/z Vo/Bc 

< 0.5 and in a self-healing mode for tzVo/Bc > 0.5. The 

parameter T is not defined for cases luVo/Bc = 4.0, 2.0, and 

1.0, all larger than 0.86. We have T = 0.49 for the transition 

case with l~Vo/Bc = 0.5, and T = 0.23 for the cracklike 

case shown with IIVo/Bc = 0.1. 
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Figure 6. Relative position of the radiation damp- 
ing line " g d a m p ( V )  t o  the steady-state strength %(V) for 
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Figure 7. Effects of velocity weakening, which is 

regulated by parameter FVo/Bc, on the parameter T 

are shown for the PRZ law with A/B = 0.2 and 

fb = 0.977. Dots show some of the cases simulated; 

T is not defined when IzVo/Bc > 0.86, the range for 

which the fault is understressed. 

Case 2: A/B = 0.8 and fo b = 0.868 

For this case, A/B = 0.8, and we have Az = 1.382//. 

The uniform stressing is set to fb = 0.868 in the fault seg- 

ment, and the ruptures are nucleated by overstressing [f~(x, 

t _-> 0) = 1.81, i.e., ~ = 2.5B locally] over the nucleation 

portion (of size 160h or 5 h*-A, where we used h*_ A = 

32h). Given the reduction of  the maximum stress drop (from 

5.526B to 1.382B for fixed B), which serves as an upper 

bound of possible weakening, we found the pulselike rup- 

tures are more difficult to nucleate, and a larger stress per- 

turbation fP(x, t ~ 0) had to be used. 

We plot the relative positions of  the constitutive laws 

to the radiation damping line in Figure 9 forl~Vo/Bc = 0.5, 

0.2, 0.1, 0.05, and 0.01. The variation of  T, when it is de- 

fined, is shown in Figure 10, and, as noted, Tincreases from 

0 to 1 over an order of  magnitude smaller range of  FVo/Bc 

compared to the previous case. 

The understressing condition is met for ItVo/Bc > 

0.071, and T is not defined then. This is quite different from 

the 0.86 found with A/B = 0.2. As seen in Figure 11, for 

the given loading fo b = 0.868, the slip pulse is quickly ar- 

rested for the relatively large/zVo/Bc = 0.5 but is arrested 

much more slowly for a smaller#Vo/Bc = 0.2, and a self- 

healing pulse of  growing slip is found for the case with/.t Vo/ 

Bc = 0.1. Al l  those pulses, arrested or not, are associated 

with fo b < fpulse. The transition is expected to occur around 

T = 0.5, and it does occur then, corresponding to tzVo/Bc 

= 0.05, a value that is a factor of  10 smaller than what we 

have found for the previous case. A rupture of  cracklike 

mode results for the even smaller itVo/Bc = 0.01, which 

corresponds to T = 0.21. So the transition from the cracklike 

mode to the self-healing mode is consistent with the varia- 

tion of T and the understressing theory. We see that the pa- 

rameter T works very well and can be effectively used to 

predict the slip patterns for fob > fpulse- 
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Figure 8. Slip histories for the transient response 

of a fault under a uniform applied stress ~ = 

0.977 with a small portion in the middle locally over- 
stressed. The PRZ law is used with AIB = 0.2 and e 

= 0.001, and respectively ttVo/Bc = 4.0, 2.0, 1.0, 
0.5, and 0.1. Curves are separated by uniform time 

increments of 25 h/c Rupture modes are the self-heal- 

ing pulse for the first three cases from top where the 

understressing condition is met (tzVo/Bc > 0.86), 
while we have the transitional situation with T = 0.49 
for#Vo/Bc = 0.5 and cracldike mode with T = 0.23 

forltVo/Bc = 0.1. 
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ing line %~mp(V) to the steady-state strength g,s(V) for 
#VoIBc = 0.5, 0.2, 0.1, 0.05, and 0.01, respectively, 
with A/B = 0.8 and ~0 b = 0.868. T is not defined 
when #Vo/Bc > 0.071, which describes a certain 
range of understressing and is met by the first three 
cases. 
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Figure 10. Effects of velocity weakening, regu- 
lated by parameter #Vo/Bc, on T are shown for the 
PRZ law withA/B = 0.8 and %b = 0.868. Dots show 
some of the cases simulated; T is not defined, and the 
fault is understressed, when #VolBc > 0.071, a much 
smaller value than the case with AIB = 0.2 in Figures 
6 to8 .  

Summary for PRZ Law 

Elastodynamic modeling results are consistent with the 

theory developed earlier. The rupture mode is the self-heal- 

ing one for all the cases satisfying ~b < Zpulse, a condition 

under which the fault is so understressed that the whole ra- 

diation damping line lies below the steady-state strength 

curve. The parameter T is not defined in this loading range, 

as depicted in plots of  T versus izVo/Bc for the different ~b 

and A/B. 
We summarize the results given here and of  other cases 

presented in the thesis by Zheng (1997) in Table 1, where 

for various combinations of  ~o b and A/B, there are indicated 

a set of  values of HVo/Bc for which the response is definitely 

cracklike, another set (all which happen to coincide with 

conditions for which ~b < "Cpulse) for which the response is 
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Figure 11. Same as Figure 8 except ~o = 0.868 
and A/B = 0.8, and respectively #Vo/Bc = 0.5, 0.2, 
0.1, 0.05, and 0.01. Rupture modes are the self-heal- 
ing pulse for the first three cases from top, for which 
the understressing condition is met (IzVo/Be > 0.071), 
while we have the transitional situation with T = 0.51 
forttVo/Bc = 0.05 and the cracklike mode with T = 
0.21 forpVo/Bc = 0.01. 

in the self-healing mode and an intermediate set correspond- 

ing to transition. The transition is not sharply defined. Our 

cases 1 and 2 correspond, respectively, to the rightmost and 

leftmost columns in the table. The same set is shown in Table 

2, where the corresponding T values are given in the situa- 

tions for which %b > Zpul~e SO that T is defined. All of  the T 

values at transition are indeed seen to be in the vicinity of  
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0.5, although, again, we emphasize that the transition is not 

sharply defined. The best summary of  results might be to 

say that it occurs for T between, approximately, 0.4 and 0.6, 

and that the cracklike mode occurs for T below approxi- 

mately 0.3. 

Inspection of Figures 8 and i 1 shows that the amount 

of  slip is far greater when rupture is by the cracklike mode 

than by the self-healing mode. 

E x a m p l e s  wi th  E n h a n c e d  V e l o c i t y - W e a k e n i n g  L a w  

We generally keep the notations the same as those in 

the previous section. The lower stress bound is zero because 

of the extra weakening, that is, Zlowe ~ ---- Z~(~) = 0.0. The 

upper bound, however, cannot be chosen simply as z~(0) 

because the law is not regularized at V = 0. A good substi- 

tute is ~'upper = ~'* = f 0  X (O n - -  p ) ,  where f0 is chosen a s  

0.5 to 0.6, and an - p is the effective normal stress. The 

stress drop is then Az = Z'uppe r - "Clowe r = 2 ":~, and the stress 

is nondimensionalized as 

e(x ,  t) = 
"C(X, t )  - -  ~ ' lower T(X~ t )  

A z  ~* 

Again we have the nondimensionalized slip d = d/L. 

The nondimensionalized version of the radiation damp- 

ing line and the steady-state strength are 

/19o V 
fa~p(V) = fo 2z*c Vo' f~(V) 

1 + (A/z*)ln(V/fZ o) 

1 + (B/z*)ln(V/fZo) + (V/fZo)/(Vweak/fZo) ' 
(34) 

Table 1 

Range of IzVo/Bc under Various Weakening 
and Loading Conditions 

MB = 0.8 MB = 0.2 

,go b = 0.868 ?0 b = 0.977 -~o b = 0.868 f0 b = 0.977 

C r a c k  0 .01  0 .01  0.1 0.1 

T ra ns i t i on  0 .05  0 .12  0 .23  0 .5  

P u l s e  0.1 0.3 0 .5  1.0 

Table 2 

Values of T under Various Weakening and Loading Conditions 

A ~  = 0 . 8  A ~  = 0 . 2  

= 0.868 ~ = 0.977 ~ = 0.868 ~ = 0.977 

C r a c k  0 .21  0 .17  0 . 3 2  0 .23  

T ra ns i t i on  0 .51  0 .48  0 .59  0 . 4 9  

Pulse* ~ < epulse ~0 < ~pulse ~o < "Epulse ~b < ~pulse 

:g~0 < ~pulse im p l i e s  u n d e r s t r e s s i n g  a n d  n o  de f in i t ion  o f  T. 

where again f0 = f0 b except within a very small region that 

is overstressed to nucleate the rupture. 

In the following simulations, the fault starts from the 

initial state 0 = L/V o. We choose 170 = 1.0 × 10 -6  m]sec, 

A = 0.014(an - p), B = 0.016(an - p), and z* = 0.5(an 

- p). The effective normal stress an - p is chosen as 200 

bars, which results in a stress drop Az = 100 bars. So the 

only parameters left to be determined a r e  Vweak and fob. A 

similar loading configuration is used, but with a longer 

length of nucleation portion within the highly stressed fault 

segment. The large nucleation size is required because a very 

large h~_a/h ( = 320) is necessary in our modeling to over- 

come the discretization effects and, as will be seen, even this 

becomes marginally suitable outside the self-healing pulse 

range. 

The responses of  a fault under various background load- 

ings fo b are investigated for a fixed Vw~ak = 3.0 m/sec. The 

stressing level fvulse is found to be 0.974, and then the ra- 

diation damping line has a tangent point with the steady- 

state strength curve only at Vayna = 9.02 × 10 -3  m/sec. 

Again, N~le = 2048 elements are used. The perturbed part 

f~ is nonzero ( =  2.912) only over a portion of 120 elements. 

The steady-state constitutive law and radiation damping 

lines with f~ = 0.8, 0.864, 0.928, 0.992, and 1.056 are 

shown in Figure 12, and the T variation with loading is 

shown in Figure 13. Five rupture processes are shown, re- 

spectively, under the same suddenly imposed f~ at time zero, 

in Figure 14. We obtained a quickly arresting pulselike rup- 

ture process with fo b = 0.8, a loading level well below 

fpul~e = 0.974. Then we have a slowly diminishing pulse 

with fo b = 0.864, and a slowly growing pulse with f0 b = 

0.928. Further increase of  loading fb leads to a rupture pro- 

cess exhibiting what seems to be transitional behavior be- 

tween the self-healing pulse and the cracklike modes for fo b 

= 0.992, with T = 0.48. The response is more cracklike 
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Figure 12. Relative position of the radiation 
damping line f, tamp(V) to the steady-state strength 
fss(V) for the enhanced velocity-weakening law, for 
various f~, with Vweak = 3.0 m/sec for the enhanced 
velocity-weakening law. For this case, no intersection 
can be found if ~o b < Zpuase = 0.974. 
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Figure 13. Effects of loading, which is repre- 
sented by parameter fo b, on parameter T are shown for 
the enhanced velocity-weakening law with Vwe~k = 
3.0 rrdsec. Dot shows a case simulated; T changes 
rapidly only within a small range of f0b, as shown, and 
is defined only for fg < "Cpulse = 0.974. 

for the higher f0 b = 1.056, with T = 0.4, although it is 

evident that small zones of  transient healing still form over 

short distances near the advancing rupture front [more de- 

tailed study of the phenomenon by Nadia Lapusta (private 

commun., 1998), with much greater refinement of  the com- 

putational grid than here, suggests that these transient heal- 

ing zones are real and not a numerical artifact]. Because T 

decreases very slowly with the increase of fo b, we cannot get 

a pure cracklike mode unless for a case with an extremely 

large f0 b. Thus, while we cannot give a suitable numerical 

treatment of  the low T range in this case, the results under 

conditions leading to self-healing pulses again support the 

understressing theory given earlier, and transition seems to 

be underway for T in the vicinity of  0.5. 

S imula t ion  o f  Se l f -hea l ing  Pulses  P ropaga t i ng  

in N o n u n i f o r m  Stress  Fields  

These simulations are done for the PRZ law of equation 

(24) with A / B  = 0.2 (like for case 1 earlier) and/zVo/Bc = 

0.5. For such parameters, we can calculate "~upper and "~pulse 

as before. 

We divide the fault into three segments, with each hav- 

ing different loading conditions (Fig. 15). The self-healing 

slip pulse is nucleated at the left then propagates to the right 

through those three regions. We observe clearly that the 

pulse grows in quite different ways under different loading 

levels. The slip amplitude left behind the traveling slip pulse 

grows rapidly within the region where loading is closer to 

the threshold but grows more slowly in regions where load- 

ing is further away from the threshold. 

Conc lus ion  

We have developed a prescription for understanding the 

mode of rupture propagation under a uniform background 

stress ~o b on an unbounded fault obeying a velocity-weak- 
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Figure 14. Slip histories for the transient response 
of a fault under various uniform applied stresses 
and a small portion in the middle locally overstressed. 
The enhanced velocity-weakening law is used with 
Vwe~k = 3.0 rrdsec. Rupture modes are the self-heal- 
ing pulse for the first three cases where the under- 
stressing condition is met (fob > fpulse = 0.974), 
while we have a transitional situation for higher f~. 

ening constitutive law with rate and state dependence. At the 

simplest level, ruptures propagating under high Zo b are of the 

enlarging crack type, and those propagating under low z0 b 

are self-healing pulses. 

More precisely, the constitutive law defines a stress 

l e v e l  Tpulse, such that if Zss(V) is the strength for steady-state 

sliding at slip rate V, then 7¥u]s e is the largest value of ~o b 
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Figure 15. Initial stress and the slip history on the 
fault for the PRZ law showing effects of loading. We 
used A/B = 0.2 and ttVo/Bc = 0.5. (a) Background 
loading is set up to nucleate ruptures at left, and a step 
increase plus a step decrease define three different 
local background loading conditions to the right of 
the nucleation segment. Thin horizontal lines show 
three reference stressing levels r~pe~, fp~s~, and 
Za~t, respectively, in the same order from top. (b) 
Slip history with time interval 30 h/c. 

satisfying rob - (/.d2c)V <-- Vss(V) for all V > 0. That is, like 

illustrated in Figure 3, when rob = Zpulse, the radiation damp- 

ing line r = Zpn~s~ - ~u/2c)V, in a z versus V plot, makes 

tangential contact with the strength curve r = r~(V). 

We have proven the theorem that when rob < rpulso, so- 

lutions in the form of indefinitely enlarging cracks (i.e., with- 

out healing) cannot exist, at least solutions cannot in which 

the crack increases (or fails to decrease) the shear force 

borne by the part of  the fault lying outside of  the rupture 

zone. Thus, solutions when z b < Zpul~ are expected to be of  

the self-healing pulse type. 

Numerical simulations of  2D antiplane rupture, done for 

two types of  rate and state constitutive laws, confirm that. 

When zob < Zpua~ ~, the slip within the pulse may either de- 

crease, remain constant, or increase with rupture propagation 

distance. In the former case, corresponding to the lowest 

stress levels, the rupture ultimately arrests. At a particular 

stress level Za=~t, which is the upper limit to that lowest 

stress range, the pulse propagates steadily with constant slip; 

that case was investigated by Perrin et al. (1995), who em- 

phasized that such solutions can exist only for laws with state 

evolution features allowing strength increase with time on 

the healed (no longer slipping) part of  the rupture. All sim- 

ulations at stress rob = Zpuls~ show self-healing pulses whose 

slip amplitude grows with propagation distance. Thus, Zpu~s e 

"tartest. 

At higher background stresses, rob > Zp~lse, there is no 

general theorem to rule out particular types of  solutions. We 

find from the simulations that self-healing pulse solutions 

exist for stresses that are only slightly above Zpul~e, whereas 

at higher stresses, the mode of rupture is in the form of  an 

enlarging shear crack. 

We show that a parameter T can be introduced to char- 

acterize these ranges. It is defined whenever zob > Zp~lse. 

Then, the equation zob - (td2c)V = L~(V) has at least one 

solution on V > 0; we call Vdyna the largest such solution 

(Fig. 3b), which we understand as a characteristic slip ve- 

locity of  the rupture process. A dimensionless measure of  

the strength of continuing velocity weakening at that veloc- 

ity is T = [ -  dzs~(V)/dV]~/2c) and, when z b = Zpoase, T = 

1, but T reduces toward zero as ro b is increased above zp~s~. 

We expect low values of  T to correspond to the cracklike 

rupture mode, because that is the mode when the strength 

on well-slipped parts of the rupture is insensitive to velocity 

(like in slip-weakening models). 

This is indeed confirmed by our simulations. They show 

the following in the loading range Zo b > ~'pulse: (1) When T 

is near 1, say 1.0 => T > 0.6, which means that z b is only 

slightly higher than Zpul~ e, the rupture mode is of  self-healing 

pulse type (with amount of  slip growing with distance of 

rupture propagation). (2) When T is near zero, say 0.4 > T 

_-> 0, which range is achieved by increasing zob sufficiently 

above Zpul~ e, the rupture is in the form of an enlarging shear 

crack, with no development of  a healing zone. The transition 

from self-healing to cracklike mode occurs in the vicinity of  

T ~ 0.5. Cochard and Rice (1997b) find T to be an equally 

valid parameter in 3D rupture simulations, but then the tran- 

sition value is lower, T = 0.3, so that higher stresses zob are 

required for rupture to be in the enlarging crack mode. 

This classification in terms of Vpul~e, and of  the additional 

parameter T when ro b > Tpul~e, concisely explains our results 

for different classes of  constitutive laws and for wide ranges 

of  parameter choices within a given class. 

Our limited studies of  rupture propagation under spa- 

tially variable prestress suggest that when rupture is in the 

self-healing mode, the character of  the pulse (whether with 

growing or decreasing amount of  slip) quickly adjusts to the 

local level of the prestress. 

The Gutenberg-Richter frequency versus size statistics 

of  earthquakes tells us that for every l earthquake that 

achieves, say, magnitude 3 s ize  but does not arrest and, 

rather, grows to magnitude 4, there are approximately 10 

that do arrest at that smaller size, and so on for other mag- 

nitudes, at least within the range for which there is power- 

law scaling with b -~ 1. An interpretation of  such results is 

to say that faults are chronically understressed, so that most 

ruptures simply fail to become large. Such understressing is 

likely to be very heterogeneous and not like the uniform zob 

considered here. Nevertheless, if natural faults are indeed 

velocity weakening at seismic slip rates, so that our present 

analysis applies, then it is plausible to make the association 

that these faults are lightly stressed and perhaps understres- 

sed in the precise meaning of the term here. In such case, 

then, we could understand that the self-healing mode of rup- 



Conditions under which Velocity-Weakening Friction Allows a Self-healing versus a Cracklike Mode o f  Rupture 1481 

ture would be a pervasive one, because the stresses are too 

low on average to allow the cracklike mode and can do so 

only at places of local stress concentration where rupture 

nucleates. 

We emphasize that this study has been on understanding 

the rupture mode in the presence of velocity-weakening fric- 

tion on a fault of spatially uniform properties between iden- 

tical linear elastic solids. As explained in the Introduction, 

other mechanisms o f  self-healing pulse generation exist and 

involve, for example, strong spatial nonuniformity of fric- 

tional weakening properties within the fault zone or dissim- 

ilarity of elastic properties across the fault. 

Acknowledgments 

The studies were supported by the NSF Southern California Earthquake 

Center through PO# 569928 to Harvard, and by the U.S. Geological Survey 

through Grants 1434-HQ-96-GR-02735 and 1434-HQ-97-GR-03094. We 

are grateful to Yehuda Ben-Zion, Alain Cochard, Nadia Lapusta, and John 

Morrisey for discussions. Further, we are grateful to Alain Cochard for a 

careful reading of an earlier version of the manuscript and for recalcula- 

tions, done with assistance of Nadia Lapusta, confirming that a figure of an 

earlier version of the article [same as Fig. 4-4 of Zheng (1997)] contained 

a feature that was in error due to periodic wraparound in the spectral for- 

mulation. 

References 

Adams, G. G. (1995). Self-excited oscillations of two elastic half-spaces 

sliding with a constant coefficient of friction, J. AppL Mech. 62, 867- 

872. 

Adams, G. G. (1998). Steady sliding of two elastic half-spaces with friction 

reduction due to interface stick-slip, J. Appl. Mech. 65, 470-475. 

Andrews, D. J. (1976a). Rupture propagation with finite stress in antiplane 

strain, J. Geophys. Res. 81, 3575-3582. 

Andrews, D. J. (1976b). Rupture velocity of plane strain shear cracks, J. 

Geophys. Res. 81, 5679-5687. 

Andrews, D. J. (1985). Dynamic plane-strain shear rupture with a slip- 

weakening friction law calculated by a boundary integral method, 

Bull. Seism. Soc. Am. 75, 1-21. 

Andrews, D. J. and Y. Ben-Zion (1997). Wrinkle-like slip pulse on a fault 

between different materials, J. Geophys. Res. 102, 553-571. 

Beeler, N. M. and T. E. Tullis (1996). Self-healing slip pulse in dynamic 

rupture models due to velocity-dependent strength, Bull. Seism. Soc. 

Am. 86, 1130-1148. 

Ben-Zion, Y. and J. R, Rice (1997). Dynamic simulations of slip on a 

smooth fault in an elastic solid, J. Geophys. Res. 102, 17771-17784. 

Beroza, G. C. and T. Mikumo (1996). Short slip duration in dynamic rup- 

ture in the presence of heterogeneous fault properties, Z Geophys. 

Res. 101,22449-22460. 

Brune, J. N. (1976). The physics of earthquake strong motion, in Seismic 

Risk and Engineering Decisions, C. Lominitz and E. Rosenblueth 

(Editors), Elsevier, New York, 141-171. 

Carlson, J. M. and J. S. Langer (1989). Mechanical model of an earthquake 

fault, Phys. Rev. A 40, 647~6484.  

Cochard, A. and R. Madariaga (1994). Dynamic faulting under rate-depen- 

dent friction, PureAppl. Geophys. 142, 419-445. 

Cochard, A. and R. Madariaga (1996). Complexity of seismicity due to 

highly rate dependent friction, J. Geophys. Res. 101, 25321-25336. 

Cochard, A. and J. R. Rice (1997a). A spectral method for numerical elas- 

todynamic fracture analysis without spatial replication of the rupture 

event, J. Mech. Phys. Solids 45, 1393-1418. 

Cochard, A. and J. R. Rice (1997b). Mode of rupture, self-healing slip pulse 

versus enlarging shear crack, for a velocity-weakening fault in a 3D 

solid (abstract), EOS 78, no. 46 (Fall Meeting Suppl.), F472. 

Das, S.,(1980). A numerical method for determination of source time func- 

tions for general three-dimensional rupture propagation, Geophys. J. 

R. Astr. Soc. 62, 591-604. 

Das, S. and B. V. Kostrov 1987. On the numerical boundary integral 

method for three-dimensional dynamic shear crack problems, J. Appl. 

Mech. 54, 99-104. 

Day, S. M. (1982). Three-dimensional finite difference simulation of fault 

dynamics: rectangular faults with fixed rupture velocity, Bull. Seism. 

Soc. Am. 72, 705-727. 

Day, S. M., G. Yu, and D. J. Wald (1998). Dynamic stress changes during 

earthquake rupture, Bull Seism. Soc. Am. 88, 512-522. 

Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results 

and constitutive equations, J. Geophys. Res. 84, 2161-2168. 

Dieterich, J. H. (1981). Constitutive properties of faults with simulated 

gouge, in Mechanical Behavior of Crustal Rocks, N. L. Carter, M. 

Friedman, J. M. Logan, and D. W. Steams (Editors), Geophysical 

Monograph 24, American Geophysical Union, Washington, D.C., 

103-120. 

Dieterich, J. H. (1992). Earthquake nucleation on faults with rate- and state- 

dependent strength, Tectonophysics 211, 115-134. 

Freund, L. B. (1979). The mechanics of dynamic shear crack propagation, 

J. Geophys. Res. 84, 2199-2209. 

Frutschy, K. J. and R. J. Clifton (1997). Plate-impact technique for mea- 

suring dynamic friction at high temperatures, Trans. Am. Soc. Mech. 

Eng., J. Tribol. 119, 590--593. 

Fukuyama, E. and R. Madariaga (1998). Rupture dynamics of a planar fault 

in a 3D elastic medium: rate- and slip-weakening friction, Bull, Seism. 

Soc. Am. 88, 1-17. 

GeubeUe, P. H. and J. R. Rice (1995). A spectral method for 3D elasto- 

dynamic fracture problems, J. Mech. Phys. Solids 43, 1791-1824. 

Harris, R. A. and S. M. Day (1993). Dynamics of fault interaction: parallel 

strike-slip faults, J. Geophys. Res. 98, 4461-4472. 

Harris, R. and S. M. Day (1997). Effect of a low velocity zone on a dynamic 

rupture, Bull. Seism. Soc. Am. 87, 1267-1280. 

Heaton, T. H. (1990). Evidence for and implications of self-healing pulses 

of slip in earthquake rupture, Phys. Earth Planet. Interiors 64, 1-20. 

Ida, Y. (1972). Cohesive force across the tip of a longitudinal-shear crack 

and Griffith's specific surface energy, J. Geophys. Res. 77, 3796- 

3805. 

Johnson, E. (1990). On the initiation of unidirectional slip, Geophys. J. Int. 

101, 125-132. 

Johnson, E. (1992). The influence of the lithospheric thickness on bilateral 

slip, Geophys. J. Int. 101, 151-160. 

Kilgore, B. D., M. L. Blanpied, and J. H. Dieterich (1993). Velocity and 

normal stress dependent friction of granite, Geophys. Res. Lett. 20, 

903-906. 

Kostrov, B. V. (1966). Unsteady propagation of longitudinal shear cracks, 

J. Appl. Math. Mech. 30, 1241-1248. 

Madariaga, R. (1976). Dynamics of an expanding circular fault, Bull. Seism. 

Soc. Am. 66, 639-666. 

Okubo, P. G. (1989). Dynamic rupture modeling with laboratory-derived 

constitutive relations, J. Geophys. Res. 94, 12321-12335. 

Olsen, K. G., R. Madariaga, and R. J. Archuleta (1997). Three-dimensional 

dynamic simulation of the 1992 Landers earthquake, Science 278, 

834-838. 

Palmer,  A. C. and J. R. Rice (1973). The growth of slip surfaces in the 

progressive failure of overconsolidated clay slopes, Proc. R. Soc. Lon- 

don Ser. A 332, 527-548. 

Perrin, G., J. R. Rice, and G. Zheng (1995). Self-heating slip pulse on a 

frictional surface, J. Mech. Phys. Solids 43, 1461-1495. 

Prakash, V. and R. J. Clifton (1992). Pressure-shear plate impact measure- 

ment of dynamic friction for high speed machining applications, in 

Proc. of Vll International Congress on Experimental Mechanics, Las 

Vegas, June 1992, Society of Experimental Mechanics. 

Prakash, V. and R. J. Clifton (1993). Time-resolved dynamic friction mea- 



1482 G. Zheng and J. R. Rice 

surements in pressure-shear, in Experimental Techniques in the Dy- 

namics of Deformable Solids, Appl. Mech. Div., Vol. 165 (AMD- 

Vol. 165), ASME, New York, 33--48. 

Rice, J. R. (1980). The mechanics of earthquake rupture, in Physics of the 

Earth's Interior, A. M. Dziewonski and E. Boschi (Editors), Italian 

Physical Society / North Holland, Amsterdam, 5554549. 

Rice, J. R. (1993). Spatio-temporal complexity of slip on a fault, J. Geo- 

phys. Res. 98, 9885-9907. 

Rice, J. R. (1997). Slip pulse at low driving stress along a frictional fault 

between dissimilar media (abstract), EOS 78, no. 46 (Fall Meeting 

Suppl.), F464. 

Rice, J. R. and Y. Ben-Zion (1996). Slip complexity in earthquake fault 

models, Proc. Natl. Acad. Sci. USA 93, 3811-3818. 

Rice, J. R. and A. L. Ruina (1983). Stability of steady frictional slipping, 

J. Appl. Mech. 50, 343-349. 

Rice, J. R. and S. T. Tse (1986). Dynamic motion of a single degree of 

freedom system following a rate and state dependent friction law, J. 

Geophys. Res. 91, 521-530. 

Ruina, A. L. (1983). Slip instability and state variable friction laws, J. 

Geophys. Res. 88, 10359-10370. 

rsutsumi, A. and T. Shimamoto (1997). High-velocity frictional properties 

of gabbro, Geophys. Res. Lett. 24, 699-702. 

Weertman, J. (1980). Unstable slippage across a fault that separates elastic 

media of different elastic constants, J. Geophys. Res. 85, 1455-1461. 

Zheng, G. (1997). Dynamics of the earthquake source: an investigation of 

conditions under which velocity-weakening friction allows a self- 

healing versus crack-like mode of rupture, Ph.D. Thesis, Division of 

Engineering and Applied Sciences, Harvard University. 

A p p e n d i x  1 

Elastodynamic Functional ~b for 2D Antiplane Strain 

In 2D cases, equation (1) reduces to 

iz V(x , t ) .  (AI.1) ~(x,t)  = ro(X,t) + +(x , t )  - 

The functional is given by Cochard and Rice (1997a) as the 

integral 

02f:f+: [ ] 
- M x -  ~ f i (~,q)  

c~(x,t) 2~ Ox 2 c-~ q) t - q 
d~dq, 

(A1.2) 

where they give the function M[u] for antiplane and for in- 

plane slip (and also for tensile opening). In the antiplane 

case, 

f ] l  - u 2, lul < 1 
M[u] (A1.3)  

t 0, lul > 1" 

For numerical treatments, we follow the spectral method- 

ology of Perrin et al. (1995), representing both slip ~ and 

the functional q5 as Fourier series that are truncated at some 

large order, 

n =  + NI2 
[fi<x,t) ~ ~ ID(k.,,)~ • 
[~b(x,t)J = .=-N/2 [F(k.,t)J e'x"x' (A1.4)  

where N is even, kn = 2zm/2, and 2 is a repeat length for 

the series. Then the Fourier coefficients are related by a con- 

volution that, for the case of  antiplane slip, is 

F(k,t) = - I zk  C[ t Jl(kcq)__ D(k,t - q)dq. (A1.5)  
2 jo q 

Further details of  the numerical method are discussed 

by Perrin et al. (1995). 

A p p e n d i x  2 

Proof That a 2D Antiplane Rupture Increases 

or Does Not Decrease the Shear Force Sustained 

Outside the Ruptured Zone 

Assume that a 2D rupture has, at time t, slipped a region 

occupying - L ( t )  < x < + L(t), with symmetry of the slip 

distribution relative to x = 0. Because V = 0 for Ixl > L(t), 

we have r = r~ + q5 there, and the integral of  equation (15) 

becomes 

f ( 
. [r(x,t) - r~]dx = 2 . ~  [r(x,t) - rg]dx = ff)(x,t)dx 

JSout(t ) JL(t) (t) 

0 x - ~ fi(~,q) 
_ /zz~ {-~x fot f+-: M[c(~- q)] t-  q d~dq}x=z(, 

(A2.1)  

To further interpret the last expression, we operate on M with 

O/Ox and then note that because M is homogeneous of degree 

zero in (x - ~) and (t - q), 

(x - ~)OM/Ox = - ( t  - q)OM/Ot 

= ( t -  q)OM/Oq. (A2.2)  

Then, so expressing OM/Ox and integrating by parts on q, we 

get 

fSo.,(, [~(x,t) - rg]dx 

It £ '  (L(O MIL(t)_- ~] V(~,q) d~dq, (A2.3)  

where, of  course, V(~, q) = Ofi(~, q)/Oq and we have set x 

= L(t). 

This analysis could apply for in-plane or antiplane slip. 

In both cases, V(~, q) and L(t) - ~ in the integrand are 

everywhere non-negative. For the antiplane case M[u], given 

by (A1.3), is likewise non-negative, and hence, it is a defin- 

itive result in that case that 

fSo z ( x , t )  - rbo]dx >--_ 0, 
m(t) 

(A2.4)  
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like assumed in equation (15). The difficulty in generating 

a similar general proof of (15) for the case of in-plane slip 

is that M[u] is then not positive for all values of u. 

Appendix 3 

Stability of Steady-State Solutions under Conditions 

of Spatially Uniform Slip 

to larger value if d z J d V  + #12c < 0, which is the case for 

at least one of any lower-speed solutions as may exist. 

Appendix 4 

List of Symbols 

A , B  

We now show that the solution for spatially uniform 
c 

slip at steady state on a fault obeying the velocity-weakening 6(x, z, t) 

friction law is stable at a solution like V = Vdyna illustrated 

in Figure 3, for which the negative of the slope of steady- ~b(x, z, t) 

state strength v~(V) is smaller than the negative of the slope h 

of the radiation damping line lu/2c, and unstable otherwise. 
h* 

To prove that, we write the rate- and state-dependent h ~ _ a  

friction law as in (6) to (12). Taking the derivative relative 

to V for both equations (8) and (9), we have 
hd*yna 

d z J d V  = Fv + FodOJdV, (A3.1) L (or dc) 

Gv + GodOJdV = 0, 2 

where Fv, Fo, Gv, and Go are partial derivatives. /t 

On the other hand, the elastodynamic relation (1), not- N~l~ 

ing that th(x, z, t) = 0 from (5), gives 0 

z b - ~ / 2 c ) V - -  Zs~ngth = F(V,O). (A3.2) 

Now perturbing (A3.2) by a small change of state variable 

A0, and neglecting higher order than linear terms, we have 

- (p/2c)AV = FvAV + FoAO with AV being the corre- 

sponding variation of velocity and thus related to A0 by 

t7 n - -  p 

z(x, z, t) 

Zo(X, z, t) 

~o ~, ~o 

~'pulse 

A V - - Fo A0. (A3.3) 2"arrest 
tz/2c + Fv 

Under this perturbation, let us now examine the tendency of Zstrength 

the state variable to change. From (7), again neglecting z~s(V) 

higher-order terms, we have At) = GvAV + GoAO. Com- z~_~p(V) 

bining with the foregoing equations, we derive 

[ GvAV ] [ (doss/dV)F° ] 
GoAO ~ - - ~  + 1 = GoAO Lu--~c ~-~v  + 1 

[dzssldV - Fv 1 G°(dzJdV + It/2c) 
G°AO [ ~---~c -+- -F v + 1_ = td2c + Fv 

AO 

V dzJdV + ,u/2c 
AO, 

L ,u/2c + Fv (A3.4) 

A0= 

where (12) is used in the last step. Recalling that F v >-- 0, 

we therefore conclude that small perturbations away from 

steady-state conditions will decay toward zero when d z J d V  

+ Iz/2c > O, which is the case for V = Vdy~a, but will grow 

AT 

T 

V(x ,  z, t)  

Vdyna 

V0, Vweak 

direct and evolutionary velocity-dependence 

parameters in a lab-derived constitutive law 

shear wave speed 

slip on fault 

a functional of spatially nonuniform slip history 

c~(x, z, t) 

element size, or FFT sampling point spacing 

coherent slip patch size 

coherent slip size based on weakening rate B - 

A, 2t~L/zc(B - A) 

coherent slip size based on weakening evaluated 

at V = Vdyna 

characteristic sliding length in constitutive law 

total length of the simulated region along fault, 

Neteh, periodically repeated in space 

elastic shear modulus 

total number of elements in the numerical grid 

state variable defined in lab-derived constitutive 

laws 

effective normal stress 

shear stress 

loading stress; would be sustained by the fault 

if contrained against slip 

uniform remote background and perturbed 

levels of the loading stress 

stressing level below which no indefinitely 

expanding crack exists 

stressing level at which one gets a steady-state 

self-healing pulse (and below which the pulse 

decays with propagation distance) 

fault strength 

steady-state fault strength, zst~e~gth = Zss(V) 

describes radiation damping line, Zdamp(V) = 

Z b --/IV/2c 

characteristic stress drop of a constitutive law 

slope ratio between the steady-state strength 

curve and radiation damping line at Vdyna 

sliding velocity, is equal to d(x, z, t) 

characteristic velocity in dynamic slip process 

constants entering different constitutive laws 

considered 
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