
Conductance fluctuation and shot noise in disordered graphene systems,
a perturbation expansion approach

Jia Ning Zhuang and Jian Wanga)

Department of Physics and the Center of Theoretical and Computational Physics, The University of Hong Kong,
Pokfulam Road, Hong Kong, China

(Received 30 May 2013; accepted 25 July 2013; published online 9 August 2013)

We report the investigation of conductance fluctuation and shot noise in disordered graphene

systems with two kinds of disorder, Anderson type impurities and random dopants. To avoid the

traditional exact but time-consuming approach, known as brute-force calculation, which is

somehow impractical at low doping concentration, we develop an expansion method based on the

coherent potential approximation (CPA) to calculate the average of four Green’s functions, and the

results are obtained by truncating the expansion up to 6th order in terms of “single-site-T-matrix.”

Since our expansion is with respect to “single-site-T-matrix” instead of disorder strength W, good

result can be obtained at 6th order for finite W. We benchmark our results against brute-force

method on disordered graphene systems as well as the two dimensional square lattice model

systems for both Anderson disorder and the random doping. The results show that in the regime

where the disorder strength W is small or the doping concentration is low, our results agree well

with the results obtained from the brute-force method. Specifically, for the graphene system with

Anderson impurities, our results for conductance fluctuation show good agreement for W up to

0.4t, where t is the hopping energy. While for average shot noise, the results are good for W up to

0.2t. When the graphene system is doped with low concentration 1%, the conductance fluctuation

and shot noise agrees with brute-force results for large W which is comparable to the hopping

energy t. At large doping concentration 10%, good agreement can be reached for conductance

fluctuation and shot noise for W up to 0.4t. We have also tested our formalism on square lattice

with similar results. Our formalism can be easily combined with linear muffin-tin orbital

first-principles transport calculations for light doping nano-scaled systems, making prediction on

variability of nano-devices.VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4817885]

I. INTRODUCTION

In nano-electronics, quantitative evaluation of impurity

effects is crucial because device properties are strongly influ-

enced by or even built on such effects. Experimentally, the

impurities exist and can be doped in nano-devices without

knowing their exact locations, so theoretically it is important

to predict the averaged transport quantities such as conduct-

ance over impurity configurations. The most direct way to

obtain the averaged conductance is to generate many differ-

ent configurations, then calculate the conductance for each

configuration, and finally take the mean value. This method,

referred as brute-force method, is usually used in the meso-

scopic systems from diffusive regime to localized regime

because it is an exact calculation. But in order to get good

statistics, huge number of configurations has to be generated

making it very time-consuming especially for the calculation

of conductance fluctuation. When the disorder strength is

weak, it is not necessary to use the brute-force method since

some analytic approximate method is superior in speed while

maintaining the same accuracy. For this purpose, consider-

able effort has been made to develop approximate techni-

ques, within which the most widely used technique is the

coherent potential approximation (CPA), which is a useful

tool to evaluate the configurational averaged one-electron

Green’s function1 hGi, and has also been extended to deter-

mine the so-called “vertex corrections”2 for quantities

involving two Green’s functions. CPA approach has been

implemented in the Korringa-Kohn-Rostoker3–5 and linear

muffin-tin orbital6–8 for first principles calculations and has

many successful applications.9–11 The central idea of CPA is

to find a “coherent potential” such that the one-electron

Green’s function evaluated under such potential approxi-

mately equals the configurational averaged Green’s function.

As an extension, CPA can also be used to determine the so-

called “vertex corrections”2 for the product of two Green’s

functions. Later, Levin et al. also proposed an elegant dia-

grammatic method to evaluate the Hall coefficient which

relates to the direct multiple of three Green’s functions.12

Importantly, the CPA approach and its extensions can be

combined with local-orbital based DFT to calculate the phys-

ical properties, such as the band structure and the density of

states, of realistic materials. One example is the development

of the so called “KKR-CPA,” used to study the band struc-

ture and density of states of Cu-Ni,3 Ag-Pd,4 and Cu-Pd

(Ref. 5) alloys. The linear muffin-tin orbital (LMTO) method

has also been proposed6 and used to study the electronic

structures of metal alloys.7,8 CPA combined with LMTO

works very well and has many successful applications.

Examples are the investigation of transport properties ina)Electronic address: jianwang@hku.hk
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disordered magnetic multilayers,9 structure of Sn-Ge alloys,10

the electronic structure of non-stoichiometric compounds,11

and doped semiconductors.13,14

The latest development of CPA extended its range of

application to non-equilibrium quantum transport problems

where impurity average has to be performed. One prominent

work is the “non-equilibrium vertex correction” (NVC) dis-

cussed in Ref. 15. It has been shown by Zhuravlev et al.16

that this NVC formalism can be interpreted in terms of the

B€uttiker voltage-probe model so that it is not merely a cor-

rection to the electronic structure.17 Generally speaking, this

site-oriented algorithm to evaluate the average conductance

is well developed and adopted by different groups.18,19

In the presence of disorder CPA-NVC approach, one

allows to calculate non-equilibrium transport properties such

as I-V curve and other quantities involving two Green’s

functions. However, it cannot be applied directly to investi-

gate equilibrium transport properties involving four Green’s

functions such as conductance fluctuation and shot noise.

Since the fluctuation of transport properties of nano-devices,

known as “variation” of nano-devices, is a very important

quantity in nano-electronics, and it provides the information

on how much the specific device configuration could deviate

from the mean value. We notice that a quantified experiment

has been reported to measure such kind of fluctuation,20

recently. Therefore, it is timely to develop a theoretical for-

malism that is capable of treating disorder average of four

Green’s functions. To the best of our knowledge, so far, this

is still an outstanding problem yet to solve based on CPA

approach. One possible reason is that, the NVC could be

regarded as a perturbation expansion approach based on

CPA to evaluate the conductance by including the ladder dia-

grams. For conductance fluctuation, however, such a partial

summation is not good enough. In this paper, we develop a

direct perturbation expansion with respect to the “single-site-

T-matrix” up to a given order which is a good approximation

for weak disorder strength or small doping concentration.

We carry out benchmark calculation of average conductance,

shot noise, and conductance fluctuation using the direct

expansion method on a graphene system and a two-

dimensional lattice model with Anderson impurities as well

as random dopants. We have compared our results with the

brute-force calculation. We find that a six-order expansion

can give very good results for conductance fluctuation and

shot noise when disorder strength W is comparable to the

hopping strength t; W � 0:4t. In the presence of doping, our

results also show good agreement with that obtained from

brute-force method at low doping concentration. We note

that our method can be easily implemented in the first princi-

ples transport calculation in nanostructures.

The rest of this paper is organized as the following. In

Sec. II, we briefly revisit CPA formalism and introduce our

direct expansion approach to calculate disorder average of

four Green’s functions. An expansion view on NVC method

is also provided. In Sec. III, we compare our results with

that obtained from the brute-force method on a graphene sys-

tem and square lattice of size 40� 40 for two types of disor-

der: Anderson disorder and different doping concentrations.

The results for average conductance, shot noise,21 and the

conductance fluctuation are also presented. Finally, we con-

clude our work in Sec. IV.

II. THEORETICAL FORMALISM

We consider a tight-binding mode on a square lattice

model described by the following Hamiltonian:

Hc ¼
X

i

ð4tþ viÞc†i ci � t
X

hiji
c†i cj; (1)

where t is the nearest neighbor hopping energy and ci and c†i
are electron annihilation and creation operators on atomic

site i, respectively. We choose t¼ 1 as the energy unit. The

on-site energy chosen as 4t is a convention that the energy

bottom of the 2D band structure to be zero.

We also assume that the structure of the left and right

leads has a similar interaction. The effect of leads can be

taken into account by self-energy22 R
r;a
L for the left and R

r;a
R

for the right. The self-energy of leads can be calculated

numerically.23,24 Although the Hamiltonian in Eq. (1) is very

simple, our direct expansion, in principle, can handle more

complicated Hamiltonians as long as it only contains single

particle interactions. It is also straightforward to generalize

our approach to the case of multi-orbital per site. Here, we

consider “diagonal disorder”25 with disorder strength vi on

ith atomic site. Different types of disorder can be described

by introducing a “probability function” for vi. We consider

two different types of disorder. One is “Anderson disorder”

with the probability function given by

qðviÞ ¼
1=w; �w=2 � vi � w=2;

0; otherwise
8i in center;

(

(2)

where w > 0 is called the strength of Anderson disorder.

Another is to dope the system with different types of atom

qðviÞ ¼ pdðvi � wÞ þ ð1� pÞdðvi � 0Þ: (3)

Here, 0 � p � 1 is the doping concentration, and w is the

energy difference between the dopant and the original atom.

In the theoretical formalism, we can general types of diago-

nal disorder including these two types of disorder.

A. CPA algorithm

In this subsection, we revisit the well-developed

“single-site CPA,” because this is the starting point of our

direct expansion approach. CPA is an approximation to eval-

uate the averaged single-particle retarded or advanced

Green’s function (hGri or hGai), and it is known to be good

in homogeneous ensembles.25 In realistic nano-devices with

small concentration, it has been shown that the NVC which

based on CPA also works very well.15 In CPA approxima-

tion, the disorder effect renormalizes the on-site energy by

adding a “coherent potential” ðD̂EÞ ¼ P

i ðDEÞijiihij on each

atomic site, such that

hGri ¼ Gr
e; (4)
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where Gr
e denotes equilibrium Green’s function in the ab-

sence of disorder and can be expressed as

Gr
e ¼ ½ðE� D̂EÞ � Hc � R

rðEÞ þ ig��1; (5)

in which R
r ¼ R

r
L þ R

r
R is the total self-energy due to the

leads, and g is a infinitesimal positive number.

For a given disorder configuration, the Green’s function

Gr is related to Gr
e by a “T-matrix”

Gr ¼ Gr
e þ Gr

eT
rGr

e (6)

in which the “T-matrix” is used to describe one specific dis-

order configuration, and it can also be understood as the

“irreducible” self-energy induced by the disorder. Taking

configurational average on both sides, and compare with

Eq. (4), we require

hTri ¼ 0: (7)

However, to implement CPA, we need a further approxima-

tion, which is usually referred as “weak overall scattering

approximation” or “single-site approximation,” and either of

them can lead to the CPA condition

hTr
i i ¼ 0; (8)

where Tr
i is a matrix with only one non-vanishing element

Tr
i ¼ sri jiihij; (9)

and sri ¼ f½vi � ðD̂EÞi�
�1 � ðGr

eÞiig
�1
. Taking average on

T-matrix, we have

hTr
i i ¼ jiihij

ð

qðvÞdv
½v� D̂Ei��1 � Gr

e;ii

¼ 0 (10)

from which the self-consistent equation for ðD̂EÞi can be

obtained25

D̂Ei ¼
ð

qðvÞvdv
½1� Gr

e;iiðv� D̂EiÞ�
: (11)

This equation is easy to converge.

B. Direct expansion

With the definition of the linewidth function, CL;R

¼ iðRr
L;R � R

a
L;RÞ, we can define the transmission matrix

T ¼ Gr
CLG

a
CR. The averaged conductance (set 2e2=h ¼ 1)

is defined as hTrðT Þi, and the averaged DC shot noise is pro-

portional to hTrðT � T 2Þi, while the conductance fluctuation
reads

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h½TrðT Þ�2i � hTrðT Þi2
q

. The averaged conductance

is usually calculated within the NVC approximation. While

the shot noise and conductance fluctuation involve four

Green’s function and NVC approach cannot apply here. Our

direct expansion approach is to expand them according to

Eq. (6), together with the T-matrix expansion with respect to

single-site-T-matrix Tr
i as the following:

Tr ¼
X

i

Tr
i þ

X

j 6¼i

Tr
iG

r
eT

r
j þ

X

j 6¼i

X

k 6¼j

Tr
iG

r
eT

r
jG

r
eT

r
k

þ
X

j6¼i

X

k 6¼j

X

l 6¼k

Tr
iG

r
eT

r
jG

r
eT

r
kG

r
eT

r
l þ � � � : (12)

Notice that the multiple summation in Eq. (12) requires that

the successive index should not be the same. Plugging this

expansion into the expression of conductance fluctuation or

shot noise generate all the diagrams up to a certain order in Ti
and then store them once for all. Here, we think Ti is a natural

expansion parameter because it describes the on-site scattering

and it is a small quantity under small disorder strength and

low doping concentration. With all the diagrams generated,

the average value of shot noise and conductance fluctuation

can be calculated for different systems numerically.

1. Averaged shot noise

Considering the T 2 term in the DC shot noise that involves

the average of four Green’s functions hGr
CLG

a
CRG

r
CLG

ai,
we substitute Eq. (6) into this expression and it generates sev-

eral terms up to the fourth order in T-matrix. The terms with

only one T-matrix vanish due to Eq. (7). In the following, we

illustrate how to use direct expansion method to generate dia-

grams for the other terms involving multi-T-matrices.

As an example, one typical term containing three

T-matrices is Gr
ehTrGr

eCLG
a
eT

aGa
eCRG

r
eT

riGr
eCLG

a
e . We focus

on the average part hTrX1T
aX2T

ri, where X1 ¼ Gr
eCLG

a
e and

X2 ¼ Ga
eCRG

r
e are independent of randomness. We expand

this average using Eq. (12) and truncate the resulting series

to a certain order in Ti (we have obtained 8th order). For this

three T-matrices term, the lowest order in Ti is three because

there is no zero-order term in Eq. (12), and all higher order

terms (we will call them diagrams from now on) in Ti up to

our target order can be generated. Symbolically, we write

Tr½hTrX1T
aX2T

rX3i� ¼
X

n;m;l

Cn;m;lðTr
i Þ

nðTa
j Þ

mðTr
kÞ

l: (13)

This equation is symbolic so there is no summation over site

indices i, j, and k. Here, Cn;m;l represents all the diagrams

with the same order of ðn;m; lÞ in Ta (a ¼ i; j; k) contributed
from different site indices i, j, and k. Since Ti is a matrix and

does not commute with X1=2=3, we have to keep both indices

n; l. Obviously, we need to find two things: (1) how many

combinations of ðn;m; lÞ we have; and (2) how many dia-

grams are there for a particular ðn;m; lÞ due to different site

indices i; j; k.
For instance, up to the 6th order (nþ mþ l ¼ 6), we have

(123), (114) along with all their permutations and (222), totally

10 different combinations. Cn;m;l can be calculated by counting

different combinations of i; j; k and for ðn;m; lÞ ¼ ð132Þ it is

obtained from the following expression:
X

i1

X

k2 6¼j2;j2 6¼i2

X

j3 6¼i3

hTr½Tr
i1
X1T

a
i2
Ga

eT
a
j2
Ga

eT
a
k2
X2T

r
i3
Gr

eT
r
j3
X3�i;

(14)

which is a six-multiple summation and can be handled using

single-site CPA.
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The evaluation of disorder average of Eq. (14) seems to

be impossible. However, we note that each Ti is a matrix

with only one matrix element (it becomes a diagonal block

matrix in the multi-orbital case, e.g., if spin-orbit interaction

is considered), as in Eq. (9). This simplifies calculation dras-

tically. In addition, the CPA condition, Eq. (8), indicates that

if the summation index appears only once, the average

vanishes.

So we have to find out all possible combinations of those

six site indices, and there are many possibilities. For exam-

ple, we can have i1 ¼ i2; j2 ¼ k3; k2 ¼ j3, and this combina-

tion gives the following contribution to Eq. (14)

X

0

ijk

hTr½Tr
i X1T

a
i G

a
eT

a
j G

a
eT

a
kX2T

r
kG

r
eT

r
j X3�i

¼
X

0

ijk

ðX1ÞiiðGa
eÞijðGa

eÞjkðX2ÞkkðGr
eÞkjðX3Þji

� hsri sai ihsrj saj ihsrksaki; (15)

where the prime on top of
P

means that the indices in the sum-

mation are mutually different and sri is defined after Eq. (9).

Another possible combination is i1 ¼ j2 ¼ j3; i2 ¼ k2 ¼ j3
which gives

X

0

ijk

hTrTr
i X1T

a
j G

a
eT

a
i G

a
eT

a
j X2T

r
jG

r
eT

r
i X3i

¼
X

0

ijk

ðX1ÞijðGa
eÞjiðGa

eÞijðX2ÞjjðGr
eÞjiðX3Þii

� hðsri Þ
2
sai ihsrj ðsaj Þ

2i: (16)

Alternatively, we can have a much simpler diagram-

matic representation of our expansion on the averaged shot

noise. This representation is very similar to that of Levin.12

As an example, Eq. (15) can be diagrammatically expressed

as Fig. 1(a) while the diagram corresponding to Eq. (16) is

shown in Fig. 1(b). The thick lines in diagrams of Fig. 1 rep-

resent the known matrix Xi, and the black dots represent the

single site T-matrix Ti. Diagrammatically, expansion up to

sixth order means that we only take into account those

diagrams with the number of such black dots less than six.

The thin line between two black dots represents either Gr
e or

Ga
e , depending on the configuration. The site indices such as

i, j and k should be different one from another, and we

should also keep in mind that the indices of two ends of a

thin line cannot be identical, from Eq. (12). Furthermore, we

have to connect the repeated site indices with the dashed

lines, like Fig. 1(d) when we have four T matrices. By con-

structing such a diagrammatic rule, our expansion can be

carried out by finding all the topologically distinct diagrams

in which the number of black dots(single site T-matrix) is

not more than six. Numerically, this procedure can be imple-

mented by computer from which we can calculate the aver-

age conductance and shot noise.

2. Conductance fluctuation

Comparing with the averaged shot noise discussed in the

last subsection, the calculation of conductance fluctuation is

different. This is because the shot noise contains one trace

while the conductance fluctuation has two traces as can be

seen below

h½TrðTÞ�2i ¼ hTr½Gr
CLG

a
CR�Tr½Gr

CLG
a
CR�i: (17)

If we still use the same idea as that of shot noise, we will

find the calculation becomes more complicated because we

can only write the above equation as

h½TrðTÞ�2i ¼
X

ij

hðGr
CLG

a
CRÞiiðGr

CLG
a
CRÞjji

¼
X

ij

hTr½Gr
CLG

a
CRP

ijGr
CLG

a
CRP

ji�i; (18)

in which the matrix Pij is the extremely sparse matrix with

only one non-zero element, ðPijÞij ¼ 1. It turns out that the

mean value of T2 will cost a factor of N2 to the time scale as

to evaluate shot noise. Even if we take into account from

physics the propagation modes,26 CR ¼
P

m jWmihWmj, we
still have

h½TrðTÞ�2i ¼
X

mn

hTr½Gr
CLG

aSmnGr
CLG

aðSmnÞ†�i; (19)

FIG. 1. Typical diagrams included in

the evaluation of shot noise. (a) The

diagram corresponding to Eq. (15).

(b) The diagram corresponding to Eq.

(16). (c) Examples of other sixth order

diagrams on 3T terms. (d) Examples of

sixth order diagrams on 4T terms.
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where jWmi represents the mth non-evanescent mode of right

lead and Smn is defined as jWmihWnj. In this case, the factor

of the computational cost is the square of the number of the

non-evanescent modes, still difficult. However, in our direct

expansion approach, we can get rid of this difficulty by tak-

ing the advantage of the property of Ti, Eq. (9), see below.

As before, we substitute Eq. (12) into the above equation

and expand it in terms of T-matrix. Here, we take the term

involving four T-matrices as an example, which is

hTr½Gr
eT

rGr
eCLG

a
eT

aGa
eCR�Tr½Gr

eT
rGr

eCLG
a
eT

aGa
eCR�i

¼ hTr½TrX1T
aX2�Tr½TrX1T

aX2�i:

Up to the sixth-order in Ti, there are many diagrams with dif-

ferent ways of contraction for site indices. Now considering

a particular diagram (12,21) where the first two indices are

in the first trace and the second two are in the second trace

and a specific index contraction ði; ij; kj; kÞ as an example,

Fig. (2), whose contribution is

X

0

ijk

hTr½Tr
i X1T

a
i G

a
eT

a
j X2�Tr½Tr

kG
r
eT

r
j X1T

a
kX2�i

¼
X

0

ijk

ðX1ÞiiðGa
eÞijðX2ÞjiðGr

eÞkjðX1ÞjkðX2Þkk

� hsri sai ihsrj saj ihsrksaki; (20)

where we have used Eq. (9) to deal with two traces. In order to

calculate the conductance fluctuation, we need to evaluate both

hTr½T�2i and hTr½T�i. We notice that hTr½T�i can be calculated

accurately using NVC while hTr½T�2i can only be obtained in

direct expansion. To make sure the accuracy of conductance

fluctuation, we have to treat these two terms on the equal foot-

ing and use direct expansion on both terms. As an example, if

we expand hT2i to sixth order but still use CPAþNVC to eval-

uate hTi, the fluctuation obtained is not very accurate. In

Fig. 3(d), at w ¼ 0:1, we get hT2i ¼ 394:3527 from sixth-

order expansion and hTi ¼ 19:8583 from CPAþNVC, the

fluctuation evaluated from these results is then larger than

0.02, which deviates from the exact result 0.0125 quite a lot.

However, our sixth-order cumulant expansion directly on fluc-

tuation gives the result 0.0130, better agreement compared

with the exact one.

Actually, in order to get the conductance fluctuation, a

better way is to do cumulant expansion, which discards all

the “disconnected diagrams.”27 The advantages of such

“cumulant expansion” include the following separate

aspects: 1. We can directly attack the fluctuation instead of

expand both hT2i and hTi, so the computational cost is

reduced to nearly a half. 2. In this way, we can naturally

evaluate hT2i and hTi on the same footing without to evalu-

ate either of them, and also avoid the error stated in the

above paragraph. 3. This cumulant expansion only include

connected diagrams, making the physical meaning more

clear because that the connected diagrams only contributes

to hTihTi, which is never needed when we concentrate on

the conductance fluctuation. In our case, in one specific

index combination, if the indices in the first trace do not con-

nect to those in the second trace, then it is a disconnected

terms. For example, in the decomposition (11,22), one dis-

connected term is ði; i; jk; kjÞ, while ði; j; ki; kjÞ is a connected
term. To a certain order, the sum of all the connected terms

gives the square of the conductance fluctuation.

III. NUMERICAL RESULTS

Before we show the numerical results, we wish to men-

tion the computational cost of our approach. As we can see

from the algorithm, first, we need to generate all the topologi-

cally inequivalent diagrams of Ti up to certain order. Second,

we have to generate all the possible index contractions for a

given diagram. As we go to higher order, both number of Ti
and the number of contractions for each Ti grow exponen-

tially. Note that due to the CPA condition, Eq. (8), a diagram

does not contribute if an index appears only once. Hence each

index has to appear at least twice in the summation. Thus, up

to the nth order, the largest number of different indices in the

summation is bn=2c which dominates the computational cost.

In general, an additional index will cost about N times compu-

tational time, with N being the number of atoms. For this rea-

son, although we have generated all the diagrams up to the 8th

order in Ti, we can only apply our approach to a small sized

system such as a 10-by-10 system in 2D in a reasonable
FIG. 2. One typical sixth-order diagram included in the evaluation of con-

ductance fluctuation labeled as (12,21) with index contraction (i,ij,kj,k).

FIG. 3. Square lattice of size 40� 40 with Anderson disorder and fixed

energy E¼ 2. (a) Conductance, direct expansion at different orders vs brute

force. (b) Conductance, direct expansion up to 6th order vs brute force vs

NVC. (c) Averaged shot noise, direct expansion at different orders vs brute

force. (d) Conductance fluctuation, direct expansion at different orders vs

brute force.
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amount of CPU time. In this paper, we apply our formalism to

40-by-40 and 60-by-60 systems in 2D up to 6th order in Ti.

Below we show the results of conductance, shot noise, and

conductance fluctuations where we consider Anderson disor-

der with different disorder strengths and doping with low

(1%) and high (10%) doping concentrations.

Figs. 3–8 depict our results. Each figure has four panels.

In panel (a), we compare our result of average conductance

expanded at different orders with that of the brute-force

method (blue circle). In the panel (b), we compare our result

up to the 6th order with results obtained from the brute-force

method as well as the NVC method. The panel (c) and (d)

show the averaged shot noise and the conductance fluctua-

tion, respectively, where we compare our results with that of

brute-force method. In the brute-force calculation, we have

collected 30 000 random configurations for each data point

on the curve, and the number 30 000 is large enough to

FIG. 4. Square lattice of size 40� 40 with 1% doping concentration and

fixed energy E¼ 2. (a) Conductance, direct expansion at different orders vs

brute force. (b) Conductance, direct expansion up to 6th order vs brute force

vs NVC. (c) Averaged shot noise, direct expansion at different orders vs

brute force. (d) Conductance fluctuation, direct expansion at different orders

vs brute force.

FIG. 5. Square lattice of size 40� 40 with 20% doping concentration and

fixed energy E¼ 2. (a) Conductance, direct expansion at different orders vs

brute force. (b) Conductance, direct expansion up to 6th order vs brute force

vs NVC. (c) Averaged shot noise, direct expansion at different orders vs

brute force. (d) Conductance fluctuation, direct expansion at different orders

vs brute force.

FIG. 6. 20 layered graphene, Anderson disorder, E ¼ 0:55. (a) Conductance,
direct expansion up to different orders vs brute force. (b) Conductance, direct

expansion up to 6th order vs brute force vs NVC. (c) Averaged shot noise,

direct expansion up to different orders vs brute force. (d) Conductance fluctua-

tion, direct expansion up to different orders vs brute force.

FIG. 7. 20 layered graphene, 1% doping, E ¼ 0:55. (a) Conductance, direct
expansion up to different orders vs brute force. (b) Conductance, direct

expansion up to 6th order vs brute force vs NVC. (c) Averaged shot noise,

direct expansion up to different orders vs brute force. (d) Conductance fluc-

tuation, direct expansion up to different orders vs brute force.

FIG. 8. 20 layered graphene, 10% doping, E ¼ 0:55. (a) Conductance, direct
expansion up to different orders vs brute force. (b) Conductance, direct

expansion up to 6th order vs brute force vs NVC. (c) Averaged shot noise,

direct expansion up to different orders vs brute force. (d) Conductance fluc-

tuation, direct expansion up to different orders vs brute force.
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ensure that the value of averaged conductance and conduct-

ance average converge.

In Fig. 3, we show the results on 40� 40 square lattice

with Anderson disorder. We have fixed the Fermi energy to

E¼ 2 where we have twenty incoming channels. We see from

Fig. 3(a) that up to the 4th or 5th order, our expansion result

agrees with that of the brute-force method for disorder

strength up toW ¼ 0:6. For the 6th order, the good agreement

is extended to W ¼ 0:8. We note that up to W¼ 1 the method

of NVC and brute-force give the same result (Fig. 3(b)). For

the shot noise (Fig. 3(c)), the 4th and 5th orders seem to give

almost the same result and up to W ¼ 0:4 good agreement is

reached. For the 6th order expansion, the agreement is better

for W up to 0.5. We see that the direct expansion method

underestimate the conductance and overestimate the shot

noise. For the conductance fluctuation, the situation is differ-

ent. From Fig. 3(d), we see that the conductance fluctuation is

of order 2e2=h which is a well known result in mesoscopic

physics. It is interesting to see that the 4th order expansion is

better than 5th and 6th orders. The range of W to have good

agreement isW ¼ 0:6.
As we mentioned before, our perturbation expansion

approach is good for small disorder strength. The reason that

our results deviate from exact ones is because there are two

approximations made in our approach. First is in the coherent

potential approximation. When we write Eq. (7) to Eq. (8), it

is assumed that the “overall scattering” is weak.25 Second, in

our expansion approach, the elimination of higher order terms

of Ti means that we neglect the successive scattering process

in a certain degree. But when the disorder strength becomes

large, the successive scattering is very important. Thus, our

approach cannot be used in the cases when the system enters

diffusive and even localized region. This is also true in doping

cases when the doping concentration or doping weight

becomes large. Hence, although here we benchmark our result

on the lattice model with Anderson disorder, the previous

knowledge such as Anderson localization, the universal con-

ductance fluctuation and the percolation theory cannot be

expected from our approach because those physics require

that the strength of disorder large enough and the system

enters diffusive and even localization region, but our method

cannot reach that region due to its perturbative nature.

Now we dope the system with a fixed impurity strength

W and two different doping concentrations. For 1% doping

(Fig. 4), very good agreement can be obtained for conduct-

ance among three methods: NVC, brute-force, and direct

expansion up to 6th order in the window of W ¼ ð0; 1Þ. For
the shot noise and conductance fluctuation, 6th order expan-

sion can give good agreement for W up to 1. When we

increase the doping concentration, our results deviate from

that of the brute-force. At 10% doping concentration (Fig. 5),

we find that for average conductance, the range of W

decreases to W ¼ 0:7 while for shot noise and conductance

fluctuation, the agreement is not good beyondW ¼ 0:3.
One word on the computational time. In our proposed

expansion method, the time cost is dominated by solving the

CPA self-consistent equation. As an example, for 2D 40 by

40 lattice model, 10% doping case, we need 11 steps to

obtain the CPA solvent and each step 2.5 s. After that, we

spend approximately 40 s to obtain the fluctuation. However,

this time used together can only be used to calculate approxi-

mately 50 configurations, from which even the mean value

cannot be surely given. As the system goes larger, our time

advantages become more obvious.

We have also studies the average conductance, shot

noise, and conductance fluctuation in a disordered graphene

ribbon system of size 30� 20 with hard-wall boundary con-

dition perpendicular to the transport direction. Here, we use

the simplest non-spin tight-binding Hamiltonian on the hon-

eycomb lattice, which is

H ¼
X

i

E0a
†
i ai �

X

hiji
ta†i aj: (21)

In graphene, the nearest hopping energy is t ¼ 2:75 eV, and
we set t¼ 1 as the energy unit, then both the Fermi energy

and the disorder strength are measured according to it.

Besides, in the above Hamiltonian, hiji denote the nearest

neighbor hopping, with the nearest-neighbor unit vector

a1 ¼ að0; 1Þ; a2 ¼ að�
ffiffiffi

3
p

=2;�1=2Þ; a3 ¼ að
ffiffiffi

3
p

=2;�1=2Þ,
and the lattice constant a ¼ 0:142 nm. In the following cal-

culation, we fix the Fermi energy E0 ¼ 0:55 where there are

15 incoming channels. For Anderson disorder, we see from

Fig. 6 that for average conductance good agreement is

obtained for disorder strength up to W ¼ 0:4. For shot noise,
however, the deviation can be seen when W ¼ 0:3. To our

surprise, the conductance fluctuation from direct expansion

method is good forW as large as 0.4. For low doping concen-

tration at 1%, Fig. 7 shows that good agreement between our

method and brute-force method can be reached for average

conductance and shot noise with disorder strength up to

W¼ 1 while for conductance fluctuation reasonable agree-

ment is obtained for W up to 0.8. For larger doping concen-

tration, the agreement is good for smaller disorder strength.

For instance, at 10% doping (Fig. 8), the average conduct-

ance is good up to W ¼ 0:5 while for shot noise and con-

ductance fluctuation W is about 0.4 for a reasonable

agreement compared with brute-force method.

IV. CONCLUSIONS

In this paper, we have developed a direct expansion

approach to deal with the average shot noise and the conduct-

ance fluctuation for disordered systems. Two kinds of disorder

were considered: Anderson disorder and the random dopant.

We have bench marked our results on a graphene system and

a two dimensional square lattice model. Our results can be

summarized as follows. We find that our expansion method

up to the 6th order is comparable, although not as good as

NVC method for the calculation of averaged conductance. Up

to the sixth order, our results of shot noise and conductance

fluctuation agree well with the brute-force method for

Anderson impurities with disorder strength up to W � 0:5 for

the square lattice andW � 0:3 for the graphene system. In the

presence of dopant at small doping concentration (1%), our

results are good when W is around 0.9. In general, up to the

same order of expansion, average conductance gives better

result than the shot noise and conductance fluctuation while
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the shot noise is the least accurate quantity. One can improve

the accuracy by going to higher order expansion at the

expenses of more CPU time. Since our method is an expan-

sion approach, it cannot deal with large disorder strength and

high doping concentration. Our approach can be extended to

3D system without any difficulty, and the computational cost

is only related to the size of the Hamiltonian matrix. Besides,

our formalism can be combined with LMTO type of first prin-

ciples calculation, which can give quantitative prediction to

the conductance fluctuation for nano-devices. In the realistic

device calculations, such comparisons with brute force

method are also, in principle, available. For example, in the

realistic doping devices, one can generate a large number of

random configurations at the given concentration, and the

averaged shot noise as well as conductance fluctuation can be

exactly evaluated. Thus, our method is controllable and should

be successful as long as CPA itself is valid.
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