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Conductance of Carbon Nanotubes with a Vacancy
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The conductance of carbon nanotubes with a vacancy is studied in a tight-binding model. We
examine the Fermi energy ε dependence of the conductance and show it is quantized into zero,
one, and two times the conductance quantum e2/πh̄ depending on the type of vacancy in the
half-filled case, i.e., ε = 0. In the presence of a magnetic field, the conductance is scaled by the
component of the magnetic field in the direction of the vacancy.
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Fig. 1. Three typical vacancies. We call the vacancies depicted
in (a), (b), and (c) vacancy I, IV and II, respectively.

Carbon nanotubes (CN’s) were first discovered by
Iijima in 1991.1) They consist of coaxially rolled graphite
sheets and their electronic states change critically from
metallic to semiconducting depending on their tubular
circumferential vector.2-5) Because of the peculiarity of
their geometric and electronic structure, they provide a
new kind of quantum wire. The purpose of this work is
to study the effects of scattering by a vacancy in metal-
lic armchair nanotubes in the presence and absence of a
magnetic field.

Recently, the conductivity of CN’s with impurity po-
tential was studied and it was proved that the Born
series for back-scattering vanish identically for scatters
having a potential range larger than the lattice con-
stant.6) This intriguing fact was related to Berry’s phase
acquired by a rotation in the wave-vector space in the
system described by a k·p Hamiltonian, which is the
same as Weyl’s equation for a neutrino.7) This was con-
firmed by a tight-binding calculation.8) There have been
some reports on experimental studies of transport in CN
bundles.9) Measurements of magnetotransport of a single
nanotube became possible,10, 11) and quantized conduc-
tance in a multi-wall nanotube has been reported.12)

Some recent experiments suggest the existence of
defective nanotubes of carpet-roll or papier-mâché
forms.13, 14) These systems have many disconnections of
the π electron network governing the transport of CN’s,
and therefore are ected exhibit properties different
from those in perfect CN’s. In fact, the effects of topolog-
ical defects, i.e., five- or seven-member rings, in nanotube
junctions have been calculated and a universal power-law
dependence on the conductance was shown.15-17) A cal-
culation of the conductance of armchair nanotubes with
a single vacancy has also been reported.18)

We use a tight-binding model of a single π band with
a nearest-neighbor hopping integral γ0 and a lattice con-
stant a. A magnetic field is introduced through a Peierls
phase factor.19, 20) The armchair nanotube is known to
always be metallic and to have two bands in the vicinity
of the Fermi energy crossing at ky = 2π/3a (K point) and

toexp

ky = −2π/3a (K’ oint). The dispersion near the
Fermi energy is approximately given by ε = γk, where k
is the wave vector measured from the K and K’ points
and γ =

√
3aγ0/2. Two channels denoted as K and K’

with positive velocity γ/h̄ have the dispersion ε = +γk
and two with negative velocity −γ/h̄ have ε = −γk.

A unit cell of two-dimensional graphite contains two
carbon atoms denoted A and B constituting a honey-
comb network, as shown in Fig. 1. We consider three
typical vacancies: (a) vacancy I, (b) vacancy IV, and (c)
vacancy II. In vacancy I a single carbon site (site A) is
removed, in vacancy IV three A sites and one B site are
removed, and in vacancy II a pair of A and B sites are
removed.

The vacancies are simulated by two models. In the first
model, we consider the explicit disconnection of bonds
around the vacancy. In the second model, a huge on-site
energy ('γ0× 108) is introduced at vacancy sites on the
perfect network of CN’s. Because the calculated conduc-
tance for both models agree with each other within nu-
merical accuracy, we can conclude that these wo models
are equivalent.

A magnetic field perpendicular to the tube axis leads
to various peculiar electronic properties of CN’s includ-
ing transport.21-23) It is characterized by strength H as
well as angle θH from the direction pointing from the cen-
ter to the vacancy [see the inset of Fig. 4]. The effective
strength of the field is characterized by (L/2πl)2, where
L is the circumference of CN’s and l is the magnetic
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as shown in Fig. 2(c). The deviation from perfect con-
ductance 2e2/πh̄ decreases with increasing L almost in
proportion to L−2. For example, magnitude of total re-
flection coefficients at ε = 0 is 3.7× 10−3 and 0.6× 10−3

for L/
√

3a = 40 and 100, respectively. The conductance
exhibits a dip at the energy slightly below ε = ε(1), but
reaches 2e2/πh̄ at ε = ε(1). The back scattering within
each valley rKK and rK′K′ and the transmission between
different valleys tKK′ and tK′K are absent because of a
mirror symmetry about a plane containing the axis.17)

Energy levels associated with vacancy II can be cal-
culated using a super-cell method in which we consider

length given by l =
√
ch̄/eH.5) We have two regimes,

the weak-field regime (L/2πl)2 ¿ 1 and the strong-field
regime (L/2πl)2 À 1. In the former case, the wave func-
tion is extended almost uniformly along the circumfer-
ence. In the latter case, Landau levels are formed in the
vicinity of ε = 0 and corresponding wave functions are lo-
calized at the top and the bottom of CN in the direction
of the magnetic field.

spectively. The unitarity of the scattering matrix must
be carefully checked throughout the numerical calcu-
lations. The conductance is calculated by the multi-
channel Landauer’s formula,26) given by

G =
e2

πh̄

∑
µ,ν

|tµν |
2. (1)

Transmission tµν and reflection coefficients rµν are cal-
culated by a recursive Green’s function technique,24, 25)

where µ and ν are out-going and in-coming channels, re-

and valence bands having a nearly linear dispersion con-
tribute to traveling channels, and combinations of {µ, ν}
are given by {K,K}, {K′,K′}, {K′,K}, and {K,K′}. The
former two correspond to intra-valley scattering and the
latter two to inter-valley scattering between K and K’
points. We have G = 2e2/πh̄ in perfect nanotubes. Fur-
thermore, all the results are symmetric with respect to
ε = 0 because of the electron-hole symmetry. For suffi-
ciently thick CN’s, i.e., L/aÀ 1, we have ε(1) = 2πγ/L.
If we adopt γ0 = 3.03 eV and a = 2.46 Å, we have
ε(1) ' 0.94 eV and 0.16 eV for L = 42.6 Å and 256 Å,
respectively.

In the following, we shall exclusively consider the case
that −ε(1) < ε < ε(1), where ε(1) is the bottom of the
second conduction bands. In this case, the conduction

Figure 2 shows the calculated conductance as a func-
tion of the Fermi energy. For the vacancy I, the con-
ductance at ε = 0 is half that in a defect-free system
as shown in Fig. 2(a). Both intra- and inter-valley com-
ponents have equal amplitude for both transmission and
reflection processes, i.e., |tµν |2 = |rµν |2 = 1/4. The con-
ductance increases as a function of ε for 0 < ε < ε(1) and
reaches 2e2/πh̄ at ε = ε(1), where a perfect transmission
occurs, i.e., |tKK| = |tK′K′ | = 1. Except at ε = 0 and
ε = ε(1), the conductance increases with the increase of
the circumference.

Effects of the vacancy I in armchair nanotubes were
studied in a similar tight-binding model,18) in which the
conductance at ε = 0 was claimed to approach 2e2/πh̄
with increasing L. It is likely, however, that the re-
sults do not exactly correspond to ε = 0 but to a small,
nonzero value. In fact, if we plot the calculated conduc-
tance against L for ε/γ0 = 0.02, we get a curve almost
the same as that given in Fig. 3 of ref. 18.

In CN’s with vacancy IV, the conductance at ε = 0
vanishes, as shown in Fig. 2(b) and a perfect reflection
occurs within the same valley, i.e., |rKK| = |rK′K′ | = 1.
The conductance increases with increasing ε and reaches
2e2/πh̄ at ε = ε(1). Except at ε = 0 and ε = ε(1), the
conductance increases with increasing L.

In CN’s with vacancy II, the conductance around ε = 0
is slightly smaller than 2e2/πh̄ and gradually increases
and approaches 2e2/πh̄ with the increase of the radius,

Fig. 2. Calculated conductance in units of e2/πh̄ as a function
of the Fermi energy for CN’s with vacancy I (a), IV (b), and II
(c), where the energy is scaled by ε(1), which corresponds to the
bottom of the second conduction bands.
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a finite-length nanotube and impose periodic boundary
conditions. The results show the presence of a localized
state slightly below the bottom of the second conduction
band. The dip slightly below ε = ε(1) is likely to be due
to resonance scattering from such a localized level.

The qualitative difference of calculated conductance at
ε = 0 is clearly reflected in the wave function around the
vacancy. We depict the calculated density distribution
around the vacancy for a wave incident from the left-
hand side in CN with L/

√
3a = 10, in Fig. 3 [(a) vacancy

I, (b) vacancy IV, and (c) vacancy II]. Around vacancy
I, the wavefunction at A sites (the vacancy is situated
at an A site) has nodes with the periodicity of a three-
sublattice Kekulé pattern. The wave function at B sites
has a large amplitude around the vacancy. In the case of

vacancy IV, the wave function has no component on A
sites and has a large amplitude at B sites in the left-hand
side of the vacancy and a vanishingly small amplitude in
the right-hand side. In the case of vacancy II, the wave
function is not disturbed by the vacancy so much and
the wave is almost perfectly transmitted.

The wave function is strongly perturbed by the pres-
ence of a vacancy except in the case of vacancy II.
This means that evanescent waves decaying exponen-
tially away from the vacancy play important roles. Their
effects become more and more important with the in-
creasing energy. At ε = ε(1), in particular, the wave
function given by a combination of an incident traveling
mode and evanescent modes associated with the second
conduction bands can be made to vanish identically in
the vicinity of the vacancy. This is presumably the rea-
son that perfect transmission is realized at ε = ε(1). In a
graphite sheet with a finite width, localized edge states
are formed near the Fermi level, when the boundary is in
a certain specific direction.27-30) Such edge states might
play an important role also in the case of vacancies and
be closely related to the singular dependence on the type
of vacancies.

Figure 4 shows the calculated conductance in magnetic
fields, θH = 0 and L/

√
3a = 100. It is independent of

the field and remains at e2/πh̄ for vacancy I and zero
for vacancy IV. The calculated conductance for vacancy
II shows a large positive magnetoresistance, where it de-
creases from 2e2/πh̄ to zero.

In the case of vacancy I, the relative importance of
intra- and inter-valley scattering processes changes with
the magnetic field, although not shown explicitly. In
the weak field regime, both intra- and inter-valley pro-
cesses occur with equal probability. In high magnetic
fields, inter-valley scattering is suppressed and intra-
valley transmission for in-coming channel K’ and re-
flection for K have the same amplitude, i.e., |tK′K′ | ≈
|rKK| ≈ 1. Because of the peculiar wave function in a
high magnetic field,5, 23) we have |tKK| ≈ |rK′K′ | ≈ 1, if
a single B site is removed instead of A or θH = π. In the
case of vacancy IV, only intra-valley reflection is allowed

Fig. 3. The density distribution of a wave at ε = 0 incident from
the left-hand side in the K-valley around the vacancy I (a), IV
(b), and II (c) for L/

√
3a = 10. The radius of a circle at each

lattice point is proportional to the magnitude of the electron
density.

Fig. 4. Calculated conductance at ε = 0 as a function of a mag-
netic field for CN’s with vacancy I, IV, and II. Inset shows defi-
nition of the angle θH . L/

√
3a = 100 and θH = 0.
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Fig. 5. Calculated conductance at ε = 0 as a function of (L/2πl)2

(dotted lines) and (L/2πl)2 cos θH (solid lines) for the CN’s with
vacancy II shown in Fig. 1(c). All lines are reduced to a single
common curve if plotted as a function of (L/2πl)2 cos θH .

independent of the field.
Figure 5 shows the dependence on θH for vacancy II.

There is no field dependence for θH = π/2 and the de-

pendence is maximum for θH = 0. The magnetocon-
ductance is given by a single common curve if plotted
as a function of (L/2πl)2 cos θH . This means that the
conductance depends only on the field component in the
direction of the vacancy.

Unfortunately, we have no intuitive picture which ex-
plains the universal dependence on H cos θH , but we ex-
pect that this is quite common in nanotubes. In fact,
the same behavior was predicted in the magnetoconduc-
tance of CN junctions containing topological defects such
as five- and seven-member rings.16)

In this letter, we have studied the effects of lattice va-
cancies on transport in carbon nanotubes. In the case of
vacancy I consisting of a single site, the conductance at
ε = 0 becomes half that in a perfect nanotube indepen-
dent of the radius. In the case of vacancy IV consisting of
four sites, the conductance vanishes at ε = 0. In the case
of the vacancy II consisting of a pair of A and B lattices,
the conductance stays almost equal to 2e2/πh̄ particu-
larly in nanotubes with a sufficiently large radius. This
strong dependence on the kind of vacancy prevails even
in a magnetic field perpendicular to the axis. A peculiar
feature is the existence of the universal dependence on
the field component in the direction of the vacancy. In
order to reach full understanding of the effects of vacan-
cies, further elaborate calculations should be performed
for many different kinds of vacancies. An analytic treat-
ment in an effective-mass approximation should also be
useful. These problems are left for a future study.
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