
����������
�������

Citation: Park, G.; Yi, Y. CondNAS:

Neural Architecture Search for

Conditional CNNs. Electronics 2022,

11, 1101. https://doi.org/10.3390/

electronics11071101

Academic Editors: Jungong Han and

Guiguang Ding

Received: 9 March 2022

Accepted: 28 March 2022

Published: 31 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

CondNAS: Neural Architecture Search for Conditional CNNs
Gunju Park and Youngmin Yi *

Department of Electrical and Computer Engineering, University of Seoul, Seoul 02504, Korea; iop8890@uos.ac.kr
* Correspondence: ymyi@uos.ac.kr

Abstract: As deep learning has become prevalent and adopted in various application domains, the
need for efficient convolution neural network (CNN) inference on diverse target platforms has
increased. To address the need, a neural architecture search (NAS) technique called once-for-all, or
OFA, which aims to efficiently find the optimal CNN architecture for the given target platform using
genetic algorithm (GA), has recently been proposed. Meanwhile, a conditional CNN architecture,
which allows early exits with auxiliary classifiers in the middle of a network to achieve efficient
inference without accuracy loss or with negligible loss, has been proposed. In this paper, we propose a
NAS technique for the conditional CNN architecture, CondNAS, which efficiently finds a near-optimal
conditional CNN architecture for the target platform using GA. By attaching auxiliary classifiers
through adaptive pooling, OFA’s SuperNet is successfully extended, such that it incorporates the
various conditional CNN sub-networks. In addition, we devise machine learning-based prediction
models for the accuracy and latency of an arbitrary conditional CNN, which are used in the GA
of CondNAS to efficiently explore the large search space. The experimental results show that the
conditional CNNs from CondNAS is 2.52× and 1.75× faster than the CNNs from OFA for Galaxy
Note10+ GPU and CPU, respectively.

Keywords: neural architecture search; conditional CNN; genetic algorithm; performance prediction;
deep learning

1. Introduction

The need for efficient deep learning inference on diverse embedded mobile platforms
has increased recently. Many applications require real-time object detection and recognition,
including autonomous driving, intelligent surveillance, and augmented reality on diverse
platforms: cars, robots, drones, smartphones, and various IoT devices. To meet stringent
constraints, efficient yet accurate deep learning inference on embedded mobile devices
has been actively researched in many directions, including quantization [1], lightweight
convolution neural networks (CNNs) [2–4], and efficient convolution algorithms [5].

One approach is a neural architecture search (NAS) for diverse platforms. While
the traditional NAS techniques only aimed at increasing the classification accuracy not
considering the computing platforms [6–11], many recent NAS techniques [12–14] attempt
to find an optimal CNN architecture that can minimize latency of the CNN inference
on a given target platform while maintaining the accuracy. The recently proposed NAS
technique, once-for-all (OFA) [15], can efficiently search for the optimal CNN through
genetic algorithm (GA) without retraining.

Another approach for efficient yet accurate CNN inference is a conditional CNN where
a CNN model has auxiliary classifier(s) in the middle of the network, allowing for early exit
if it is confident enough to classify the input [16–18]. It can avoid forwarding the input (i.e.,
computing the feature maps) to the end layer, saving time and energy, without sacrificing
accuracy if the confidence level was set correctly. The recently proposed work, BPNet [19],
can find out the locations to attach the auxiliary classifiers and the threshold of each
auxiliary classifier in a systematic manner using GA. Given the target platform and a CNN,
it finds the optimal conditional CNN architecture for the platform. Even if BPNet does not

Electronics 2022, 11, 1101. https://doi.org/10.3390/electronics11071101 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11071101
https://doi.org/10.3390/electronics11071101
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6734-8648
https://orcid.org/0000-0001-9802-2109
https://doi.org/10.3390/electronics11071101
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11071101?type=check_update&version=1

Electronics 2022, 11, 1101 2 of 13

alter the base CNN architecture but only determines the location and threshold of each
auxiliary classifier, it can be considered a NAS technique that can find fast yet accurate
conditional CNN architectures for the target platform.

In this paper, we propose a NAS technique for conditional CNNs to address the
problem of fast yet accurate inference on diverse embedded platforms. To the best of our
knowledge, no prior work exists for the NAS of conditional CNNs. BPNet can be thought
of as a NAS technique for conditional CNNs but it can only find the optimal conditional
CNN architectures for the given base network: it cannot alter the base network in the
search. One may think of applying BPNet to the CNN obtained by NAS techniques such
as OFA. However, it would not be optimal as auxiliary classifier architectures and the
base architectures are searched separately in sequence. To consider the auxiliary classifiers
simultaneously in the same search process, we propose to integrate the two NAS techniques,
OFA and BPNet. The challenges in integrating the two NAS techniques are two-fold. First,
how to attach the auxiliary classifiers to the SuperNet in OFA and how many to attach
should be considered. SuperNet is a network that contains various parameters that OFA
searches. Second, the accuracy and latency predictors for a conditional CNN should be
devised. In BPNet, the accuracy and latency are not predicted but directly measured
in the profiling phase, and the information is used in the pruning, or the design space
exploration (DSE) phase, to find the optimal locations and the thresholds of auxiliary
classifiers. However, the GA in the integrated NAS would be too time-consuming if such a
direct profiling is employed to evaluate the accuracy and latency.

This paper presents CondNAS, a NAS framework for conditional CNNs, to tackle
these two challenges. The SuperNet is extended such that it incorporates auxiliary classifiers
through adaptive pooling, and the accuracy and latency prediction models are devised
and trained using the dataset of arbitrary conditional CNNs extracted from the extended
SuperNet. With the prediction models, the GA can efficiently search the huge design space
composed of arbitrary CNN configurations and arbitrary auxiliary classifier configurations.
The experimental results show that the conditional CNNs from CondNAS is 2.52× and
1.75× faster than the CNNs from OFA for Galaxy Note10+ GPU and CPU, respectively.
Overall, this work makes the following contributions:

• To the best of our knowledge, this is the first NAS technique for the conditional CNNs
with different base networks; BPNet is for the same base network.

• Careful extension of the SuperNet with auxiliary classifiers that does not incur accu-
racy loss

• Accurate prediction models for the accuracy and latency of conditional CNNs.
• Efficient dataset generation to train the prediction models.
• Significant speedups from the (near-)optimal solutions found by CondNAS.

2. Background
2.1. OFA

Once-for-all, or OFA, is a GA-based NAS technique [15] where the model training
stage and the neural architecture search stage are decoupled. A once-for-all network that
is trained considering diverse architectural configurations, and then (near-)optimal sub-
networks for the target platforms are efficiently searched using GA. Two key enablers are
the design and training of once-for-all network, or SuperNet, and the accuracy and latency
predictors used in GA to extract optimal sub-networks, or SubNets, for the target platform
from the trained SuperNet. Thanks to these, the NAS cost for the N different platforms and
devices can be reduced from O(N) to O(1).

To consider diverse architectural configurations, the SuperNet is designed such that,
conceptually, an arbitrary number of layers (i.e., depth) can have an arbitrary number
of channels (i.e., width) and kernel sizes in multiple units for the arbitrary input image
resolutions. In practice, they limit the number of units to five, the depth in a unit to be one
of 2, 3, 4, the width expansion ratio of layer to be one of 3, 4, 6, and the kernel size is chosen
from 3, 5, 7. The design space is as large as {(3× 3)2 + (3× 3)3 + (3× 3)4}5 ∼= 2× 1019

Electronics 2022, 11, 1101 3 of 13

and each of them is used for the 25 different input image resolutions from 128 to 224 with
stride 4.

To efficiently train the SuperNet, progressive shrinking was proposed, which first
trains with maximum depth, width, and kernel size, then progressively fine-tunes the
smaller sub-networks: the network with a reduced kernel size is fine-tuned while the depth
and width are unchanged, then the network with a reduced width is fine-tuned while
the other architectural configurations are unchanged, and so on. Progressive shrinking
prevents interference between SubNets by enforcing a training order from large SubNets
to small SubNets in a progressive manner, which can be also thought of as a generalized
network pruning [15].

Once a SuperNet is trained independently of target platforms, GA finds the opti-
mal SubNets for the target platform with accuracy and latency predictors. The accuracy
predictor in OFA is a multi-layer perceptron (MLP) with three layers, and the SubNet
configuration is represented as a 128-long one-hot encoded vector and fed to the MLP to
predict the latency. The latency predictor is an LUT-based estimator, which simply adds up
the profiled estimates of each layer of a SubNet.

Decoupling of SuperNet training and the optimal SubNet search for the target platform
distinguishes OFA from the previous NAS techniques, including DARTS [9], ENAS [8], and
proxyless NAS [14]. Although the previous NAS techniques can consider weight sharing
among different SubNets, they must retrain the SubNet for the target platform, due to
which OFA achieves faster search. Moreover, as the interference between SubNets are
prevented using progressive shrinking, OFA achieves superior results in both accuracy and
latency of SubNets [15].

2.2. BPNet

BPNet, or branch-pruned network, is also a GA-based NAS technique [19] for the
conditional CNNs, which finds out the optimal locations and thresholds of auxiliary
classifiers in the given base CNN for the target platform. It consists of profiling and pruning
phases, in addition to training and testing phases. In the training of the BPNet, the candidate
auxiliary classifiers, or branches, are attached at conceptually every possible location (i.e.,
after every convolution layer), and then, in the profiling phase, the softmax value and the
latency at each auxiliary classifier are measured and stored in the LUT for the calibration
dataset. This LUT is used in the branch pruning phase, where design space for auxiliary
classifiers is explored using GA: the location and threshold values of each branch are
encoded as a gene and their latency and accuracy scores are evaluated by referencing the
LUT. As a result of the branch pruning, only helpful branches, or classifiers, survive and
lead to latency reduction while maintaining the accuracy.

BPNet is not the first work that proposed conditional CNN but it is the first work that
proposed to design the conditional CNN systematically. Because the prior works determine
the location and threshold of auxiliary classifiers in an ad hoc manner, they are inefficient
in finding the advantageous configurations and tend to result in sub-optimal architectures.
In contrast, BPNet can efficiently find pareto-optimal solutions when an arbitrary CNN
model and an arbitrary target platform is given.

However, BPNet only works for one base CNN at a time, which requires joint training
with auxiliary classifiers. Therefore, the design space is limited to the conditional CNN
architecture for the given base CNN model. If the optimal conditional CNN architecture
can be searched for while the base CNN architectures are also varied, the consequent
conditional CNNs would be much more efficient, which is the theme of this paper.

3. Proposed Approach

We propose a unified NAS technique for conditional CNNs called CondNAS that
integrates OFA NAS and BPNet, aiming at searching for an optimal conditional CNN
for the given target platform. Compared to the conditional CNN that could be obtained
by simply applying the two techniques in series, the CondNAS can find a more efficient

Electronics 2022, 11, 1101 4 of 13

conditional CNN because it explores significantly larger design space, consisting of diverse
configurations of auxiliary classifiers for an arbitrary CNN model architecture. This section
discusses our solution to the two technical challenges addressed in Section 1, starting with
the overall description of the proposed framework called CondNAS.

3.1. Overall Structure

Figure 1 shows the overall structure of CondNAS and its design flow. Similar to
OFA, the SuperNet is first trained independent of target platforms (1©), then the GA is
later performed for the given target platform. The SuperNet is extended such that it can
incorporate the various configurations of auxiliary classifiers. The GA in CondNAS adopts
machine learning-based accuracy and latency prediction models to evaluate the score of
an arbitrary conditional CNN encountered in the search. To this end, before the GA starts,
the training dataset generation module extracts a number of various conditional CNNs
from the SuperNet and generates their accuracy and latency label for the given target
platform (2©) in a similar way to BPNet: it actually runs and profiles the conditional CNNs,
feeding the calibration dataset. The generated datasets are used for training the prediction
models, which are then used in the search of (near-)optimal conditional CNNs for the given
target platform (3©). The SuperNet and the accuracy prediction model are trained only once
for a new input image dataset, whereas the latency prediction model should be trained
whenever the target platform changes.

Training extended SuperNet
with aux. classifiers GA-based NAS for conditional CNN model

ML-based
Accuracy prediction

Conditional CNNs
configs with

latency labels

ML-based
Latency prediction

Conditional CNNs
configs with accuracy

labels

Training Dataset
Generation

e.g., CIFAR-10/100

1

2

3

Accuracy constraintTarget platform

(near-)optimal
conditional CNN

Figure 1. CondNAS overall structure and design flow.

3.2. Extending SuperNet

The first challenge for integrating OFA with BPNet is where to attach the auxiliary
classifiers. In BPNet, the initial candidate locations of auxiliary classifiers are after every
convolution layer. Although this has a potential to lead to more efficient conditional CNNs,
it would make SuperNet training difficult or infeasible because a unit has a varying number
of convolution layers: having a different number of auxiliary classifiers in a unit will make
the loss function complicated. On the other hand, if we allow an auxiliary classifier to
be attached only at the end of each unit, then the loss function of a unit will have the
same number (i.e., one) of auxiliary classifiers and, hence, SuperNet training would be
more tractable.

The second challenge for integrating OFA with BPNet is how to attach the auxiliary
classifiers. SuperNet can take multiple input sizes and the auxiliary classifier attached to
the SuperNet should be able to. As the auxiliary classifiers are fully connected layers, they
are dependent on the size of input feature maps, unlike convolution layers. To address
this problem, we propose to add an adaptive pooling layer before an auxiliary classifier so
that the different sized input feature maps can be converted to a fixed size input feature
map, as shown in Figure 2. While conventional pooling layers determine the output feature

Electronics 2022, 11, 1101 5 of 13

map size using stride and padding parameters, adaptive pooling layers compress the
feature maps into a fixed size feature map. However, this can incur accuracy loss as average
pooling layers in the proposed SuperNet convert the feature maps based on the minimal
input image size. This minimizes the overhead of auxiliary classifiers in the inference and
makes the training of the SuperNet with auxiliary classifiers more tractable: when the
actual input size is larger than the minimal size, the information loss occurs. Although the
information loss can lead to the accuracy loss, the reduced information can also play the
role of a regularizer and prevent overfitting, actually increasing the overall accuracy. We
examine the impact of average pooling on the overall accuracy.

Aux. classifier

(FC layer)

Unit 1 Unit 2

Adaptive
Pooling

Aux. classifier

(FC layer)

Adaptive
Pooling

Fixed feature map size

Unit 3

Figure 2. Adaptive pooling as a glue to attach auxiliary classifiers to SuperNet.

3.3. Chromosome Design

Once a SuperNet with auxiliary classifiers is trained by progressive shrinking, GA
searches for the optimal conditional CNN for the target platform. Figure 3 shows the
chromosome used in CondNAS’s GA module. The base CNN architecture (α) is encoded in
three parts: image resolution, Blocks (N), and Units (M). A base CNN has five units, each
of which has from two to four blocks (i.e., depth is at least two and the maximum number
of blocks in the entire network is 20), and a block has two genes for kernel size and width,
respectively. Thus, α is encoded in 1 + 20 × 2 + 5 = 46 genes. On the other hand, conditional
CNN architecture (β) encodes the availability and threshold of each auxiliary classifier after
each of five units, resulting in 5 × 2 = 10 genes.

CondNAS chromosome (α, β)

Blocks (N) 1 2 3 4 … 20

Kernel Size 7 5 3 7
…

3

Width 6 6 4 3 4

Units (M) 1 2 3 4 5

Depth 3 4 4 2 3

Resolution 192

Classifiers (M) 1 2 3 4 5

Availability 0 1 1 0 0

Threshold 0.8 0.43 0.65 0.73 0.56

α

β

Figure 3. CondNAS chromosome with 56 genes.

Electronics 2022, 11, 1101 6 of 13

3.4. Accuracy Prediction of Conditional CNN

Performance estimation is a key factor that enables efficient and accurate design
space exploration in GA. If performance estimation is not accurate, GA would not evolve
correctly and fail to find the (near-)optimal solutions. If performance estimation is not
efficient, it would be too time-consuming to explore sufficiently large design space. To this
end, OFA proposed an accuracy predictor of a CNN. In BPNet, however, the accuracy of a
conditional CNN was not estimated but was directly measured using a calibration dataset
and the profiled information was used in GA. However, such a direct profiling would be
infeasible in CondNAS due to significantly larger design space. In BPNet, the calibration
dataset consists of 10,000 images, and the profiling time to measure softmax values at the
auxiliary classifiers of an conditional CNN is about 1–2 min. The number of conditional
CNN architectures in GA of CondNAS is 50,000 as a population of 100 individuals is
evolved through 500 generations. Thus, the total time for directly calculating the accuracy
of the conditional CNNs in CondNAS’s GA would be 50,000 × 1–2 min = 833–1666 GPU h,
or 35–70 GPU days, which corresponds to 9–18 days even with a server having four GPUs.
If the target platform is changed, or the GA should be re-run with different parameters,
the whole process must be repeated, consuming another 833–1666 GPU h. One might
consider reusing the profiled softmax values because the accuracy of conditional CNNs
is independent of target platforms. However, it is highly likely that the individuals (i.e.,
the newly generated arbitrary conditional CNN architectures) from the GA are new and
cannot be reused, considering the significantly large design space: (2× 1019)× (25 × 105).

To mitigate this problem, we devise an accuracy predictor to predict the accuracy
instead of directly measuring the softmax values of the calibration dataset and calculating
the accuracy of a conditional CNN. The accuracy predictor is already provided in OFA,
but it is for conventional CNNs, not for conditional CNNs. The accuracy prediction of a
conditional CNN is challenging but OFA has shown that it is feasible for conventional
CNNs: multi-layer perceptron (MLP) takes a CNN of interest as input and very accurately
predicts its accuracy. They achieved 0.21%p root mean square error (RMSE). It was re-
ported that 1000–2000 training data (i.e., CNNs with accuracy labels) were used. For the
prediction of conditional CNN accuracy, we devised a prediction model and empirically
found that 200 training data for a base CNN (i.e., different locations and threshold values
of auxiliary classifiers in a given base CNN, with accuracy labels) are sufficient to achieve a
good accuracy of 0.4%p RMSE. The training dataset generation for the proposed accuracy
prediction model of conditional CNNs is performed in two steps: it first constructs the
softmax LUT for each of 2000 base CNNs using 10 K calibration dataset in a similar manner
to BPNet. Then, the accuracy values of 200 different configurations of auxiliary classifiers
were calculated using the LUT and stored as training data. Thus, the training generation
time is 2000 × 60 + 2000 × 200 × 0.1s ∼= 44 h, when the softmax profiling for one α takes
1 min and the accuracy calculation and store for one pair of (α, β) takes 0.1 s when α is
fixed.

The accuracy prediction model is trained with the generated training dataset consisting
of 400 K arbitrary conditional CNNs. In OFA, the CNN accuracy prediction model is an
MLP consisting of three layers. To predict the accuracy of a conditional CNN, which is much
more complicated due to auxiliary classifiers, MLP may not be sufficient. Recently, gradient
boosting-based ensemble decision tree models, such as XGBoost [20] and LightGBM [21],
have been proposed, showing high performance in classification and regression problems.
In particular, LightGBM can mitigate the drawbacks of XGBoost, such as long training time
and being easy-to-overfit. In addition, it can be accelerated using CUDA, further reducing
the training time. In this work, we use LightGBM rather than MLP to predict the accuracy
of conditional CNNs. Note that, once the accuracy prediction model is trained, it is reused
in CondNAS’s GA no matter how many times the target platform is changed.

Electronics 2022, 11, 1101 7 of 13

3.5. Latency Prediction of Conditional CNN

A CNN latency is dependent on the target platform and a conditional CNN latency is
further dependent on the input image because it allows early exit at the auxiliary classifier.
OFA and BPNet both use LUT-based latency estimation. In OFA, the execution time of
different types of layers with various shapes is profiled in advance on the target platform
and stored in an LUT, which is then referenced by the latency estimator in the GA to
estimate the latency of an arbitrary CNN. Because a CNN layer latency is almost the same
regardless of input images, the latency estimator references the LUT and simply adds the
latency of each layer in the CNN. In BPNet, the base CNN is fixed and the latency as well
as the softmax value at each branch (i.e., auxiliary classifier) in the conditional CNN is
profiled and stored in an LUT in advance; then, it is looked up in the GA (i.e., branch
pruning stage). However, CondNAS cannot construct the latency LUT of the conditional
CNNs in advance as the base CNN is not fixed but is arbitrary, unlike BPNet. Similarly,
OFA’s approach of adding the layer latency to estimate the entire network latency is not
efficient because, unlike OFA, CondNAS should estimate the conditional CNN latency for
all input images as it varies depending on input images. Thus, it must run all input images
in the calibration dataset to obtain the mean latency of the conditional CNNs, whereas
OFA’s latency estimator for (base) CNNs need only one calculation to estimate the latency
as it does not vary depending on the input image. Therefore, we also propose to predict the
latency of conditional CNNs with the LightGBM model. Similarly to the accuracy prediction
model, the latency prediction model is trained with a number of diverse conditional CNNs
with latency labels. Then, it can efficiently predict the mean latency of a given conditional
CNN without running any input images during GA. The similar order of time is required
for the latency training dataset generation as the accuracy dataset. Unlike the accuracy
training dataset, the latency training dataset cannot be reused when the target platform
is changed.

4. Evaluations

The base SuperNet used in this study was from OFA, whose building block is based
on MobileNet-v3 [22]. To compare with the results in BPNet, CIFAR-10 and CIRAR-100
datasets were used to fine-tune the SuperNet. As the image size of SuperNet is 224 × 224
while the size in CIFAR-10 and CIFAR-100 is 40 × 40, upsampling was completed as a
pre-processing step before training.

To train the extended SuperNet, PyTorch 1.5.1 was used with Horovod [23] for the
distributed deep learning across two nodes, one with four Titan V GPUs and the other with
two Titan RTX GPUs. The GA algorithm used was NSGA-III [24]. The inference was made
using TensorFlow Lite 2.3 on Galaxy Note10+, where the GPU is Mali-G76 and the CPU
consists of two Mongoose M4 cores, two Cortex-A75 cores, and four Cortex-A55 cores.

4.1. Training of SuperNet for Conditional CNNs
4.1.1. Accuracy Comparison

Figure 4 shows the test accuracy of the original SuperNet from OFA and the proposed
extended SuperNet with auxiliary classifiers when depth (i.e., number of layers in a unit),
width (i.e., number of channels), and kernel size are varied. For CIFAR-10, the proposed
SuperNet with auxiliary classifiers shows 0.2%p of very little accuracy loss compared to the
original OFA SuperNet accuracy. For CIFAR-100, the accuracy loss is also as small as 0.8%p.
The accuracy of the last two auxiliary classifiers (ID 4 and 5) show accuracies comparable
to the final classifier, which indicates that the test data in CIFAR-10 and CIFAR-100 are
sufficiently easy to classify, already at the point of the fourth auxiliary classifier. In contrast,
the first auxiliary classifier shows very poor accuracy, based on which we do not consider
attaching an auxiliary classifier after the first unit in the design space exploration.

We observed that our proposed SuperNet with auxiliary classifiers cannot be trained
with the hyperparameters of OFA, suffering from overshooting. Thus, we gradually reduced
the learning rate and empirically found the learning rate, which does not incur overshooting.

Electronics 2022, 11, 1101 8 of 13

Correspondingly, we increased the number of epochs in the first stage of progressive
shrinking. The other hyperparameters from OFA were used unchanged. Hyperparameters
for conditional CNNs, loss weight, Wn, and coefficient, c, have been added. However,
unlike BPNet, where c is in the range of 1.0 and 4.0, we fixed c to 1.0 as c > 1.0 results in
overshooting in SuperNet training. For Wn, the same value was used as in BPNet.

82.9

84.7 84.9

86.4

88.8

91.2
90.1

92.5

89.1

91.7
90.5

92.9 92.7

94.9
93.8

95.4
93

95.1
94.2

95.6

94.5 96

95
96.3

92.45
94.85 94.13

95.81

94.48
95.82

95.49 96.6

80

82

84

86

88

90

92

94

96

2 - 3 - 3 2 - 3 - 7 2 - 6 - 3 2 - 6 - 7 4 - 3 - 4 4 - 3 - 7 4 - 6 - 3 4 - 6 - 7

CI
RA

R-
10

 T
op

-1
 A

cc
ur

ac
y

(Depth, Wdith, Kernel size) tuple

81.1
81.7

83.3

86.3

88.4 88.4

90.2

87.4

89.9
88.8

90.9 91.4

93.7

92.1

94.391.1

93.8
92.7

94.7 93.7
95 94.2

95.6

89.89

92.95 91.87

94.55 93.22

95.01 94.65
95.86

80

82

84

86

88

90

92

94

96

2 - 3 - 3 2 - 3 - 7 2 - 6 - 3 2 - 6 - 7 4 - 3 - 4 4 - 3 - 7 4 - 6 - 3 4 - 6 - 7

CI
FA

R-
10

 T
op

-1
 A

cc
ur

ac
y

(Depth, Wdith, Kernel size) tuple

54.3
56.4 56.7

58.8 59.5
61.9 62

64.2

63.3

65.8 66.4

68.9
67.9

70.4 70.6
72.7

69.6

71.7
74.1

75.8

73.8 74.1

76.4

76.4
70.64

71.16

73.29 75.2

73.88 74.14
76.35

77.29

50

55

60

65

70

75

2 - 3 - 3 2 - 3 - 7 2 - 6 - 3 2 - 6 - 7 4 - 3 - 4 4 - 3 - 7 4 - 6 - 3 4 - 6 - 7

CI
FA

R-
10

0
To

p-
1

Ac
cu

ra
cy

(Depth, Wdith, Kernel size) tuple

CIFAR-10

224x224 160x160

160x160

CIFAR-100

57.7
59.4 59.5

60.8 61.7
63.7 64.2

65.9
65.7

68.3 68.7

71.2
70.2

73.1 72.8
75.273.5

76.1 77.1
78.9

76.4
78.4 78.9

80.4
74.58

77.91 77.48
79.53

77.12
79.36 79.11

81.24

55

60

65

70

75

80

2 - 3 - 3 2 - 3 - 7 2 - 6 - 3 2 - 6 - 7 4 - 3 - 4 4 - 3 - 7 4 - 6 - 3 4 - 6 - 7

CI
FR

A-
10

0
 T

op
-1

 A
cc

ur
ac

y

(Depth, Wdith, Kernel size) tuple

224x224

(a) (b)

(c) (d)

Aux. Classifier 2 Aux. Classifier 3 Aux. Classifier 4 Aux. Classifier 5

(2,3,3) (2,3,7) (2,6,3) (2,6,7) (4,3,4) (4,3,7) (4,6,3) (4,6,7) (2,3,3) (2,3,7) (2,6,3) (2,6,7) (4,3,4) (4,3,7) (4,6,3) (4,6,7)

(2,3,3) (2,3,7) (2,6,3) (2,6,7) (4,3,4) (4,3,7) (4,6,3) (4,6,7) (2,3,3) (2,3,7) (2,6,3) (2,6,7) (4,3,4) (4,3,7) (4,6,3) (4,6,7)

Figure 4. Accuracy comparison of SuperNets with (a) CIFAR-10 and image size of 224 × 224,
(b) CIFAR-10 and 160 × 160, (c) CIFAR-100 and 224 × 224, and (d) CIFAR-100 and 160 × 160.

4.1.2. Effect of Adaptive Pooling

Figure 5 shows the accuracy when the adaptive pooling size is varied. The adaptive
pooling size is defined to be the output of an adaptive pooling layer. In the proposed
SuperNet, auxiliary classifiers are attached through an adaptive pooling layer so that
the feature map size in the classifiers is fixed. Due to this, we expected a certain level
of accuracy loss. As shown in Figure 5, however, most of the sizes except for one led to
an increased accuracy by up to 2.17%p. Counter-intuitively, the smallest size, 64 × 64,
shows the highest accuracy. It is because adaptive pooling normalizes largely distributed
information, preventing overfitting. Note that, without adaptive pooling, we observe that
the SuperNet with auxiliary classifiers cannot be trained.

Electronics 2022, 11, 1101 9 of 13

91.7

95.2
95.5 95.6 95.5

90.7

94.7

95.5

90.6

94.4

95.3 95.4

90.8

95.4

89

93.4

94.8
94.9 94.9

93.7

94.7

95 95.1

89

90

91

92

93

94

95

96

Aux2 Aux 3 Aux 4 Aux 5 Main

CI
FA

R-
10

 T
op

-1
 A

cc
ur

ac
y

Accuracy with Different Pooling Sizes

2/7 3/7 4/7 5/7 6/7 1(Original)

Adaptive Pooling Ratio

Figure 5. Accuracy when adaptive pooling size is varied. Original size is 224 × 224.

4.2. Efficient Search in GA
4.2.1. Accuracy and Latency Prediction for Conditional CNNs

For accuracy and latency prediction of a conditional CNN, we devised light gradient
boosting machine (LightGBM) models that take as input an arbitrary conditional CNN and
predicts its accuracy and latency. The train dataset was generated as explained in Section 3.
The number of β for each α was 200 while the number of α was 3000, resulting in the total
size of the train data being 600,000. To compare the accuracy of the proposed LightGBM
model with the MLP model architecture from OFA, which consists of the three layers, they
were trained with the same dataset of 600,000 arbitrary conditional CNNs for 2000 epochs.
It took about 6.8 h for the MLP models, whereas LightGBM models took only about 40 s on
a Titan RTX GPU.

Figure 6 shows the comparison results. For the accuracy prediction, the LightGBM
model (Figure 6d) shows a significantly smaller RMSE of 0.15%p than the MLP model
(Figure 6c), whose RMSE is 2.0%p. The proposed latency prediction model also shows
accurate latency predictions with 0.75 ms of RMSE (Figure 6b) while the MLP model shows
1.5 ms of RMSE (Figure 6a).

Electronics 2022, 11, 1101 10 of 13

(d)

CI
FA

R-
10

la

te
nc

y
pr

ed
ic

tio
n

(m
s)

Predictors in OFA LightGBM Predictor (Ours)

RMSE ~= 1.5 (ms) RMSE ~= 0.75 (ms)

RMSE ~= 0.15 (%p)RMSE ~= 2 (%p)

CI
FA

R-
10

Ac
cu

ra
cy

 p
re

di
ct

io
n

(c)

(a) (b)

Figure 6. Accuracy and latency prediction comparison: (a) MLP model for latency prediction,
(b) LightGBM model for latency prediction in CondNAS, (c) MLP model for accuracy prediction in
OFA, and (d) LightGBM model for accuracy prediction in CondNAS.

4.2.2. Optimal Conditional CNNs

CondNAS can find a set of (near-)optimal conditional CNNs with shortest latency
for the target platforms while meeting the accuracy constraint. Figure 7 shows the Pareto-
optimal curves obtained by the prediction models in CondNAS and OFA for Galaxy
Note10+ CPU and GPU. The accuracy of 0.96, which is smaller than the maximum accuracy
by only 0.3%p, was selected as the comparison point because the conditional CNNs with
higher accuracy tend to have only one auxiliary classifier at the end before the main
classifier, with a large threshold: they are similar to the typical CNNs, having no advantage
of the conditional architecture. For the same accuracy of 0.96, the conditional CNNs from
CondNAS are 2.52× faster than the CNNs from OFA for the GPU (i.e., Mali-G76) and
1.75× faster for the CPU (i.e., mainly two Mongoose M4 cores). The large speedups come
from the early exit in the conditional CNNs. As shown in Figure 8, the base CNNs are
different from the those obtained by OFA, which confirms that CondNAS can successfully
find (near-)optimal conditional CNNs, efficiently exploring the huge design space.

Figure 8 shows examples of (near-)optimal conditional CNNs obtained by CondNAS
and CNNs by OFA. For the CPU, the CNN latency (Figure 8a) was 20.3 ms while the
conditional CNN latency (Figure 8c) was 11.6 ms, achieving a 1.75× speedup. For the GPU,
the CNN latency (Figure 8b) was 8.3 ms while the conditional CNN latency (Figure 8d) was
only 3.3 ms, achieving a 2.52× speedup. All four CNNs had the same top-1 accuracy of
0.96: accuracy is not sacrificed in conditional CNNs. Note that the base CNN of conditional
cases are different from the OFA CNNs, having different depth, width, and kernel sizes in
each unit.

When the BPNet method was applied to the CNN obtained by OFA, the resultant
conditional CNN could not maintain the accuracy of 0.96, but resulted in 0.925 with the
latency of 14.98 ms. The conditional CNN obtained by CondNAS for the same accuracy of
0.925 showed 5.10 ms, achieving a 2.94× speedup.

Electronics 2022, 11, 1101 11 of 13

Latency on Galaxy Note10+

C
IF

A
R

-1
0

 T
o

p
-1

 A
cc

u
ra

cy

CondNAS (CPU)

OFA (CPU)

CondNAS (GPU)

OFA (GPU)

(msec)

Figure 7. Pareto optimal curves from OFA and CondNAS for CPU and GPU in Galaxy Note 10+,
respectively.

(c)

Active Units Active Units

(a) (b)

(d)

Figure 8. Examples of (near-)optimal CNNs obtained from OFA for Galaxy Note10+ (a) CPU and
(b) GPU, and examples of (near-)optimal conditional CNNs obtained from CondNAS for Galaxy
Note10+ (c) CPU and (d) GPU.

5. Discussions

The conditional CNNs obtained from CondNAS can achieve significantly faster infer-
ence than the CNNs from OFA for the same platform, thanks to the auxiliary classifiers.
However, the maximum accuracy in the conditional CNNs from CondNAS tends to be
lower than the CNNs from OFA for the same reason: due to the early exist, an input image
may not be thoroughly examined with all the layers in the network. Even if CondNAS
carefully determined the threshold for the early exist in the auxiliary classifiers and the
location of classifiers in a network, the maximum accuracy can be lower than that of the
conventional CNNs without auxiliary classifiers. However, the difference is usually negligi-
ble, being less than 1%p. As the purpose of employing conditional CNNs is to reduce the
latency while meeting the accuracy constraint, such a negligible difference in maximum
accuracy should be acceptable. Nevertheless, one can try to reduce the maximum accu-
racy difference, for example, by further improving the accuracy prediction model for the
conditional CNNs.

Electronics 2022, 11, 1101 12 of 13

In this work, we examined the efficacy of CondNAS with CIFAR-10 and CIFAR-100. It
remains as future work to examine it with a complex dataset such as ImageNet.

6. Conclusions

In this paper, we proposed an efficient NAS technique called CondNAS for conditional
CNNs for the fast yet accurate inference on diverse target platforms. CondNAS integrates
two prior works, OFA and BPNet, carefully taking into account how to extend SuperNet
for the conditional CNNs and how to predict the accuracy and latency of an arbitrary con-
ditional CNN to make GA efficient. By using adaptive pooling as a glue, the SuperNet with
the auxiliary classifiers could be trained without accuracy loss. By using an efficient train-
ing dataset generation, the proposed accuracy and latency prediction model in LightGBM
shows very accurate prediction results. The experimental results show that the conditional
CNNs obtained from CondNAS for Galaxy Note10+ GPU (Mali-G76) is 2.52× faster than
the CNN from OFA, and the conditional CNNs from CondNAS for Galaxy Note10+ CPU
(mainly Mongoose M4) is 1.75× faster than the CNN from OFA. The conditional CNN
obtained by simply applying BPNet to the CNN from OFA could not maintain the same
top-1 accuracy and the latency was also 2.94× slower than the conditional CNN obtained
from CondNAS.

Author Contributions: Conceptualization, Y.Y. and G.P.; Data curation, G.P.; Funding acquisition,
Y.Y.; Investigation, Y.Y.; Methodology, G.P. and Y.Y.; Project administration, Y.Y.; Software, G.P.;
Supervision, Y.Y.; Validation, G.P. and Y.Y.; Visualization, G.P.; Writing—original draft, G.P. and Y.Y.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the 2018 Research Fund of the University of Seoul.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolution neural network
NAS Neural architecture search
GA Genetic algorithm
OFA Once-for-all
BPNet Branch-pruned network
DSE Design space exploration
MLP Multi-layer perceptron
LUT Lookup table
LightGBM Light gradient boosting machine
RMSE Root mean square error

References
1. Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and training of neural

networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–22 June 2018.

2. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018.

3. Iandola, F.N.; Song, H.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50× fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

4. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

5. Lavin, A.; Gray, S. Fast algorithms for convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4013–4021.

6. Zoph, B.; Le, Q.V. Neural architecture search with reinforcement learning. arXiv 2016, arXiv:1611.01578.

Electronics 2022, 11, 1101 13 of 13

7. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018.

8. Pham, H.; Guan, M.Y.; Zoph, B.; Le, Q.V.; Dean, J. Efficient neural architecture search via parameter sharing. arXiv 2018,
arXiv:1802.03268.

9. Liu, H.; Simonyan, K.; Yang, Y. Darts: Differentiable architecture search. arXiv 2018, arXiv:1806.09055.
10. Real, E.; Aggarwal, A.; Huang, Y.; Le, Q.V. Regularized evolution for image classifier architecture search. In Proceedings of the

AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019.
11. Tan, M.; Le, Q.V. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv 2019, arXiv:1905.11946.
12. Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.; Howard, A.; Le, Q.V. Mnasnet: Platform-aware neural architecture search

for mobile. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20
June 2019.

13. Wu, B.; Dai, X.; Zhang, P.; Wang, Y.; Sun, F.; Wu, Y.; Tian, Y.; Vajda, P.; Jia, Y.; Keutzer, K. Fbnet: Hardware-aware efficient convnet
design via differentiable neural architecture search. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Long Beach, CA, USA, 15–20 June 2019.

14. Cai, H.; Zhu, L.; Han, S. Proxylessnas: Direct neural architecture search on target task and hardware. arXiv 2018, arXiv:1812.00332.
15. Cai, H.; Gan, C.; Wang, T.; Zhang, Z.; Han, S. Once-for-all: Train one network and specialize it for efficient deployment. arXiv

2019, arXiv:1908.09791.
16. Panda, P.; Sengupta, A.; Roy, K. Conditional deep learning for energy-efficient and enhanced pattern recognition. In Proceedings

of the Design, Automation & Test in Europe Conference & Exhibition, Dresden, Germany, 14–18 March 2016.
17. Jayakodi, N.K.; Chatterjee, A.; Choi, W.; Doppa, J.R.; Pande, P.P. Trading-off accuracy and energy of deep inference on embedded

systems: A co-design approach. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2018, 37, 2881–2893. [CrossRef]
18. Teerapittayanon, S.; McDanel, B.; Kung, H. Branchynet: Fast inference via early exiting from deep neural networks. In Proceedings

of the 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016.
19. Park, K.; Oh, C.; Yi, Y. BPNet: Branch-pruned conditional neural network for systematic time-accuracy tradeoff. In Proceedings of

the 57th ACM/IEEE Design Automation Conference (DAC), Virtual, 20–24 July 2020.
20. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016.
21. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T. Lightgbm: A highly efficient gradient boosting decision tree.

In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December
2017.

22. Howard, A.; Sandler, M.; Chu, G.; Chen, L.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for
mobilenetv3. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019.

23. Sergeev, A.; Balso, M.D. Horovod: Fast and easy distributed deep learning in TensorFlow. arXiv 2018, arXiv:1802.05799.
24. Cui, Z.; Chang, Y.; Zhang, J.; Cai, X.; Zhang, W. Improved NSGA-III with selection-and-elimination operator. Swarm Evol. Comput.

2019, 49, 23–33. [CrossRef]

http://doi.org/10.1109/TCAD.2018.2857338
http://dx.doi.org/10.1016/j.swevo.2019.05.011

	Introduction
	Background
	OFA
	BPNet

	Proposed Approach
	Overall Structure
	Extending SuperNet
	Chromosome Design
	Accuracy Prediction of Conditional CNN
	Latency Prediction of Conditional CNN

	Evaluations
	Training of SuperNet for Conditional CNNs
	Accuracy Comparison
	Effect of Adaptive Pooling

	Efficient Search in GA
	Accuracy and Latency Prediction for Conditional CNNs
	Optimal Conditional CNNs

	Discussions
	Conclusions
	References

