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Flash X-ray imaging has the potential to determine structures down to

molecular resolution without the need for crystallization. The ability to

accurately predict the diffraction signal and to identify the optimal experimental

configuration within the limits of the instrument is important for successful data

collection. This article introduces Condor, an open-source simulation tool to

predict X-ray far-field scattering amplitudes of isolated particles for customized

experimental designs and samples, which the user defines by an atomic or a

refractive index model. The software enables researchers to test whether their

envisaged imaging experiment is feasible, and to optimize critical parameters for

reaching the best possible result. It also aims to support researchers who intend

to create or advance reconstruction algorithms by simulating realistic test data.

Condor is designed to be easy to use and can be either installed as a Python

package or used from its web interface (http://lmb.icm.uu.se/condor). X-ray

free-electron lasers have high running costs and beam time at these facilities is

precious. Data quality can be substantially improved by using simulations to

guide the experimental design and simplify data analysis.

1. Introduction

Flash X-ray imaging (FXI) may become a tool to solve

structures down to molecular resolution without the need for

crystallization (Neutze et al., 2000; Bergh et al., 2008). By

employing femtosecond pulses produced by X-ray free-elec-

tron lasers, FXI can outrun radiation damage processes that

limit resolution (Chapman et al., 2006). FXI dispenses with

image forming lenses and thereby circumvents the difficulty of

manufacturing efficient lenses for X-rays (Chapman &

Nugent, 2010). Aersosol sample delivery avoids a sample

support, which means that the structure can be imaged with

practically no background (Bogan et al., 2008; Seibert et al.,

2011; Hantke et al., 2014).

For reaching the goal of 3 Å resolution, the Single Particle

Imaging Initiative identifies the requirement of simulations

that realistically represent the experiment conditions to guide

future development (Aquila et al., 2015). It is essential to

optimize and harmonize all relevant experimental parameters,

such as photon wavelength, photon flux, illumination profile,

camera distance, detector settings, sample density and even

sample type. Being able to accurately predict diffraction data

facilitates optimization of the experimental setup and helps to

provide accurate estimates of the expected data quality.

Simulation tools can help researchers to use their beam time

more efficiently and measure diffraction data at the highest

possible quality.

Software for simulating X-ray diffraction data exists. For

crystal diffraction, for example, CCP4 (Winn et al., 2011) is

widely used. But it is aimed at crystal diffraction, making it
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hard to use for simulating continuous diffraction patterns. In a

couple of publications (Yefanov & Vartanyants, 2013; Serkez

et al., 2013; Ayyer et al., 2015) the program Moltrans is

mentioned and described as a software package to simulate

FXI data for atomic models. Unfortunately, the code is not

openly available. Very recently, SimS2E was released, which is

a very sophisticated start-to-end simulation framework

specialized for single-molecule FXI at the European X-ray

free-electron laser (Yoon et al., 2015). A practical, convenient

and openly available FXI software tool for a range of sample

models is missing.

Here we introduce Condor, an easy-to-use software

package to simulate FXI far-field scattering amplitudes from

an experimental setup customized by the user. The user may

define the sample either by atom positions or at lower reso-

lution by a three-dimensional refractive index map. This

allows one to simulate diffraction from samples that are

unknown at atomic resolution but for which low-resolution

densities from, for example, electron microscopy studies exist.

Common challenges that a researcher faces with real data

(Seibert et al., 2011; Loh et al., 2012; Hantke et al., 2014; van der

Schot et al., 2015; Ekeberg et al., 2015) can be introduced by

adding, for example, noise, signal variation, missing data

regions, fluctuation of the beam tilt, sample heterogeneity or

sample contamination. So far, Condor has demonstrated its

usefulness for the preparation of experiments, data validation

(Hantke et al., 2014), and the development of new software

and algorithms (Daurer et al., 2016).

Condor is distributed under the free open-source Simplified

Berkeley Software Distribution (BSD) License to ensure

transparency and to ease future development and availability

of the code. The source code can be downloaded from http://

github.com/mhantke/condor. Condor does not require a local

installation. It can be used directly from its web interface at

http://lmb.icm.uu.se/condor (Fig. 1).

In this paper we give a description of the theoretical

diffraction model that the code is based on (x2), describe how

to use Condor (x3) and outline details of the current imple-

mentation (x4). The last chapter summarizes the paper and

draws conclusions (x5).

2. Theory

Condor attempts to predict coherent X-ray diffraction

patterns on the basis of a sample model. Below we briefly

outline the necessary approximations and the derivation of the

scattering formulas that are used. For a comprehensive

description of the theory behind, see, for example, Paganin

(2006) and Als-Nielsen & McMorrow (2001).

For X-ray energies far from any absorption edges and well

below the rest mass energy of an electron (511 keV) we may

neglect Compton scattering. The samples that are considered

here have a thickness of up to a few hundred nanometres and

interact, because of their small size, only weakly with X-rays.

This circumstance allows us to neglect the perturbation of the

primary wave by the scattered wave within the sample. This

approximation is well known as the first-order Born approx-

imation.

Predictions suggest that femtosecond X-ray pulses can

outrun radiation damage processes (Neutze et al., 2000).

Hence, in the simulations we model the sample by a scattering

potential ’ðxÞ, which is invariant over the duration of the

pulse.

The sample particle is placed in vacuum and illuminated by

a plane wave with wavevector k0 (see Fig. 2). We seek to

predict the wavefield � at pixel positions x0 in the detector

plane that is orthogonal to the beam axis and at a far distance

from the object. In this scenario �ðx0Þ can be expressed as the

sum of the primary wave �ð0Þðx0Þ and the scattered wave (or

scattering amplitude) �ð1Þðx0Þ. The direct beam �ð0Þðx0Þ does

computer programs
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Figure 1
The interface of Condor’s web application (http://lmb.icm.uu.se/condor).
In the left panels the user configures the source, particle and detector
model. From the upper-right panel the job is submitted, and after the job
has completed a preview and download links of the simulated data appear
in the lower-right panel.

Figure 2
Schematic representation of the geometry in real and Fourier space. (a) A
plane wave illuminates the sample. It is placed in vacuum and confined to
the scattering volume illustrated by the green box. The signal at the
detector plane is the superposition of the primary wave with wavevector
k0 and the scattered wave with wavevector k1. (b) The diffraction space is
the reciprocal space of scattering vectors q ¼ k1 � k0 and contains the
Fourier transform of the scattering potential ’ðxÞ.



not carry any structural information and is confined to the

forward direction. It usually passes through a gap between the

detector panels or is blocked by a beam stop and is never

measured. Structural information about the sample is encoded

by the scattering amplitude �ð1Þ, which is the superposition of

spherical waves with amplitude ’ðxÞ originating from all points

x in the scattering volume:

�
ð1Þðx0Þ ¼

Z Z Z
expðik x0 � xj jÞ

x0 � xj j
’ðxÞ expðik0 � xÞ dx: ð1Þ

In our scenario, the sample volume is small and the detector

distance large. Hence, we may safely assume jx0j � jxj and

obtain the far-field approximation of (1):

�
ð1ÞðqÞ ¼

expðikrÞ

r

Z Z Z
’ðxÞ expð�iq � xÞ dx; ð2Þ

where q ¼ k1 � k0 denotes the scattering vector and r ¼ jx0j.

Since we only consider elastic scattering the energy is

conserved and so is the wavenumber k ¼ jk0j ¼ jk1j ¼ 2�=�,

where � denotes the wavelength. As we are only interested in

relative phase differences we neglect the phase factor expðikrÞ

in the following equations.

For numerical calculation of the scattering amplitude

�ð1ÞðqÞ we have to either solve the integral in (2) or approx-

imate it by a discrete function. Analytical solutions exist for

certain sample models, such as uniformly filled spheres or

spheroids (Feigin & Svergun, 1987; Hamzeh & Bragg, 1974).

In Condor these solutions of (2) are implemented and can be

customized by a few parameters. For more complex samples

Condor provides two ways of defining the sample: either by a

positional arrangement of atoms or by a gridded refractive

index map. In the following subsections numerical solutions

for these two particle models are presented. Both involve

approximating the integral in (2) by discrete Fourier trans-

forms (DFTs) that have the general form

F̂FðsÞ ¼
1

N

XN�1

j¼0

FðxjÞ exp �2�i
s � xj

N

� �
: ð3Þ

This formulation allows Condor to deploy efficient fast

Fourier transform algorithms and exploit rapid parallel

computing architectures.

2.1. Atomic model

FXI studies often target small sample particles that have

sufficient resemblance to systems for which atomic structures

have been determined by either X-ray crystallography, cryo-

electron microscopy or nuclear magnetic resonance spectro-

scopy. X-rays are scattered by atoms because of their bound

electrons. The scattering strength of a single free electron is

known as the Thomson scattering length r0. The scattering

potential for N free electrons located at the respective posi-

tions xj may be written as

’electronsðxÞ ¼
PN
j¼1

�ðx� xjÞ r0: ð4Þ

By substituting (4) into (2) the � functions conveniently reduce

the integral in (2) to a sum and we obtain the scattering

amplitude in a simpler form:

�
ð1Þ
electronsðqÞ ¼ r�1

PN
j¼0

r0 expð�iq � xÞ: ð5Þ

For electrons bound to an atom of species a the scattering

length can be calculated by multiplying r0 with the atomic

scattering factor f ð�Þa ð�Þ. The atomic scattering factor is a semi-

empirically determined element-specific constant that is

tabulated for a large range of wavelengths � and scattering

angles � (Brown et al., 2006; Henke et al., 1993). The shape of

the atom is reflected in the angular dependency; hence the

atomic scattering factor is also known as the atomic form

factor.

This permits us to replace the integral in (2) as in (5) by a

sum. The scattering amplitude can be evaluated by separating

the calculation into sums for each atom species a that accounts

for Na atoms at positions fx
ðaÞ
j g. We obtain

�
ð1Þ
atomsðqÞ ¼ r�1

P
a

f ð�Þa ð�Þ
PNa

j¼1

r0 exp �iq � x
ðaÞ
j

� �" #
: ð6Þ

�
ð1Þ
atomsðqÞ now has the form of a sum of DFTs (3) with

FðxjÞ ¼ r0 computed on the nonregular grid fx
ðaÞ
j g.

2.2. Refractive index model

For larger objects, such as big protein complexes or virus

particles, the atomic structure is rarely on hand. However, at

lower than atomic resolution electron density maps �eðxÞ of a

wide range of structures have been measured by electron

microscopy. Also, for many relevant optical media we can

estimate the atomic composition (see Table 1) and are able to

model samples by customized density maps of optical media.

For these cases the scattering potential ’nðxÞ can be derived

from the Maxwell equations and written as a function of the

complex valued refractive index nðxÞ:

’nðqÞ ¼
2�

�2
½1� nðxÞ�: ð7Þ
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Table 1
Mass density, atomic composition and refractive index for a selection of
optical media.

The material constants were taken from Bergh et al. (2008), Molla et al. (1991)
and Dans et al. (1966), and the refractive index was calculated from these
values with the relationship given by (10).

Material type
Density
(g cm�3) Atomic composition

Refractive index
(� = 1.240 nm)

Water 1.00 H2O 1� ð1:54þ 0:18iÞ � 10�4

Protein 1.35 H86C52N13O15S 1� ð2:03þ 0:16iÞ � 10�4

DNA 1.70 H11C10N4O6P 1� ð2:44þ 0:23iÞ � 10�4

Lipid 1.00 H69C36O6P 1� ð1:54þ 0:10iÞ � 10�4

Cell 1.00 H23C3NO10S 1� ð1:51þ 0:16iÞ � 10�4

Poliovirus
particle

1.34 C332652H492388N98245-
O131196P7501S2340

1� ð1:99þ 0:17iÞ � 10�4



For convenience we define @nðxÞ � 1� nðxÞ. By inserting (7)

into (2) we obtain the scattering amplitude as a function of @n:

�
ð1Þ
@n ðqÞ ¼ r�1

Z Z Z
2�

�2
@nðxÞ expð�iq � xÞ dx: ð8Þ

If this equation is interpreted as the continuum limit of (5) the

relationship between the refractive index and the electron

density distribution �eðxÞ becomes

nelðxÞ ¼ 1�
�2

2�
r0 �elðxÞ; ð9Þ

and the relationship between refractive index and the atom

density distribution �aðxÞ becomes

natðxÞ ¼ 1�
�2

2�
r0

XM

a¼0

f ð�Þa ð0Þ �aðxÞ: ð10Þ

Using the relationships (9) and (10), Condor converts electron

and atom density maps into refractive index maps. We

presume here that f ð�Þa ð�Þ ’ f ð�Þa ð0Þ for all scattering angles �,

which is a valid assumption if the resolution of the measure-

ment is well below atomic length scales.

Discretization of the Fourier integral in (2) with (3) on a

three-dimensional cubic grid of L� L� L points at spacing

�x results in

�
ð1Þ
n ðq; rÞ ¼ r�1 2�

�2
L3 b@n@n q�x

2�

� �
�x3 : ð11Þ

with b@n@n being the Fourier transform of @n. This expression

allows Condor to efficiently calculate the scattering amplitude

for any discrete map f@nðxjÞg on the regular grid fxjg.

2.3. Diffraction measurement

To predict the absolute scattering signal Ið1ÞðqÞ measured

with a photon detector we need to take into account the

intensity I0 of the illumination, the solid angle �ð�Þ that is

covered by the detector pixel, and the polarization factor Pð�Þ,

which accounts for the effects of the polarization of the

incoming beam in the scattered signal (Als-Nielsen &

McMorrow, 2001). With these parameters the expectation

value for the number of scattered photons measured in a pixel

(without noise and any losses) is given by

Ið1ÞðqÞ ¼ I0 �
ð1ÞðqÞ

�� ��2 Pð�Þ�ð�Þ: ð12Þ

Owing to the quantum nature of photons the measurement

of Ið1ÞðqÞ inevitably suffers from shot noise and thus follows

Poisson statistics. This type and other types of measurement

errors such as detector noise, parasitic scattering and limited

quantum efficiency may be added to the simulated intensity

values if desired.

For the refractive index model the agreement of data from a

real FXI experiment and simulated data calculated by using

the formalism that has been described here is demonstrated in

Fig. 3. For the atomic model such a comparison cannot be

made because we lack suitable experimental data at this point.

3. Usage

In the following paragraphs we give an introduction to the

usage and functionality of Condor. For a detailed description

of all features please see Condor’s documentation at http://

lmb.icm.uu.se/condor/documentation.

Every Condor simulation requires the configuration of at

least three components: the X-ray source, at least one sample

and a pixel array detector. The configuration of the X-ray

source defines the photon wavelength and intensity at the

interaction point. The model of the sample can be of different

kinds, either an atomic model or a refractive index description.

The atomic description requires knowledge about all atom

positions and atom species in the scattering volume. For

example the online Protein Data Bank (PDB; Berman et al.,

2000) is a resource that provides a wide range of structures at

atomic resolution. The structure can be provided either by a

list of coordinates and atomic numbers or by a PDB file or

PDB ID code.

To define a refractive index map Condor accepts a three-

dimensional array of data points on a cubic Cartesian grid or

the geometrical parameters of a sphere or spheroid. The map

values can be refractive indices, electron densities or atom

densities. For the last two, formulas (9) or (10) are used for the

conversion to refractive indices. Condor interfaces to the

Electron Microscopy Databank (EMDB; Lawson et al., 2011),

from which density maps can be retrieved. The orientation of

the particle is defined by an extrinsic rotation. The rotation

can be defined by either a triple of Euler angles, a rotation

matrix or a quaternion. Multiple particles at different posi-

tions in the beam can be simulated as well. The configuration

of the pixel detector determines the position of all pixels in

computer programs
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Figure 3
Comparison of experimental data and simulated data. (a) From the
measured FXI diffraction pattern (top) of a single carboxysome (i.e. an
icosahedral cell organelle) the projection image (bottom) was recon-
structed by iterative phase retrieval down to 18.1 nm resolution. (b) At
the given resolution the Condor simulation of a diffraction pattern and
projection image for a uniformly filled icosahedron in matching
orientation and size provides an acceptable approximation for the data
shown in (a). Figure adapted from Hantke et al. (2014).



space with respect to the interaction point. The detector noise,

the fluctuating beam tilt, the saturation level, a missing data

mask etc. may also be specified.

The default way of carrying out a Condor simulation is by

calling the executable condor from a folder that contains a

configuration file named condor.conf. Fig. 4 shows two

example configuration files, one for the calculation with an

atomic model (Fig. 4a) and one for the calculation with a

refractive index model (Fig. 4b). Every configuration file is

subdivided into at least three sections [X-ray source, sample

particle(s), pixel array detector]. All quantities follow the

convention of the International System of Units. If a para-

meter is unspecified it is set to a default value. At the end of

execution the results are written to an HDF5 file. The acronym

HDF5 stands for Hierarchical Data Format version 5 (The

HDF Group, 2016), which is a widely used file format for

scientific applications and ensures high portability and

performance. The data structure within the file follows the

guidelines for the Coherent X-ray Imaging file format (Maia,

2012).
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Figure 5
Simulation of diffraction patterns for two biological structures: (a) the
GroEL–GroES complex and (b) the poliovirus particle. For each model
the projection image is shown on the left and the noise-free intensity
pattern on the right.

Figure 4
Configuration files for simulation with (a) an atomic and (b) a refractive
index model. The source section defines the illumination properties, the
particle section the sample properties and the detector section the
parameters for the area pixel detector. Many parameters are optional and
are set to default values if not specified. These configuration files together
with the required structure files are included in the online repository of
Condor and are located in the folder examples_publication.

Figure 6
Customized use of Condor by direct interaction with the Python API. The
script simulates diffraction patterns from a mixture of GroEL–GroES
complex and spheroidal water droplets of varying shape and size. A
missing data region and Poisson noise are taken into account for the
intensity estimate at the detector pixels. After the initialization, patterns
are simulated sequentially in a loop by calling the method propagate()

and appending the results to an HDF5 file.



The two example configuration files shown in Fig. 4 define

experimentally feasible configurations at the LINAC

Coherent Light Source (LCLS). The selected particle struc-

tures are the GroEL–GroES protein complex (Fig. 4a) and the

poliovirus particle (Fig. 4b). The structure for the GroEL–

GroES protein complex is taken from the atom positions of

PDB entry 1aon (Xu et al., 1997). The poliovirus particle is

modelled by the density map derived from EMDB entry 1144

(Bubeck et al., 2005). We projected the EMDB map to elec-

tron densities using experimentally determined values for

atomic composition (Molla et al., 1991) and mass density

(Dans et al., 1966) of poliovirus virions. Simulated results from

these examples are shown in Fig. 5.

Condor provides not only intensities but also phases. Here

the curvature of the Ewald sphere is small, and hence

projection images in real space (left column in Fig. 5) can be

readily calculated by inverse Fourier transforming the scat-

tering amplitudes.

For a more customizable use, Condor’s application

programming interface (API) can be called directly from any

Python software. The Condor engine can thus be easily inte-

grated into any software tool or pipeline that relies on simu-

lated diffraction data. An example for a script that uses the

Condor API is shown in Fig. 6. Projection images and

diffraction patterns that were generated with this script are

presented in Fig. 7. The script simulates an experiment where

spheroidal water droplets contaminate the particle stream of

GroEL–GroES protein complexes. Both particle species

arrive in the scattering volume in random orientations and at

random positions. The arrival statistics are modelled by a

Poisson process with arrival rates of 0.2 for the water droplets

and 0.9 for the protein complexes. The water droplets are not

simulated as perfectly reproducible structures but as spheroids

of varying size and shape. This is reflected in the model by size

parameters that follow a normal distribution centred at 8 nm

and values of the flattening parameter that follow a uniform

distribution between 0.8 and 1.0.

4. Implementation

Condor is a Python package including C extensions for the

computationally heavy operations. For the calculation of the

discrete Fourier transform in equations (6) and (11), Condor

makes use of the non-equispaced fast Fourier transform

(NFFT) C library (Keiner et al., 2009). This library provides

routines to calculate the discrete Fourier transform at non-

equispaced points, for example on the curved surface of the

Ewald sphere. For the refractive index model Condor deploys

the common NFFT algorithm, which still requires equispaced

sampling in the real-space domain. For the atomic model the

generalized NNFFT algorithm is used, as it allows for non-

equispaced sampling in both domains. The computation of the

sums in the discrete Fourier transform can benefit from

parallelization. Compilation with OpenMP (http://openmp.

org) allows for an easy parallelization with moderate speed-

ups. Diffraction from atomic models is normally more

computationally demanding and here Condor supports the use

of CUDA-capable graphics cards (http://nvidia.com/cuda),

which can provide a drastic increase in performance.

Computation times were measured for the simulations of

the examples shown in Figs. 4 and 5, which were carried out on

a MacBookPro computer [2.5 GHz Intel Core i7 (4 cores, 8

threads), 16 GB 1600 MHz DDR3] equipped with a CUDA-

capable graphics card (NVIDIAGeForce GT 750 M, 2048 MB

memory). The atomic model included of 58 870 atom posi-

tions, and diffraction was predicted at 256 � 256 detector

pixels. Using a single CPU and with CUDA disabled the

calculation took 208 s. Enabling CUDA resulted in a compu-

tation time of 3 s, giving a speedup of 69.3�. The refractive

index map consisted of 173� 173� 173 voxels, and diffraction

was predicted at 512� 512 detector pixels. Using a single CPU

the calculation took 19 s, and using four CPU threads it took

6.8 s, resulting in a speed-up of 2.8�.

Fig. 8(a) illustrates the representation of an experiment in

Condor as a Python object. It contains a source object, one or

computer programs
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Figure 7
Simulation of diffraction patterns for a mixture of two particle species:
the GroEL–GroES complex and spheroidal water droplets. (a) Real-
space projection images and (b) respective simulated diffraction intensity
patterns with Poisson noise and a pixel mask. The physical parameters
resemble the conditions at the AMO beamline at the LCLS.

Figure 8
Implementation architecture. (a) An experiment is represented in
Condor as a Python object that includes a source object, one or several
sample particle objects, and a detector object. A call of the method
propagate() starts a simulation and returns the diffraction data. (b) The
web version of Condor is realized as a hierarchical client–server model.
The web server provides a dynamic web page under the address http://
lmb.icm.uu.se/condor. Under this page users can configure their
experiment, and upon submission data are validated and then cached
in a database. Simulation jobs are scheduled by a scheduling server that
manages a network of worker clients. This worker farm is dynamically
extended and shrunk depending on the number of requests. After
completion of a simulation the web server presents previews and links to
download to the user.



several particle objects, and a detector object. The experiment

object has a method propagate() that starts the simulation of

a single shot and returns the results in the form of a Python

dictionary.

As an alternative to a local installation, Condor is also

provided as a web application (Fig. 1) that supports most of

the functionality of the full package. In the left panel of the

web application one can configure the X-ray source, sample

particle and detector. The upper right panel is used to submit

simulation requests and monitor their progress. After a

simulation has finished its results can be previewed and

downloaded from the bottom right panel.

The web implementation of Condor is based on a Django

(https://www.djangoproject.com/) web framework and uses a

database for caching user inputs. The system is hosted by the

Davinci GPU computer cluster of the Laboratory of Mole-

cular Biophysics (Uppsala University, Sweden).

The architecture of the server–client model of the web

implementation is illustrated in Fig. 8(b). When a user submits

a simulation request the web server first checks the input. If

the input passes validation the web server sends the requests

to the Condor server, which manages a number of Condor

clients. The first worker client that becomes available starts the

Condor simulation. The number of worker clients is dynami-

cally adjusted to the current load of the web page, such that at

least one worker client is always available for processing a

simulation request. The hierarchical architecture ensures

responsiveness of the servers at all times, even when running

multiple simulations simultaneously. While a simulation is

running the scheduling server monitors the progress of the

simulation. When finished the results are sent to the web

server, which presents the user with previews and links for

downloading the results as an HDF5 file.

5. Conclusion

FXI experiments at free-electron laser facilities are expensive

and precious. Easy-to-use software can support researchers in

improving data quality and can support data analysis. The

software Condor is a fast simulation tool specialized for FXI

research and covers a wide range of use cases and function-

alities. Practically anybody is able to use Condor because of its

simple structure and because common hurdles such as limited

cross-platform compatibility or demanding hardware

requirements have been avoided by making key features

available through a web application. We, the developers,

encourage and support the integration of the code into other

software that relies on simulated FXI data. Reusability of the

source code is facilitated by the availability of a simple and

flexible Python API and by the distribution of the code under

the Simplified BSD license.

Beyond its relevance in research Condor may be a useful

educational software tool. Students may gain understanding of

the laws of X-ray diffraction by studying changes in the

diffraction pattern while changing experimental parameters.

Moreover, entire experimental data sets can be readily simu-

lated by the students themselves. Students may be invited to

pursue a reconstruction from simulated data.

In conclusion, Condor will enhance and stimulate colla-

borative activities in software development within the FXI

community. Furthermore, the software will underpin efforts in

FXI education, experiment planning, conducting of experi-

ments, algorithm development and data validation.
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