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Abstract. A theory of electron states for graphene nanoribbons with a smoothly varying width is developed.
It is demonstrated that the standard adiabatic approximation allowing to neglect the mixing of different
standing waves is more restrictive for the massless Dirac fermions in graphene than for the conventional
electron gas. For the case of zigzag boundary conditions, one can expect a well-pronounced conductance
quantization only for highly excited states. This difference is related to the relativistic Zitterbewegung

effect in graphene.
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The experimental discovery of a truly two-dimensional al-
lotrope of carbon, graphene [1,2] and of the massless Dirac
character of its electronic energy spectrum [3,4] has ini-
tiated an enormously growing interest in this field (for
review, see Refs. [5,6]). One of the most exciting aspects
of the problem is the hope to develop novel carbon-based
electronics. Very recently, the experimental realization of
quantum dots [5] and carbon nanoribbons [7,8] has been
announced, the former demonstrating single-electron tran-
sistor (SET) effect [5].

The conductance quantization in the ballistic
regime [9-13] is one of the most important physical
phenomena determining the functioning of such nanode-
vices. It was considered recently for the case of ideal
graphene stripe [14] and for the case of confinement due
to a smooth external electrostatic potential [15]. The
experimental situation [5,7,8] corresponds rather to the
case of electron confinement due to a curvilinear shape
of the graphene samples than to an external field. The
description of the penetration of electron waves through
constrictions in the nanoribbons requires a different
theoretical approach. Numerical calculations of electronic
transport in graphene nanoribbons demonstrating a
very interesting “valley filter” effect have been recently
published [16]. However, a general theoretical analysis
of the situation is still absent. Here we present an ana-
lytical theory of conductance quantization in graphene
nanoribbons based on the adiabatic approximation [10,
12]. The latter means a separation of the electron motion
in the directions perpendicular and along the stripe.
For nonrelativistic electrons the adiabatic approxima-
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tion requires only the smoothness of the shape of the
stripe boundary and results in the quantization of the
conductance. For graphene, the situation turns out to be
essentially dependent on the boundary conditions. It will
be shown that for the zigzag boundaries this theory is
essentially different from that for nonrelativistic electrons
and, in general, there is no reason to expect an adiabatic
regime and well-pronounced conductance jumps for the
lowest states of the ribbon.

The two-component wave function (u,v) for charge
carriers in graphene with wave vectors close to the K point
is described by the Dirac equation

(1)

where k = E/hvp, E is the electron energy and vp ~
105 m/s is the Fermi velocity [3,4]; for the other valley
K’ the signs before 0/dy are opposite. Let us consider
first the case of a uniform graphene strip of width L along
the y-axis, |y| < L/2. To specify the problem one has to
choose boundary conditions at the edges [17].

We start with the case of zigzag edges where
u(y=—L/2)=0,v(y=L/2) =0. The energy spectrum
is discrete, F; = hvpk; where

kj=—=, j==+1 43 .. (2)
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and the wave functions have the form

1
u; (y) = ﬁcoskj (y—L/2),

1
v (y) = I

Consider now the case of a smoothly varying strip
width, L — L(z),|dL/dx| < 1. Following a general
scheme [10,12] one can try a solution of equation (1) as
an expansion

ule,y) =36 @) W),

sink; (y — L/2). (3)

v(@y) =D e (@) e () (1)

where u(®) v(*) are the functions (3) with the replacement
L — L (x). The functions (4) satisfy by construction the
boundary conditions. By substituting the expansion (4)
into equation (1), multiplying the first equation by (v;]
and the second one by (u,| one finds:

dc;i dv;s )
> [d—; (vilvj) + ¢y <Uj|d—;>} =iy (k—ky)
Iz Iz

cj (vjlugr)
dei du ;s .
> [ T {uglugr) + ¢ <Uj|d—;>:| =iy (k—kj)
jl j/
cjr (ujlvyr) . (5)

This equation is formally exact. As a first step to the adi-
abatic approximation, one should neglect the terms with

<’Uj| d;j; ’ ds; d > which is justified by the smallness

of dL/dz, as in the case of nonrelativistic electrons [10,12].
To proceed further we need to calculate the overlap

L/2
integrals (¢1|p2) = [ dy¢i¢s for different basis func-
tions:

> and <uj|

—-L/2

1
(wjlujr) = 5 (8550 +05-50),

1
(vjlvgr) = 5 (B = 6j,—j1) 5

ST
(ujlvjr) = (vjrlug) = { )

BRIV

I j=2n+1,
jl_j:2n7

where n is integer. Substituting equation (6) into equa-
tion (5) and neglecting the nonadiabatic terms with the
matrix elements of the operator d/dx, we obtain after sim-
ple transformations:

dej(z) _ 2ig~ [k =Ky ()]

dr = p i Wcj’ () (7)

where the sum is over all j’ such that j' — j is even.
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Until now we did transformations and approximations
which are identical to those used in the case of nonrel-
ativistic electrons. However, we still have a coupling be-
tween different standing waves so we still cannot prove
that the electron transmission through the constriction
is adiabatic. To prove the latter we need one more step,
namely, a transition from the discrete variable j to real
one and a replacement of the sums by integrals in the
right-hand-side of equation (7): Z; .. > 3P [dj... where
‘P is the symbol of principle value. This step is justified by
assuming that kL > 1, i.e., only for highly excited states.
For the low-lying electron standing waves it is difficult to
see any way to simplify essentially the set of equations (7)
for the coupled states.

For any function f (z) analytical in the upper (lower)
complex half-plane one has

7 1
/dxf(x)x—xliiozo ®
or, equivalently,
7 dof () —2— = inf (a1) 9)
x—x 17

Assuming that ¢; (x) is analytical in the lower halfplane
as a function of complex variable j one obtains, instead of
equation (7)

de; (z)
dx

— [kt ky @) ey (). (10)
Similar, taking into account that c_; (z) is analytical in
the upper halfplane as a function of complex variable j we

have d
de—j () = [k; (z) — K] ¢; (x).

11
i (11)
At last, differentiating equation (10) with respect to x,
neglecting the derivatives of k; (z) due to the smallness of
dL/dzx and taking into account equation (11) we find

d’c; (z)
dx?

Further analysis completely follows that for the nonrel-
ativistic case [10] where k? and k? (x) play the roles of
energy and potential, respectively. The potential is qua-
siclassical for the case of smoothly varying L(x). There-
fore, the transmission coefficient is very close to one if
the electron energy exceeds the energy of the jth level in
the narrowest place of the constriction, and exponentially
small, otherwise. Standard arguments based on the Lan-
dauer formula [9-13] prove the conductance quantization
in this situation.

At the same time, for the lowest energy levels the re-
placement of sums by integrals in equation (10) cannot be
justified and thus the states with different j’s are in gen-
eral coupled even for a smooth constriction (|[dL/dz| < 1).

+ [k - kJQ ()] ¢ (x) = 0. (12)
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Therefore electron motion along the stripe is strongly cou-
pled with that in the perpendicular direction and different
electron standing waves are essentially entangled. In this
situation there is no general reason to expect sharp jumps
and well-defined plateaus in the energy dependence of the
conductance. This means that the criterion of adiabatic
approximation is more restrictive for the case of Dirac
electrons than for the nonrelativistic ones. The formal rea-
son is an overlap between components of the wave func-
tions with different pseudospins or, equivalently, between
hole component of the state j with the electron compo-
nent of the state j' # j. This coupling is a reminiscence
of the Zitterbewegung of Dirac electrons determining the
finite conductivity and anomalous shot noise in graphene
in the limit of small charge carrier concentration [18,19].
Effectively, it works as a kind of intrinsic “disorder” and
therefore it is not surprising that it destroys the ballis-
tic regime near the Dirac point. Interestingly, the kinetic
equation that takes into account the Zitterbewegung ef-
fects also contains some “P-terms” which are absent in
the standard Boltzmann equation; these terms become ir-
relevant for large enough Fermi energy [20].

Consider now the case of armchair edges. The bound-
ary conditions are coupled the components of Dirac
spinors at K valley u,v with those at K’ valley @, v:

u(=L/2) =u(=L/2),
v(=L/2) =v(-L/2),
u(L/2) = ™ u(L/2),
v(L/2) = e*™T(L/2), (13)

where v = 0,+2/3, depending on the number of rows in
the strip [17]. The eigenmodes in that case are just plane
waves [17]

. 1 ,
uj (y) = —iv; (y) = VAL exp (ik;y) ,
_ — 1 .
u; (y) = —iv; (y) = Wi exp (—ik;y) , (14)
ki=(G+v)m/L,j=0,£1,42,.. (15)

A general solution satisfying the boundary conditions (13)
can be probed as

Z%
v (z,y) —sz
Z%
T (x,y) —sz

x) exp [ik; () y],
x)exp [ik; (x) y],
exp [ik; (z) (L(z) — y)],

x) exp [ik; (z) (L(z) —y)].  (16)
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Substituting this into the Dirac equation (1) one obtains

3 explit; (@)
Z exp [tk; (

dc dk;
y]{d]Jr(kb kjcj) + dmjycj}o,
)4l db;

dx

Let us neglect first the nonadiabatic terms proportional
to dk;/dx in these equations. They will be satisfied for
sure if all coefficients at the plane waves vanish, which is
equivalent to the set of equations

dk;
+ (k’jbj — k’Cj) + Zd_xjybj} =

(17)

d(cj +bj)

T Tkt ky) (b —¢) =0,
W + (kj — k) (cj +b;) = 0. (18)

Differentiating them with respect to x and neglect-
ing, again, the derivatives of k; we find the effective
Schrodinger equation (12) and the same equation for b;.
Thus, in contrast with the case of zigzag edges, for the
armchair edges a standard picture of conductance quan-
tization should be valid for all states, similar to nonrela-
tivistic electron gas.

However, there is another problem which makes
the adiabatic approximation for this case problematic.
The wave numbers (15) can depend on z not only due
to the stripe length but also due to different number of
rows in the stripe which makes dv/dz a source of sharp
random potential. It is very difficult to investigate this ef-
fect analytically in the framework of the approach under
consideration. It was argued recently based on numerical
results and qualitative considerations that this kind of ran-
domness should be of crucial importance for the graphene
nanoribbons with the armchair edges [21].

It would be very interesting to check experimentally
the possible difference in the conductance behavior for the
nanoribbons with zigzag and armchair edges. For the for-
mer case, the theory predicts essential difference of behav-
ior at the crossing of low-lying and highly excited energy
levels in the quantum point contact situation, that is, for
a narrow constriction of the graphene nanoribbons.
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