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Abstract

The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances,

and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make

resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory.

The RRAM device also exhibits rich electrical, thermal, magnetic, and optical effects, in close correlation with the

abundant resistive switching (RS) materials, metal-oxide interface, and multiple RS mechanisms including the

formation/rupture of nanoscale to atomic-sized conductive filament (CF) incorporated in RS layer. Conductance

quantization effect has been observed in the atomic-sized CF in RRAM, which provides a good opportunity to

deeply investigate the RS mechanism in mesoscopic dimension. In this review paper, the operating principles of

RRAM are introduced first, followed by the summarization of the basic conductance quantization phenomenon in

RRAM and the related RS mechanisms, device structures, and material system. Then, we discuss the theory and

modeling of quantum transport in RRAM. Finally, we present the opportunities and challenges in quantized RRAM

devices and our views on the future prospects.
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Introduction

The persistent perusing of massive storage volume has been

driving the scaling-down process of memory devices for de-

cades. Memories characterized by low-power consumption

and low fabrication cost are needed. Predominant flash

memory has met a scaling-down limitation around 10-nm

magnitude [1, 2]. Therefore, intensive studies have been

carried out in seeking for the next-generation memories.

Resistive random access memory (RRAM) has become one

of the most promising candidates for the next-generation

memory [3–14] because of the intrinsic excellent scalability,

simple metal-insulator-metal (MIM) structure, low fabrica-

tion cost, 3D integration feasibility, and promising perfor-

mances in speed, power, endurance, retention, etc. RRAM

stores information based on the resistive switching effect.

Under appropriate external electrical field, the resistance

state of the RRAM device can be reversibly switched

between a high resistance state (HRS) or OFF-state and a

low resistance state (LRS) or ON-state. There are two

resistive switching modes, i.e., unipolar and bipolar switch-

ing operations under the same or opposite bias polarities,

respectively, which are closely related to the different ma-

terial systems and the different switching mechanisms.

The resistive switching can be a uniform or localized

phenomenon. Uniform switching proportionally scales with

the total area of the switching material, while localized

switching is usually based on the formation and disruption

of conductive filament (CF).

Abundant resistive switching materials, electrode mate-

rials, and their various interfaces are involved in RRAM

switching mechanisms which are rather complex. Rich

electrical, thermal, magnetic, and optical effects are

therefore presented. Typical physical/chemical effects

accompanied in resistive switching processes and in

HRS/LRS states include electrochemical/thermochemical

reactions [15–27], metal-insulator transition [28, 29],

magnetic modulation [30–47], etc. In this regard, the

RRAM device can serve as a rich platform for studying

the multiple physical/chemical effects. In the CF-type

* Correspondence: longshibing@ime.ac.cn; liuming@ime.ac.cn
1Key Laboratory of Microelectronics Devices and Integrated Technology,

Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029,

China

Full list of author information is available at the end of the article

© 2015 Li et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

Li et al. Nanoscale Research Letters  (2015) 10:420 

DOI 10.1186/s11671-015-1118-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s11671-015-1118-6&domain=pdf
mailto:longshibing@ime.ac.cn
mailto:liuming@ime.ac.cn
http://creativecommons.org/licenses/by/4.0/


RRAM device, when the CF in the resistive switching

(RS) layer is formed, RRAM changes to LRS. If the CF is

ruptured, the device switches back to HRS. The forma-

tion and rupture of the CF can be understood as cation

or anion migration under applied voltage companied by

electrochemical reaction of the metal or oxygen vacan-

cies. Therefore, CF is believed to be consisted of metal

or oxygen vacancies. The dimension of the CF can be

electrically modulated to be in the order of several tens

to a few nanometers, which has been evidenced by the

observation of high-resolution transmission electron mi-

croscopy (HRTEM) [20, 48–60], scanning TEM (STEM)

[59], and atomic force microscopy (AFM) [61–63]. In

the localized filamentary switching, the scaling down of

the RRAM device [64] would not influence its memory

characteristics until the area is approaching the CF mag-

nitude. As the CF size is in the range of nanoscale to

atomic size, which is comparable to the mean free path

(Fermi wavelength) of conduction electron, the scatter-

ing might be absent, resulting in ballistic electron trans-

port [65] and the quantized conductance (QC) [66–68].

In recent studies, conductance quantization phenomena

have been proved to exist in the atomic-sized CF in

RRAM [69–72], and the interest for studying them con-

tinues. Revealing the QC effect is of great significance to

deeply understand the physics of RS mechanism in

mesoscopic dimension, which is important to control

the performance, reliability, and variability [73, 74] of

RRAMs and to advance their practical application as

non-volatile memories. At the same time, if the conduct-

ance quantization behaviors can be well modulated, it in

turn can be utilized to realize the multi-level storage

for ultra-high-density memory applications. Thus, sum-

marizing and discussing the QC effect in RRAM is very

necessary. In this review paper, we focus our attention

on the recent development of the research on the QC

effect in CF-based non-volatile RS devices including

basic QC phenomenon in RRAM, RS mechanisms,

device structures, materials, theory, and modeling of

conductance quantization in RRAM.

Operating Principles and RS Mechanism of RRAM

In RRAM cell with MIM structure, non-volatile data

storage is achieved through the reversible resistive

switching between HRS and LRS, which are utilized to

store the digits “0” and “1.” RS is often based on the cre-

ation and partial destruction of CF. Dependent on the

polarity of the external electrical field, RS is usually clas-

sified into two modes, unipolar and bipolar switching.

The transition from HRS to LRS and that from LRS to

HRS are called as the SET and RESET switching,

respectively. In some cases, if the prepared RS layer in

fresh cell is very insulating with low amount of defects, a

forming process with high voltage is necessary to soft

breakdown the RS layer to trigger the subsequent repro-

ducible RESET and SET switching. Figure 1 shows the

schematic I–V curves in RS and the corresponding states

of CF-type RRAM device.

Compared with the prototypical non-volatile memories

(NVMs) such as magnetic random access memory

(MRAM) based on the giant or tunneling magnetoresist-

ance effect [75–79] and phase change random access

memory (PRAM) based on the reversible phase transitions

between amorphous and crystalline states of phase change

materials [80–84], RRAM, an emerging NVM, has shown

various complex resistive switching mechanisms, which is

closely dependent on the different types of switching layer

and electrode materials and also dependent on the differ-

ent operation methods [85–87]. To date, the resistive

switching mechanism in RRAM has been widely accepted

to be mainly attributed to the reduction/oxidation (redox)

electrochemistry mechanism, which can operate in the

bulk RS layer, along CFs in the RS layer, and/or at the RS

layer/metal contact interfaces in the MIM structure.

Redox-based RRAM [3, 15, 19, 88–95] can be further clas-

sified into two main types, “nanoionic” (including electro-

chemical metallization (ECM) [17–20, 90, 94, 96–101]

and valence change mechanism (VCM) [5, 51, 61, 91,

102–112]) and “thermochemical mechanism (TCM)” (i.e.,

fuse/antifuse) [91, 113, 114]. In ECM and VCM devices,

the diffusion or drift of charged species (Ag+ or Cu+ cat-

ions), O anions or oxygen vacancies (Vos) in the RS layer

are driven by the ion drift/redistribution and the redox

electrochemistry mechanisms under an electrostatic drift

field. While in TCM devices, it is driven by a thermal gra-

dient diffusion mechanism. In fact, in a practical RRAM

device, the RS process is very complicated, with multiple

mechanisms simultaneously existing, but a certain one is

predominant. It is worth pointing out that TCM is some-

times confused with unipolar VCM. In some cases, the

ECM device is also called as conductive bridge random

access memory (CBRAM) [115–119], programmable

metallization cell (PMC) [120–122], and atomic switch

[115–119, 123, 124]. If TCM dominates the RS, the resist-

ance switching is unipolar. On the contrary, if ECM or

VCM is dominant, the switching is usually bipolar. ECM

devices are cation migration-based RRAMs, while VCM

and TCM devices can be summed up into anion

migration-based RRAMs. Plenty of dielectric materials

have been found to show the redox-based resistance

switching effect, including perovskites, solid-state electro-

lytes, chalcogenides, transition metal oxides, silicon diox-

ide, metal nitrides, organic complexes, polymers, etc.,

among which HfO2 and TaOx are most widely investigated

and most competitive for the practical applications. Table 1

lists the three types of typical redox-based RS mechanisms

and their corresponding material system, I–V curves, and

operation polarity.
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Except the redox RS mechanism, the insulator-metal

transition (IMT) or Mott transition in MIM structure

can also contribute to RS effect. The corresponding re-

sistive switching device is called as Mott memory and

sometimes referred as correlated electron random access

memory (CeRAM). In this type of memory device, the

charge injection under the external electrical field in-

duces the transition from weakly correlated electron

state to strongly correlated electron state, which is acti-

vated by a critical electron population [125–127]. Elec-

tronic switches and memory elements based on the

Mott transition have been explored using several typical

material systems involved in Mott memory including

VO2 [128, 129], NiO [126, 127, 130], SrTiO3 [131],

SmNiO3 [132], etc. The quasi two-dimensional electron

gas (2DEG) formed at the interface between complex

oxides has also been reported to show the metal-

insulator transition effect [133–136]. However, in this

paper, we will focus on the redox-based filamentary RS

mechanisms that have been shown to support the con-

ductance quantization effect.

Conductance Quantization in RRAM

The size of the CF can be modulated to the range of

nanoscale to atomic size in both RESET and SET

process. The modulation process can be achieved

through specific electrical operations, especially in the

RRAM devices showing progressive RESET/SET behavior

[137]. This is similar to the performance of memristor

[6, 138–142]. When CF is controlled to be thin

enough to show atomic size, the quantum-sized effect

[69] will appear in the CF-type RRAM devices. Con-

ductance quantization phenomenon is an important

representation of quantum-sized effect. Figure 2 gives

an example of conductance quantization behavior ob-

served in RRAM. The measured current–voltage (Fig. 2a)

and corresponding conductance-voltage curves (Fig. 2b)

show that the conductance quantization phenomenon ap-

pears in the RESET process of a Pt/HfO2/Pt unipolar

RRAM device. Obvious quantized conductance steps with

multiples of G0 can be observed, in other words, abrupt

conductance transitions of the order of G0 between well-

defined discrete states can be found in the final stages of

the RESET transient. G0 = 2e2/h is the quantum of con-

ductance, with the value of 12.9 kΩ−1 or 77.5 μs, where e

is the electron charge and h is Planck’s constant.

Quantized conductance observed in the practical

materials usually presents fluctuation with a certain

degree, so statistical analysis on plenty of experimen-

tal data is often made use of to intrinsically reveal

Fig. 1 Schematic I–V curves of resistive switching process in a CF-type bipolar RRAM device. Insets A–C show the different resistance states of the

device during the switching process. In most cases, the fresh RRAM device shows a very high initial resistance state (IRS) with few defects (inset

A). In a positive bias sweep, when the voltage increases to a comparative high voltage (VForming), the device switches to the low resistance state

(LRS) with a conducting filament formed in the RS layer (inset B). Then, in a negative voltage sweep, when the voltage reaches a critical value

(VRESET), the device switches from LRS to the high resistance state (HRS), corresponding to a RESET transition in which the CF is ruptured (inset C).

At last, in another positive sweep, the device will switch to LRS again, with the filament reconnected (inset B). This process is called as SET, with

the SET voltage (VSET) much lower than (VForming). If the device has a good endurance, the above SET and RESET switching can be reproducibly

and successively carried out for a large number of cycles
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Table 1 The classification of redox-based resistive switching mechanisms and operation principles of redox-based RRAM

Switching
mechanism

Electrochemical metallization (ECM) Valence change mechanism (VCM) Thermochemical mechanism (TCM)

Dominating
charged species

Metal cations O anions or oxygen vacancies (Vo) O anions or oxygen vacancies (Vo)

Intrinsic nature of
CF

Metal CF Vo-CF (bipolar) Vo-CF (unipolar)

Dominating driving
force

External electric field External electric field Thermal gradient

Primary operation
principle

SET process: (1) The active TE material (Ag, Cu, Ni) in the
interface is oxidized under positive electric field; (2) the
cations (Ag+, Cu+ or Cu2+, Ni+) drift into the RS layer; (3) the
cations are reduced back from the BE/RS-layer interface or
from the bulk RS layer or even from the TE/RS layer,
depending on the difference between the drift velocity of
cations and electrons; (4) metal CF is formed to connect BE
and TE, with the reduction process continuing.

SET process: (1) Under positive electric field, TE material
in the TE/RS-layer interface is oxidized and O2−/Vo is
generated; (2) O ions drift to TE or O vacancies drift
to BE through the RS layer to form Vo-CF. The valence
states of corresponding cations are changed.

SET (antifuse) process: O vacancies are generated,
diffused, and redistributed to form Vo-CF in the
bulk RS layer under the thermal gradient induced
by electric field. The valence states of corresponding
cations are changed.

RESET process: Under the opposite electric field, the metal
atoms in the CF are oxidized and drift away, thus CF is
partially ruptured.

RESET process: Under the opposite electric field, O ions
migrate back to the bulk RS layer to recombine with O
vacancies in the CF, thus CF is partially ruptured.

RESET (fuse) process: CF is ruptured or fused as a
result of joule heating along the CF through the
thermal diffusion process of O vacancies.

Typical RS materials Ion-conducting solid electrolyte (sulfides, selenides, or
telluride of Ge, As, Sb, or Ga) such as Ag2S [53], GeSe [224],
Cu2S [172, 225], Ag2Se [226], Ag-Ge-Se [227],
(AgI)0.5(AgPO3)0.5 [228], etc.; Binary or complex oxides such
as HfO2 [215, 222, 229, 230], ZrO2 [231, 232], SiO2 [233], WO3

[234], TaOx [235], GdOx [236], etc.

Transition metal oxides (TMOs) such as TiO2 [51, 87], HfO2

[106], ZrO2 [112], SrTiO3 [5, 61], TaOx [102], WO3 [111], etc.;
doped SiO2 [104, 107–109]; amorphous C [103, 105, 110], etc.

Transition metal oxides (TMOs) such as HfO2 [69,
70, 216, 237], NiO [22, 238–244], CoO [245], CuO
[246], Fe2O3 [247], etc.

Typical electrode
materials

(1) Top electrode (TE): an electrochemically active metal
such as Ag, Cu, and Ni.

(1) Top electrode (TE): a low work function metal not easily
reduced back after oxidation, such as Ti, Al, and Nb.

(1) Top electrode (TE): inert electrodes such as Pt,
Pd, Ir, Ru, W, Au, etc.

(2) Bottom electrode (BE): an electrochemically inert counter
electrode such as Pt, Pd, Ir, Ru, W, Au, etc.

(2) Bottom electrode (BE): inert electrodes, such as Pt, Pd, Ir,
Ru, W, Au, etc.

(2) Bottom electrode (BE): inert electrodes such as
Pt, Pd, Ir, Ru, W, Au, etc.

Dominating material Electrode RS layer and electrode RS layer
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Table 1 The classification of redox-based resistive switching mechanisms and operation principles of redox-based RRAM (Continued)

Typical I–V curve

(Cu/HfO2/Pt) (Ti/HfO2/Pt)
(Pt/HfO2/Pt)

Operation polarity Bipolar Bipolar Unipolar

RS type Localized Localized Localized
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this effect. Figure 2c further shows the evolution of

CF conductance of this device in the last stage of 100

successive RESET switching cycles. By collecting the

conductance data at the step-like gradual RESET

phase in the 100 successive RESET cycles in Fig. 2c,

we can plot the histogram of normalized conductance,

as shown in Fig. 2d. Conductance levels and peaks at

1 G0, 2 G0, 3 G0, 4 G0, etc. are clearly displayed in

Fig. 2c, d, respectively.

Only the size of a conductor is small enough will the

quantized conductance effect appear. In fact, as pointed

out by Datta, if any of the three dimensions of a con-

ductor is smaller than one of the three characteristic

length scales [143]: (1) de Broglie wavelength of elec-

trons; (2) the mean free path of electrons; and (3) the

phase-relaxation length of electrons, the conductor will

show conductance quantization behavior. Figure 3 shows

the typical ranges of the three characteristic length in

metal and semiconductor materials. In the devices with

atomic-scale CF, the CF configuration is determined by

the atomic granularity of the material. In this case, the

transport through the CF is governed by the quantum

nature of conductance, i.e., the current is carried along

the discrete conductance channels. The reason for the

occurrence of conductance quantization is that the elec-

trons are not scattered when transporting through the

atomic-scale conductor. The conductor behaves like a

waveguide for electrons and does not follow the Ohm’s

law anymore. The waveguide could be understood as a

ballistic transportation path made up of a bundle of

discrete conductance channels, with each contributing a

maximum amount of one G0 to the total conductance of

the conductor. The total conductance of the conductor

is described by the Landauer formula, G =G0∑iTi [144].

Ti is the transmission probability of each discrete con-

ductance channel. If the channel is assumed to be fully

transmitted, Ti equals to one. T = ∑iTi is the transmission

probability of the whole conductor, which is determined

by the details of the conductor geometry and the elec-

tronic structure of the conductor material [145].

In fact, the phenomenon of quantum conductance was

first observed by Van Wees et al. in a two-dimensional

electron gas of a GaAs-AlGaAs heterostructure in 1988

[146]. Similar results were reported almost simultan-

eously by Wharam et al. [147], also using a 2D electron

gas on a GaAs-AlGaAs heterojunction, at 0.1 K. Since

a b

c d

Fig. 2 Conductance quantization phenomenon measured in the RESET process of a Pt/HfO2/Pt unipolar RRAM device. a I − V curves in four RESET

cycles. b G − V curves corresponding to (a). G is defined as I/V. The RESET transients of the device show discrete states with half-integer multiples

of the conductance quantum. The red lines in (a) and (b) are “guides to the eye” and correspond to I = nG0V or G = nG0 with n = 1, 1.5, 2, 2.5, 3, 4,

7, and 10. Discrete conductance levels at about 1 G0, 1.5 G0, 2 G0, 2.5 G0, 3 G0, 4 G0, etc. are evident. c Evolution of CF conductance in the last

stage of 100 successive RESET switching cycles of the Pt/HfO2/Pt device. Discrete conductance levels at 1 G0, 2 G0, 3 G0, 4 G0, etc. are

revealed. d Histogram of normalized conductance collected at the step-like gradual RESET phase in 100 successive RESET cycles. Conductance peaks at

integer and semi-integer multiples of G0 are clearly present
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then, the phenomenon of quantized conductance has

been reported in various physical structures such as

atomic quantum contact [68, 146, 148–155], mechanic-

ally controllable break junctions [156–160], nanotubes

[161–167], and the current-induced local oxidation of

nanoscale constrictions [168].

As conductance quantization effect in RRAM has the

potential applications of multi-level storage, it has

attracted much attention in recent years. Conductance

quantization phenomena were initially found in ECM

devices [169] and then in VCM and TCM devices

[69, 170, 171]. Conductance quantization effect in

RRAM has been studied and reported in a series of

literatures [69, 70, 126, 127, 129, 137, 140, 170–190],

involving various materials and different RS mecha-

nisms, CF types, SET, or RESET processes, as listed

in Table 2. Some typical experimental observation

results are given below as illustrations for quantum

conductance phenomenon, as shown in Figs. 4, 5, 6,

7, and 8 [70, 171, 183, 186, 191].

The quantized conductance state of CF is practically

an intermediate state or a specific LRS state with the

conductance (G) in the order of G0, i.e., integer multiples

of G0. One G0 can be simply understood as being corre-

sponding to a single atomic point contact or a nanowire.

Conductance quantization effect indicates that the evolu-

tion of CF can be modulated to be in units of single

atomic point contacts.

Structures, Materials, and Operation Methods of RRAM

with QC Effect

There are many observations and reports of quantum

conductance phenomenon in RRAM. Different device

structures, switching and electrode materials, and

operating methods are applied. They are summarized

respectively as follows.

Device Structures

The basic structure of RRAM is a thin resistive switching

layer, which is usually nanometers in thickness, sand-

wiched between two electrodes. Many derivative struc-

tures have been fabricated based on this basic structure.

There are three kinds of structures of RRAM device exhi-

biting conductance quantization effect, as shown in Fig. 9.

Figure 9a [171] shows a commonly used sandwich RRAM

structure. It is a stack of thin films of bottom electrode,

RS layer, and patterned top electrode. Figure 9b [180]

shows a crossbar structure. Figure 9c [170] shows a struc-

ture similar to those in Fig. 9a, b, with the only difference

being that a tip, such as a conductive atomic force micros-

copy (CAFM) tip, is used as the top electrode. More

detailed fabrication information is not given here for it is

not the main point of this paper.

Material Systems

Since the quantized conductance phenomenon is the

property of nanoscale conductors, the materials of

RRAM devices especially those consisting of the CF play

an important role to the quantized conductance behav-

iors. As has been discussed in “Introduction” section,

the types of RS and electrode materials determine resist-

ive switching mechanisms for the filament-based RRAM.

For ECM devices, resistive layer is sandwiched between

an inert electrode and an active electrode. During the

forming and SET process, the metal ions of the active

electrode are driven into the resistive layer, forming the

CF. For VCM devices, both top and bottom electrode

are inert and the CF is consisted of oxygen vacancies. So

as for the ECM mechanism, the material of the active

electrode is critical for the observation of the quantized

conductance, while for the VCM mechanism, the mater-

ial of the resistive layer plays a more important role.

In fact, the papers on conductance quantization in

RRAM were initially published in 1991. Hajto et al.

reported their observation of conductance quantization

of RRAM for the first time. The studied device structure

Fig. 3 Three characteristic length scales related to quantum

conductance phenomenon. The three characteristic length scales

are the following: (1) the de Broglie wavelength, which is related

to the kinetic energy of the electrons; (2) the mean free path, which is

the distance that an electron travels before its initial momentum is

destroyed; and (3) the phase-relaxation length, which is the distance

that an electron travels widely from one material to another and is also

strongly affected by temperature, magnetic field, etc. A conductor will

show conductance quantization behavior if any of its three dimensions

is smaller than the three characteristic length scales mentioned above.

Reproduced with permission [143]
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Fig. 4 Switching characteristics and conductance quantization observed in nanoscale junctions with a structure of tungsten tip/ionic conductor

layer/silver film [191]. a Conductance change during SET and RESET operation which shows atomic-scale conductance switching. Green lines act

as guides to the eye representing a series of conductance levels with equal interval of 1 G0. b Conductance change from high resistance state to

low resistance state following voltage sweep for three independent conductance states. c Histogram of the conductance difference between

high resistance states and the low resistance states during the voltage sweep. The histogram consists of 130 independent I − V curves with initial

ON-state conductance smaller than 10 G0. ΔG is the difference between the conductance and the zero-bias conductance. The inset histogram

shows 5000 repeated and closing cycles at a constant bias voltage of 100 mV. Reproduced with permission

Table 2 Different material systems showing conductance quantization effect

System RS mechanism CF Quantization level RS polarity QC observed in SET or RESET

Ag2S or Cu2S (vacuum gap) [169] ECM Ag G0 Bipolar SET

Ag/AgI/Pt [180] ECM Ag G0 Bipolar SET

Ag/SiO2/Pt [195, 213] ECM Ag 0.5 G0 Bipolar SET

Ag/Ta2O5/Pt [181] ECM Ag G0 Bipolar SET and RESET

Ag/Ag2S/Pt (STM tip) [182] ECM Ag G0 Bipolar RESET

Ag/P3HT:PCBM/ITO [183] ECM Ag G0/0.5 G0 Bipolar SET and RESET

Ag/a-La1-xSrxMnO3/Pt [185] ECM Ag G0 Bipolar SET

Ag/ionic conductor-layer/W tip [191] ECM Ag G0 Bipolar SET

Ag/GeS2/W [193] ECM Ag G0 Bipolar SET

Cr/p+-amorphous silicon/V [192] ECM Metal 0.5 G0 Unipolar SET

Nb/ZnOx/Pt [170] ECM Nb or Vo G0/0.5 G0 Bipolar SET and RESET

Cu/HfOX/Pt [190] ECM Cu 0.5 G0 Bipolar SET

Pt/HfO2/Pt [69] VCM Vo 0.5 G0 Unipolar RESET

ITO/ZnOx/ITO [170] VCM Vo 0.5 G0 Unipolar SET and RESET

Ti (Ta, W)/Ta2O5/Pt [171] VCM Vo G0 Bipolar SET and RESET

V/V2O5/V [174] - - 0.5 G0 - SET

W/CeOx/SiO2/NiSi2 [179] VCM Vo 0.5 G0 Bipolar RESET

n-Si/SiOx/p-Si [186] VCM Vo G0/0.5 G0 Bipolar and Unipolar SET

Ti/HfO2/TiN [188] VCM Vo G0 Bipolar RESET

Ti/TiO2/SrTiO3/n-Si [194] VCM Vo G0 Bipolar SET
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is Cr/α-Si:H/V [192]. Yun et al. showed similar result in

the V/α-V2O5/V [174] device. Quantized conductance

effect was observed in cation migration-based RRAMs

[172, 173] and then extended to anion migration-based

RRAMs [69, 70, 133, 169, 170]. Since 2012, conductance

quantization has attracted a lot of attention, mainly for

its potential applications in the multi-level storage, and

also for its interesting physics behind the phenomena.

As a result, conductance quantization has been reported

in more and more RRAM devices, as shown in Table 2.

It should be noted that the reports of conductance

quantization in sandwich structures with a vacuum gap

[169] or a scanning tunneling microscope (STM) tip

[170] are also included in this table.

In most cases of ECM RRAMs with QC effect, the re-

ported material for active electrode is Ag [169, 180–183,

185, 191, 193]. Besides Ag, Nb [170] and V [174] have

also been reported to be able to form quantum conduc-

tors in RRAM. The RS materials involving QC effect

include traditional solid-state electrolyte materials such

as AgI [180], Ag2S [169, 182], Cu2S [169], GeS2 [193],

and transition metal oxides, such as Ta2O5 [171, 181],

LaSrMnO3 [185], α-Si [192], and polymer [183]. In bipolar

and unipolar VCM devices with QC effect, the reported

resistive switching material includes silicon oxide [186],

transition metal oxides, such as HfO2 [69, 188], Ta2O5

[171, 181], ZnOx [170], etc., and bi-layered oxides, such as

TiO2/SrTiO3 [194] and GeOx/SiO2 [179]. Among the

reported RS materials which exhibit conductance

quantization, Ta2O5 [171, 181] and HfO2 [69, 188]

show good performances irrespective of the type of

the CFs, i.e., Vo-CF or metal CF. Both ECM and

VCM devices made up of HfO2 and Ta2O5 materials

have shown obvious QC effect, as shown in Figs. 2, 5

[171], and 8 [70].

It can be seen from Table 2 that most reported devices

show conductance step with integer multiples of G0,

while in some material systems, the conductance vari-

ation step may be half-integer multiples of G0. The ex-

planation of this difference will be discussed later in

“Theory and Modeling of Quantum Transport in

RRAM” section.

Operating Methods

To successfully observe the QC effect in RRAMs, it is of

importance to make use of appropriate operating

methods to the devices to accurately control the size of

CFs to be close to the atomic scale. In this section, we

will deal with all kinds of reported operating methods,

including fresh device operation, voltage sweeping,

Fig. 6 Quantized conductance phenomenon observed by pulse stimuli operation method in Ag/poly(3-hexylthiophene): [6, 6]-phenyl-C61-butyric

acid methyl ester/indium–tin oxide sandwich structured devices [183]. Conductance quantization is observed under a successive positive pulses

and b successive negative pulses. Positive voltage pulses are 1 μs wide and negative voltage pulses are 5 ms wide. Two adjacent positive or

negative pulses are with an interval of 2 s and an increment of 0.05 V. The conductance is read under a basal voltage of 0.1 V. Reproduced

with permission

Fig. 5 Histogram showing typical conductance quantization

phenomenon [171]. The data are extracted from pulse stimuli

results of Ti/Ta2O5/Pt-structured memory cells. The data are

grouped in every 0.2 G0. Histogram consists of 662 conductance

values in 22 memory cells. The dashed curve which represents

Gaussian fitting curve of the histogram acts as a guides to the

eye. Reproduced with permission
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voltage pulse operation, current sweeping, and constant

voltage bias operation.

Fresh Device Operation Before analyzing the detailed

operation methods to achieve QC effect, we need to first

discuss the different operating conditions for the RRAM

devices with different initial resistance states (IRS). For

the fresh RRAM devices, most of them show an initially

very high resistance state and a forming operation is

needed to form CF in the resistive layer. Since the fresh

resistive layer is usually in high resistance state, a much

higher voltage, compared with the SET process, is

needed to form the CF in the resistive layer, as shown in

Fig. 10a [170]. Compared to the forming process, the

Fig. 7 Quantized conductance steps observed in poly-Si/SiOx/p-type Si-structured RRAM devices [186]. a Current–voltage curves showing nonlinear

behavior with inset showing the relation between conductance and voltage. Several conductance quantization levels can be seen at both integer and

half-integer multiples of G0. b Histogram consisting of about 1000 conductance steps in which half-integer multiples of G0 are clearly revealed. A series

of Gaussian distributions act as guides to the eye (dotted lines). Reproduced with permission

Fig. 8 Typical conductance-voltage and current–voltage curves corresponding to RESET process of Pt/HfO2/Pt devices [70]. Black curves show the

usually observed abrupt RESET switching. Green curves display several successive jumps and red curves show progressive RESET process. Insets A–D

show the different stages of the CF during the RESET process. The quantized conductance states in the step-like or progressive RESET processes

are the intermediate states between low and high resistance states. A CF with conductance of the order of G0 = 2e2/h is the natural boundary

between the LRS and HRS states. The step-like or progressive RESET transition finalizes with an abrupt conductance drop of several orders

of magnitude. This final drop corresponds to the opening of a spatial gap (potential barrier) in the CF. Discrete changes of conductance

of the order of G0 recorded during the step-like or progressive RESET transitions are interpreted as the signature of atomic-sized variations

of the conducting filament (CF) nanostructure. Reproduced with permission
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voltage amplitude applied in the SET process is lower,

because the CF formed in the forming process will not

be dissolved completely in the successive RESET oper-

ation, thus a lower voltage can program the device. But

for some RRAMs, the forming process and the SET

process show no obvious difference, i.e., the

characteristics of the device in initial fresh state and high

resistance state have no clear distinction, as shown in

Fig. 10b [179]. In other words, this kind of RRAM device

has the free-forming characteristics. Some RRAM de-

vices also possibly show an initial low resistance state.

For example, in the quantized conductance atomic

Fig. 10 Typical forming, SET, and RESET characteristics of fresh RRAM devices with different initial resistance states. a Switching process illustration of

Nb/ZnO/Pt device with an initial high resistance state [170]. Higher voltage in forming is needed compared to that in the SET process. b Switching

process illustration of a free-forming p+Si/NiSi2/SiO2/CeOx/W device [179]. The Forming process and the SET process show no obvious

difference. c Schematic illustration of Ag2S-based QCAS device and switching behavior between OFF- and ON-state [169]. The initial state

of the device is ON-state and a RESET process is needed to start the switching cycles. Reproduced with permission

Fig. 9 Typical RRAM device structures showing conductance quantization effect. a A commonly used sandwich RRAM structure [171]. b A crossbar

structure [180]. c An ultra-small-sized RRAM device using CAFM tip as top electrode [170]. Reproduced with permission
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switch (QCAS), as shown in Fig. 10c [169], it is initially

in the ON-state. To start the switching cycles, the device

needs to be RESET at first under a certain positive volt-

age bias. Due to the large amount of Ag atoms to be ion-

ized to incorporate into the Ag2S crystal in this first

RESET process, the switching time of this process is

quite long, lasting for a few seconds. But after this initial

RESET operation, the device can work quickly with a

high operation frequency of 1 MHz.

Voltage Sweeping Mode After the initial process which

involves forming/SET, RESET or no particular operation

method to start switching cycles, a certain operation

method is needed to switch the device between ON-

state and OFF-state. The most common operation

method is voltage sweeping mode. The voltage sweeping

in SET process induces electrochemical reactions

resulting to the formation of CF. The voltage sweeping

in RESET process contributes to joule-heating-assisted

oxidation followed by the diffusion of metal ions or oxy-

gen vacancies (Vo) under the concentration gradient

and the applied electric field [181]. Many experimental

results [69, 170, 171, 179, 180, 188] showing conduct-

ance quantization under voltage sweeping mode have

been reported. Figure 11 shows some of the reported ex-

perimental results in different device structures. Fig-

ure 11a [188] shows the progressive RESET process of

the Ti/HfO2/TiN-structured devices which exhibit bipo-

lar RS behaviors. In the inset of Fig. 11a, zoomed current

and voltage relation is shown and several current jumps

which indicates the conductance quantization could be

clearly seen. Figure 11b [170] shows the conductance

change in bipolar characterized Nb/ZnO/Pt devices as a

function of the bias voltage during the SET process. At

Fig. 11 Typical conductance quantization phenomenon observed in different structured devices under voltage sweeping mode. a Current jump

observed in Ti/HfO2/TiN-structured memristor during RESET process. The inset diagram indicates the discrete resistance change due to quantum

atomic reaction during RESET process [188]. b Conductance quantization observed in Nb/ZnO/Pt during SET process. [170] The inset shows the

current–voltage curve in a larger voltage range from 0 to 4 V. c Progressive RESET process in Pt/HfO2/Pt devices [69]. The dashed line corresponds

to the current–voltage curve of 1 G0. d Detail of the current–voltage evolution of (c). Reproduced with permission
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least four conductance jumps are shown in the Fig. 11b

and the conductance changed at a step of the integer

multiples of quantum conductance G0 from 1 to 8 G0.

The inset of Fig. 11b shows the current–voltage curve in

a larger voltage range from 0 to 4 V. Figure 11c, d [69]

shows the current–voltage curves in the RESET process

of the unipolar Pt/HfO2/Pt devices. Figure 11d shows

the detail of Fig. 11c during the last phase of the RESET

transients. The dash line in Fig. 11c corresponds to the

current–voltage curve of a conductance of 1 G0.

Voltage Pulse Operation Mode By applying appropriate

pulse voltage, the conductance state of the RRAM device

could be changed at steps of quantum conductance. Both

ECM and VCM RRAMs show quantized conductance

step change under voltage pulse operation, as shown in

Figs. 12 [181] and 13 [171], respectively. For voltage pulse

operation method, three parameters could be tuned,

including the pulse amplitude, pulse width, and time

interval between two adjacent voltage pulses.

Take Ag/Ta2O5/Pt RRAM as an example. Figure 12

shows the QC effect observed in this device. Under the

pulse operation mode, the switching speed of the device

is of the magnitude of μs to ns which is related to the

values of the high resistance and the input pulse. The

switching time is much shorter than the reaction time of

the current compliance function, which results in the in-

effectiveness of the current compliance function and

leads to the further growth of the CF even after the

current reaches the value of the compliance current.

The solution for this problem is to insert a 3 kΩ resistor

in series with the RRAM device, as shown in the inset of

Fig. 12a. The current is limited by a 3 kΩ resistor during

the stage that the RRAM switches from high resistance

state to low resistance state. It is very important to limit

the current value when the SET transition occurs. If

there is no current limitation, the conductance of the

device will abruptly jump to about 20 G0, which indi-

cates that the formed filament is rather thick and robust

and quantized conductance step disappears. As can be

seen from Fig. 12a, the quantized conductance increases

from 0 to 9 G0 at a step of conductance quantum under

a series of increasing pulses from 0.3 to 0.7 V at a step

of 0.05 V with time intervals of 2 s. Negative pulses with

the same pulse width and interval time from −0.1 to −0.5 V

were applied after the successive positive voltage pulses. In

the negative pulse operation which corresponds to the

RESET process, no series resistor is needed since the

current in the circuit will decrease as the resistance

value of RRAM increases in the RESET process. Similar

quantized conductance change behavior has also been re-

ported in the VCM RRAM with a structure of Ti/Ta2O5/

Pt, as shown in Fig. 13.

The quantized conductance states change not only

depending on the amplitude of the pulses but also

depending on the time interval of the adjacent pulses.

As shown in Fig. 14 [181], successive pulses with suf-

ficiently long interval do not obviously change the

conductance state. Whereas at short interval, pulses

of the same amplitude and width make the conduct-

ance temporarily increase and gradually reach a con-

stant value of G0.

Fig. 12 Quantized conductance observed in Ag/Ta2O5/Pt-structured ECM devices under voltage pulse operation mode [181]. a The value of

conductance increases at steps of integer multiples of conductance quantum G0 in the SET process under positive pulses with a width of 20 ms

at an interval of 2 s. In order to prevent hard breakdown of RRAM device, a current-limiting resistor of 3 kΩ was connected in series with the

device. b Quantized conductance decrease phenomenon observed in the RESET process under reversed voltage polarity. No current-limiting

resistor is needed in the negative pulse stimuli mode. Reproduced with permission

Li et al. Nanoscale Research Letters  (2015) 10:420 Page 13 of 30



Current Sweeping Mode In some material systems, no

more than one or two discrete conductance drops could

be detected by conventional voltage sweep operation.

Current sweep mode is utilized as an alternative oper-

ation mode. Through this method, more discrete con-

ductance levels could be observed, as shown in Fig. 15

[180, 195]. The different quantization evolution behavior

in SET process by taking voltage sweep mode and

current sweep mode comes from the different formation

process of the CF. In the voltage sweep mode, stepwise

increased voltage is applied to the device. As the voltage

increases to the SET point, the filament forms and the

resistance of the device suddenly drops to a much lower

value. This leads to an abrupt current jump and the

switching time is faster than the response time of the

current compliance current which causes a further

Fig. 14 Quantized conductance change behavior under different time intervals [181]. a The conductance change under ten successive voltage

pulses of 0.4 V with a pulse width of 20 ms at intervals of 2 s. The conductance state could increase to about 2 G0 under the input pulses but

immediately decays to zero after each input pulse is completed. b The conductance evolution under ten successive voltage pulses of 0.4 V with a

width of 20 ms at intervals of 0.2 s. In this case, the conductance gradually increases and maintains at about 1 G0 for more than 60 s after the

tenth input pulse. Reproduced with permission

Fig. 13 Quantized conductance observed in Ti/Ta2O5/Pt-structured VCM devices under voltage pulse operation mode [171]. a The value of

conductance increases at steps of integer multiples of G0 in the SET process under positive pulses with a width of 100 ns at interval of 2 s. b The value

of conductance decreases at steps of integer multiples of G0 in the RESET process under negative pulses with a width of 1 μs at an interval of 2 s.

Reproduced with permission
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growth of CF after the SET point. Both voltage and

current increase at the SET point which results in a

positive feedback to the CF formation, thus leading to a

very fast CF formation process. Whereas in the current

sweep mode, the current is programmed to increase

stepwise. At the SET point, the voltage dropped across

the device decreases abruptly, due to the sudden decrease

of the device’s resistance. This leads to a negative feedback

to the CF formation, so the CF formation process is more

gradual than that under voltage sweep. In this case, more

discrete conductance levels could be observed.

Constant Voltage Bias Mode Constant voltage bias is

another way to observe quantized conductance. The bias

value of voltage is critical to the observation of conduct-

ance quantization phenomenon. If the voltage amplitude

is too large, the device may easily break down or the

switching time may be too short to detect. On the other

hand, if the amplitude of bias voltage is too small, the

switching time of the device may be too long which is

time consuming to observe conductance quantization or

even no switching behavior could be observed, since the

voltage is too small to drive the switching action to

occur. Therefore, an appropriate bias voltage amplitude

is needed for the observation of conductance

quantization phenomenon, as shown in Figs. 16 [181]

and Fig. 17 [69].

Theory and Modeling of Quantum Transport in RRAM

Systems whose dimensions are much larger than micro-

scopic objects like atoms but smaller than macroscopic

objects are called mesoscopic systems [196]. When the

dimension of the conductor is comparable to or smaller

than the electron mean free path (mesoscopic scale), the

classical Ohmic transport mechanism breaks down.

When the conductor is under sufficiently high voltage,

the Ohm’s law does not apply for it either. When the

above two conditions are satisfied, ballistic transporta-

tion begins to be dominant and the conductor behaves

as an electron waveguide [197]. When the transmission

probability T for the waveguide equals one, this wave-

guide or conduction channel contributes an amount of

G0 to the total conductance of the mesoscopic

conductor.

The theory of electron transport mechanism in meso-

scopic systems exhibiting quantized conductance has

been gradually established through a time span of de-

cades from the suggestion of the prototype by Rolf

Landauer in 1957 [198] to the publication of the book

“Electronic Transport in Mesoscopic Systems” by Datta

in 1995 [143]. Many theoretical calculations about

Fig. 17 Current evolution of Pt/HfO2/Pt device under constant

voltage bias for RESET process indicating quantum level change of

the conductance [69]. Reproduced with permission

Fig. 15 Quantized conductance phenomenon observed in Ag/AgI/Pt

devices under current sweep mode [180, 195]. It can been seen that

more than five resistance levels which are integer multiples of

conductance quantum G0 have been observed. Reproduced with

permission

Fig. 16 Conductance jump at the integer multiples of G0 under

voltage bias in Ag/Ta2O5/Pt device [181]. a Conductance increase

under positive voltage bias of +0.07 V. b Conductance decrease

under negative voltage bias of −0.07 V. Reproduced with permission
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quantum conductance using different models have been

reported [197, 199–209]. The quantized conductance

steps were obtained in numerical and analytical calculations

in a wide variety of materials [144, 205, 206, 208–211].

Review articles summarizing quantized conductance

phenomenon in atomic-sized conductors [148] and

nanowires [149] have also been published. At the

same time, many experiments were also carried out

to study quantized conductance [148, 156, 162, 163].

The conductance quantization effect was first observed in

ballistic point contacts in the 2DEG of high-mobility

GaAs-AlGaAs heterostructures in 1988 by Van Wees

et al. [146], as shown in Fig. 18.

In RRAM, many theoretical works concerning calcula-

tion and simulation were reported. Several models have

been proposed to describe and calculate the ballistic trans-

portation and conductance quantization phenomenon in

RRAM devices. As mentioned above, two conditions, i.e.,

small conductor dimension and high voltage bias, lead to

ballistic transportation and conductance quantization, so

in all proposed models, either the CF in resistive layer has

been considered an atomic-sized conductor in insulator or

the most constrictive part in CF is treated as being of

atomic size. In this section, we will summarize four

models. In the first one, the CF formed in the resistive

layer is regarded as a one-dimensional linear atomic chain

[175]. The second model treated the narrowest part of a

CF as an atomic contact and calculated the electrical

transport based on Landauer theory [179, 186, 212]. The

third model focuses on CFs consisted of oxygen vacancies

and calculated the quantized conductance of the filament

with different space of oxygen vacancies through first

principle calculation [69]. The fourth model is a circuit

model, which ascribes the quantized conductance of the

atom point contact in the ECM device to the discharge of

the thermal emf voltage [195, 213].

One-Dimensional Linear Atomic Chain Model

In the work of Jameson et al. [175], a model based on

one-dimensional metal atomic chains was proposed to

relate to the quantized conductance phenomenon and to

calculate the programming time of RRAM device whose

resistance tends to be programmed to integer multiples

of fundamental conductance G0 under sufficiently high

currents. This model is different from other previous

models which considered the filament as a bulk-like

(although small) object whose resistance is continuous

and proportional to the bulk resistivity.

In this model, the filament is simply treated as a linear

chain of atoms, with the conductance in the order of G0.

A schematic illustration of the model is shown in Fig. 19.

The CF is assumed to form from cathode to anode since

the metal cations are usually reduced at the cathode.

The resistive layer where the CF is formed is treated as a

one-dimensional series of Nw potential wells with a uni-

form height Vi and width di (“i” for internal). The last

atom of the metal atom chain corresponds to the surface

of the cathode. The resistive layer where CF is not

Fig. 18 First observation of conductance quantization by Van Wees et al. [146]. The resistance of the point contact is a function of gate voltage

at 0.6 K. The electron gas under the gate is depleted at −0.6 V when electrons only transport through the point contact and the contact is fully

pinched off at −2.2 V. The inset shows the layout of the point contact. Reproduced with permission
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formed yet is treated as a bulk electrolyte, and the resist-

ive layer is separated by an “emission” barrier of height

Ve and width de (“e” for emission) from the anode sur-

face. When the positive forming or SET voltage Vac is

applied to the anode, the emission well is raised to an

energy of eVac, while the well Nw is kept at zero. A metal

ion with a charge of +e (e.g., Ag+ for Ag/GeS2/W cells)

will be emitted from anode into the potential well by

thermal excitation over the emission barrier. Then, it

travels through the periodic potential barriers which

represent the resistive layer with no CF inside and

stacks up against the cathode to promote the stretch

of the CF, i.e., an atomic chain that grows with time.

When all Nw wells are filled with metal ions, the

resistance state of RRAM will suddenly switch to low

resistance state and the time needed is the programming

time of the device.

The programming time (tp) of a RRAM cell whose re-

sistance tends to increase to the integer multiple of G0

was calculated. It was found that several intrinsic mater-

ial parameters, including Ve, di, Wa −Wc (the difference

between the work functions of the anode and cathode),

influence the programming time of the virgin Ag/GeS2/

W cells. After selecting proper values for these parame-

ters, the model can nicely describe the dependence of tp
on voltage, temperature, and GeS2 thickness (for thick

layers), which is in close relation to the quantization of

the ON-state conductance. The model is effective for

the cases of both constant voltage and ramped voltage

programming. Further experimental study of the con-

ductance quantization was reported by the same group

in Ag/GeS2/W RRAM device afterwards [193] and the

result is listed in Table 2.

Quantum Point Contact Model

To deal with the post-breakdown (BD) conduction of

gate dielectric of field effect transistor (FET), Suñé and

Miranda have established the quantum point contact

(QPC) model [214]. Recently, it has been found that the

QPC model can be also made use of to describe the con-

duction of high and low resistance state in RRAM [71,

179, 182, 212, 215–219]. This model treats the thinnest

part of the CF as a quantum point contact. It is able to

explain the conductance quantization phenomenon in

RRAM. The schematic illustration of the QPC model is

shown in Fig. 20 [212]. The thinnest part of the CF is

made up of a few atoms (Fig. 20a) and modeled as a po-

tential barrier with several quantized subbands.

In the CF described by the QPC model, it was demon-

strated that the Schrodinger equation can be decom-

posed into the transverse and longitudinal equations.

Then, the quantum transport through a 3D tube-like

constriction becomes a simple 1D tunneling behavior.

The dispersion curve of the electronic subbands could

be expressed as:

E kz; zð Þ ¼ �n zð Þ þ
ℏ
2k2z
2m

ð1Þ

where z and kz are the coordinates in the longitudinal

direction in real-space and k-space, respectively, m is the

mass of the electron, and ℏ is the reduced Planck constant.

If the confinement is in a rectangle shape, then [202]

�n zð Þ ¼
π2

ℏ
2

2m

n2x

Lx zð Þ2
þ

n2y

Ly zð Þ2

 !

; ð2Þ

where Lx(z) and Ly(z) are the dimension of the constric-

tion and nx and ny are integers. It means that the disper-

sion curve (E − kz relationship) consists of discrete

parabolic subbands in each z, as shown in Fig. 20b. n(z)

strongly depends on the thickness of the filament. Thinner

filament has stronger spacing out of the subbands.

The potential barrier for conducting transmission in

the longitudinal direction (z) lies in the bottom of the

subbands. When the filament is very thick, which means

the confinement is weak, the dispersion curve will turn

into the 3D bulk energy band. In that case, the bottoms

of the subbands are in rather deep energy levels.

Whereas, when the filament is very thin, the bottom of

the subbands will be lifted. Consequently, the depend-

ence of the energy level of the bottom of the subbands

on z in a constricted tube is arch-shaped curves, as

shown in Fig. 20c. The number of the subbands is just

that of the conducting modes or conducting channels

Nch. ΦB is the height of the first subband. The barrier

width tB is defined as the width of the first subband

at E = 0. If the CF is very thick, the barrier disap-

pears. On the contrary, in the HRS state, the CF is

Fig. 19 One-dimensional potential model for the forming process of

a fresh RRAM cell [175]. The calculation was carried out under the

assumption that the electric field E is zero within the filament and

constant between the anode surface and the tip of the filament. The

filament was treated as a one-dimensional atomic chain. Reproduced

with permission
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ruptured and there is a gap in the CF region, so the

barrier becomes very high. In the conduction, the

injected electrons need to travel through the potential

barrier, with a transmission probability T(E).

In QPC model, based on the Landauer theory, the current

flowing through the RRAM device can be calculated as [11]

I ¼
2e

h
Nch

Z

∞

−∞

T Eð Þ f E−βeVð Þ−f E þ 1−βð ÞeVð Þ½ �dE;

ð3Þ

where E is the energy, f is the Fermi-Dirac distribution

function, and Nch is the total number of 1D opened con-

ducting channels connecting the electrodes. An inverted

parabolic potential barrier is assumed to get an analytical

expression for the transmission probability [71]:

T Eð Þ ¼ 1þ exp −αB E−ΦBð Þ½ �f g−1; ð4Þ

where αB is related to the inverse of potential barrier

curvature and is proportional to the thickness of the

barrier, i.e., αB ¼ tBπ
2h−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m�=ΦB

p

[71, 214]. m* is the

effective electron mass. Inserting Eq. (4) into Eq. (3), we

can get

I≈
2e

h
Nch eV þ

1

α
Ln

1þ exp αB ΦB−βeV½ �f g

1þ exp αB ΦB þ 1−βeVð ÞeV½ �f g

� �� �

ð5Þ

Equation (5) is applicable for both HRS and LRS, with

the difference in the values of αB and ΦB which repre-

sent the difference in potential barrier. In HRS, there is

a gap in the CF region, so at low applied voltages

(i.e., V→ 0), Eq. (5) can be simplified as

I≅ NchG0 exp −αBΦBð ÞV : ð6Þ

So, the conduction in HRS is just determined by the

barrier through the parameters αB and ΦB [215, 216,

219]. While in LRS, there is no spatial gap, so Eq. (5)

converges to

Fig. 20 The schematic of the RRAM device with a narrow CF and the corresponding energy band diagram of the quantum point contact model.

a Schematic structure of the RRAM device with a narrow CF. b The dispersion curves of the first four electronic subbands under the confinement

of CF in certain z. c The dependence of the energy level of the bottom of the subbands on z. The transmission probability T(E) of the bottom of

ground quantized subband of a parabolic potential barrier is used for the calculation of electrical transport. The shaded regions are the states

occupied by electrons. The number of the subbands is Nch, with each one contributing to a conducting mode. In this figure, four subbands are

shown. V is the applied voltage. V0 is the voltage dropped on TE and BE, represented by the two blue oblique lines. Since V0 is much lower than V,

usually it can be neglected in the calculation. β is the fraction of voltage that drops at the BE interface, EF is the Fermi level, EF,TE and EF,BE are the

TE and BE quasi-Fermi levels, tB is the width of the potential barrier at the equilibrium Fermi energy (E = 0), and ΦB is the height of the potential

barrier, i.e., the bottom of the first subband. The barrier height is different between high resistance state and low resistance state, which leads to

different current expressions. In the deep OFF-state, the barrier thickness tB is equal to the gap length tgap
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I≅ NchβG0V ; ð7Þ

which is a linear I–V, consistent with that usually ob-

served in LRS. When the CF is very narrow, i.e., when

Nch is small, Eq. (7) accounts well for the experimentally

observed conductance quantization effects. The CF con-

ductance is expressed as

G≅ NchβG0; ð8Þ

showing that G is just the integer multiples of the

quantum of conductance G0, when the voltage drop at

two interfaces is asymmetric, i.e., β = 1. If Nch is large,

the model approaches the classical Ohmic regime, where

quantization effect is less evident since CF conductance

is high.

It is worth noting that there are some amounts of

experimental points whose conductance is smaller than

G0, according to the reported results as shown in

“Conductance Quantization in RRAM” and “Structures,

Materials, and Operation Methods of RRAM with QC Ef-

fect” section. Values slightly different from G0 are possible

even when a continuous conducting channel connects the

electrodes, since in Eq. (8), Nch is an integer whereas 0 < β

< 1. In an atomic-scale conducting CF or quantum wire

(QW), the voltage mainly drops at the interfaces with the

external reservoirs and the value of β is the fraction of volt-

age that drops at the BE interface. The value of β might

change with the actual geometry of the CF and with its

coupling to the reservoirs. The presence of impurities in

the QW or non-adiabatic coupling with the reservoirs

might also explain a conductance smaller than G0 for each

conducting mode [153]. The adsorbed impurities on or in

atom chains would change the CF constriction configur-

ation and influence the electronic band structure.

In a subsequent work, Miranda et al. proposed a simple

current–voltage model based on the quantized constric-

tion of RRAM (Fig. 21) and explained the minimum unit

of conductance of 0.5 G0. The left-going current I− and

right-going current I+ were respectively calculated as:

Iþ ¼
2e

h

Z

∞

−∞

T Eð ÞM Eð Þf E−βeVð ÞdE ð9Þ

and

I− ¼
2e

h

Z þ∞

−∞

T Eð ÞM Eð Þf E þ 1−βð ÞeV½ �dE; ð10Þ

where M represents the number of conduction modes,

and the voltage dropped in electrodes V0 is neglected.

The total current I = I+ − I− is given as:

I ¼ G0 βN
þ þ 1−βð ÞN−½ �V ; ð11Þ

where N+ and N− are the number of right-going and left-

going conduction modes, respectively, i.e., the number of

subbands with E ≤ βe(V −V0) and E ≤ − (1 − β)e(V −V0) in

Fig. 21, respectively. For simplicity, considering the case of

Fig. 21 E–k relationship for a narrow and b wide constriction, respectively [179]. The solid and dashed lines correspond to the bottom of the

longitudinal and transversal subbands, respectively. The shaded regions are the states occupied by electrons. The indices indicate the subband

number. A tighter constriction leads to higher energy levels. Reproduced with permission
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Fig. 22 (See legend on next page.)
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a symmetric potential drop at two ends of the constric-

tion, β equals 0.5, thus Eq. (11) indicates that when the

difference of N+ +N− is an odd number, the conductance

values of half-integer multiples of G0 appear. Simulation

results fit well with the experimental results measured in

W/CeOx/SiO2/NiSi2 devices [179].

A similar model was proposed by Mehonic et al. [186].

This model treats filaments as quantum constrictions

within the framework of Landauer theory. In this model,

the potential drop on the two ends of the constriction is

not assumed to be symmetric.

The schematic illustration of this model is shown in

Fig. 22. The lateral confined quantum constriction for

carriers to flow through produces a set of discrete one-

dimensional subbands in the conduction band. More

conduction modes are allowed if the size of the constric-

tion increases. Half-integer quantum conductance was

studied under the quantum point conduction model. By

assuming the transmission probability to be one for elec-

trons with energy above the minimum energy value of

the subband, to be zero with energy below this, and

adopting the zero temperature limit, the total current is

I ¼ IR−IL ¼
1

2
NR þ NLð ÞG0V ; ð12Þ

where NR and NL are the numbers of occupied subbands

accessed from the right and left sides, respectively. Here,

symmetric voltage drop in the TE and BE interfaces is

assumed, i.e., β = 0.5. Then, the half-integer quantum

value appears when NR +NL is an odd number, which is

in coherence with the result reported by Miranda et al.

as described above. In all ECM devices, since the elec-

tron reservoirs are highly conductive, it is impossible to

maintain a large difference in chemical potential, which

is the reason for the difficult observation of half-integer

quantization. While in another case, i.e., in VCM de-

vices, most of them exhibit half-integer quantization. An

important conclusion drawn in this paper is that the key

quantity governing the type of quantization is the differ-

ence in chemical potentials between the two reservoirs.

The appearance of half-integer multiples of quantized

conductance might also arise from the absence of the

spin degeneracy. The quantum of conductance G0, i.e.,

2e2/h, is equally contributed by two spin-degenerate

transport channels. Thus, in nonmagnetic materials

where the spin degeneracy is reserved, the conductance

is the integral multiple of G0. While when the spin

degeneracy is broken in magnetic systems, a single

spin channel will contribute a conductance of 0.5 G0,

i.e., e2/h, leading to the conductance of half-integral

multiple of G0. As easily inferred from Table 2, the

half-integer G0 appears mostly when the CF is com-

posed of Vo. That is because the Vo can carry a weak

magnetism in some cases, according to lots of previ-

ous studies [41, 220]. The magnetic CF may bring

spin-splitting conductance channels, which give rise

to the observed 0.5 G0.

First Principle Calculation on the Quantized Conductance of

Oxygen Vacancy Conductive Filament

As mentioned above, before switching to the high resist-

ance state, the CF in RRAM behaves as a nanoscale con-

ductive path with a few defects such as oxygen

vacancies. It is necessary to explore whether the oxygen

vacancy paths can explain the quantized conductance

behavior. First principle calculations based on the

density-functional theory (DFT) were carried out to get

the quantized conductance of oxygen vacancy conductive

path in crystalline HfO2 matrix [69]. In this work, the

zero-bias transmission probability T(E) was calculated by

using non-equilibrium Green’s functions. The ballistic

conductance was calculated through first principle

method based on Landauer theory. The conductance

of CF was then calculated via the Landauer formula,

G = T(E)G0. The generation of an oxygen vacancy is

considered as the removal of an oxygen atom in a

monoclinic-HfO2 host. As a result, a filled impurity

state is introduced in the band gap which is far from

the band edges, as shown in Fig. 23a. The spatial

spread of the impurity wavefunction determines that

the states overlap between two neighboring oxygen

vacancies, which further determines whether the car-

rier transport is hopping or band transport. As shown

by the band structures of monoclinic-HfO2 with a

chain of oxygen vacancies in Fig. 23a–d, when oxygen

vacancies are closer together, the overlap between the

impurity wavefunctions increases, thus the impurity

band width also increases. Therefore, the transition from

hopping to band transport will occur, with a critical oxy-

gen vacancy concentration of about 1.5 × 1021 cm−3 corre-

sponding to a local composition HfO2 – x with x = 0.05.

Figure 23e shows the effect of atomic-sized changes in the

(See figure on previous page.)

Fig. 22 Quantized conductance effect based on the quantum point contact model [186]. a Schematic illustration of a conducting filament with a

lateral constriction of one or several atoms at the narrowest part of the filament. b-I Dispersion curves of the first four electronic subbands at the

edge of the constriction. b-II Dispersion curves of the first three subbands at the center of the constriction where the confinement is stronger

which leads to a spacing out of the subbands. c-I When the difference in chemical potential between the left and right reservoirs is small, both

the left-going and right-going electron modes fall within the same subband. c-II When the difference in chemical potential between the two

reservoirs is large, the left-going and right-going electron modes fall into different subbands. Reproduced with permission
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CF diameter on the obvious change of the CF conduct-

ance. When one to three oxygen vacancy columns are

formed, as shown by the inset of Fig. 23e, the conductance

is observed to increase stepwise, with each transmitting

channel contributing a quantum of conductance G0. This

result is in qualitative agreement with the interpretation

that the filament with single- to few atom diameters

behaves as a quantum wire and the observed conductance

Fig. 23 Calculated band structures for crystalline m-HfO2 with O vacancies and the corresponding conductance [69]. a–d Crystalline m-HfO2 band

structure with different oxygen vacancies separated by 4 a0, 2 a0, a0, and a0/2. a0 is the length of the c-axis vector for the m-HfO2 primitive cell

(0.5296 nm). e Conductance as a function of energy corresponding to a HfO2 matrix where one, two, or three O atom rows are removed. The

rows subsequently removed are shown in the instate (marked as “1,” “2,” and “3”), where red and white spheres correspond to O and Hf atoms,

respectively. Reproduced with permission
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quantization originates from single or few atom changes

in the atomic structure of the filament.

Equivalent Circuit Model for ECM Device Showing

Conductance Quantization Effect

Valov and Waser et al. have found that the ECM device

is inherently controlled by the non-equilibrium states,

which are induced by several factors, including the

chemical processes such as the dissolution of the active

electrode materials into the electrolyte, the electrochemical

processes, and the charge redistribution during operations

[221]. The most distinct effect brought out by the non-

equilibrium states is the generation of the electromotive

force (emf) in the device, suggesting the presence of a

nanobattery inside the device. On the basis of this work,

recently they proposed a circuit model (Fig. 24a) for the

ECM device accounting for quantized conductance

[195, 213]. The discharging of the internal emf volt-

age (Vemf ) can influence the device characteristics in-

cluding ON-resistance (RON). In the model, they

assumed that in the ON-state with atom point con-

tact, the ON-resistance is restricted in the contact re-

gime, being RON = Rc = nG0
− 1, and assumed that RON

is directly dependent on the internal emf voltage

((Vemf )). Figure 24b shows the simulation results

about the impact of the external resistance Rext on

RON, exhibiting the staircase-like change of the cell

conductance, which well accounts for the experimen-

tal results as shown in Fig. 24c. Moreover, the calcu-

lated time constants also fit the experimental data as

shown in Fig. 24c quite well.

Prospects of Conductance Quantization in Applications

In these years, the conductance quantization

phenomenon in RRAM has been widely investigated and

developed, turning into an attractive and well-known ef-

fect. From the reported results on the conductance

quantization in RRAM, the filament can be of atomic di-

mensions at the narrowest constriction, which shows

that CF-type RRAM devices can still remain functional

even if the diameter of CF scales down to the atomic

size. Therefore, the ultimate scalability of RRAM is sig-

nificantly higher than any current mainstream and emer-

ging non-volatile memory.

As many reports have pointed out, one of the potential

applications of conductance quantization effect is in

multi-level ultra-high-density storage [8, 170]. According

to the results in “Structures, Materials, and Operation

Methods of RRAM with QC Effect” section, by carefully

controlling the resistive switching process of RRAM de-

vice, for example, through accurately choosing appropri-

ate compliance current, stop voltage, sweeping speed,

pulse conditions, etc., the quantized conductance values

can be well controlled in theory, thus multi-level storage

can be realized. Since the controllability of quantized

states of CF has been confirmed to gradually improve

year after year, and at the same time the kinetics and

physics of switching processes and conductance

quantization have also been revealed to be much clearer

[16, 222], the prospect of realizing ultra-high data storage

by taking advantage of the phenomenon of conductance

quantization has become more promising nowadays. Ex-

cept the multi-level storage, basic logic circuits can also be

realized. The best achievement is from the group of Prof.

M. Aono [169]. Low-power logic gates such as AND, OR,

NOT gate have been configured making use of quantized

conductance atomic switches (QCASs), which were fabri-

cated by crossing metal electrode wires with solid electro-

lyte wires. However, in order to advance the practical

multi-level high-density storage or logic circuit application

Fig. 24 Equivalent circuit model for ECM device [195]. a Equivalent circuit model for an ECM cell including a nanobattery Vemf with an external

circuit. Ri is the total resistance of the ionic current path. Rext is the external resistance, e.g., from the neighboring cells in an array or a sense

amplifier. b SPICE simulation results showing a staircase-like change of the cell conductance resulted from the discharging of Vemf. c Evolution of

the conductance of a Ag/SiO2/Pt cell in crossbar structure under a negative cell current Icell. Reproduced with permission
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of conductance quantization in RRAM, in the future, dee-

per investigations should be focused on how to achieve

the accurate control of the quantized conductance states,

and great improvements should also be required in the

multi-level storage performances including endurance,

retention, etc., especially based on the pulse operations.

Another important aspect related to the conductance

quantization effect in RRAM devices is that the quan-

tized CF can be made use of to investigate any other

novel physical effects, such as magnetic and thermoelec-

tric properties. Some works on the magnetic modulation

in RRAM have been reported [30–42, 44–46], most of

which just studied the RRAM devices with usual oxygen

vacancies of CF or metal CF. Our group has also investi-

gated the intrinsic electron transport mechanism in the

formed CF by measuring the thermoelectric Seebeck

effect [223]. The small-polaron hopping model can well

account for the electronic transport process for all

resistance states of Ti/HfO2/Pt device, although the cor-

responding resistance-temperature behaviors are contra-

dictive. At the same time, from the point of view of

device design, the controlled atomic-scale CF in sim-

ple two-terminal devices usually got at room

temperature and in air can provide a media or plat-

form to develop new one-dimensional nanodevices

based on the quantum effects in CF. Here, we just show

an interesting example. By replacing the electrode material

with magnetic metals, we can configure the magnetic CF,

and through electrical manipulation, we can try to control

the CF size to get atom-sized magnetic CF. Thus, the

magnetic properties such as the quantized anisotropic

magnetoresistance (QAMR) effect can be studied in the

atom-sized magnetic CF so as to deeply investigate the

quantized transport of CF. This kind of works can provide

a new characterization method for the research on the CF

and the resistive switching mechanism. They might also

provide a new idea of achieving stable QAMR effect in ex-

periments and promote the deep understanding on the

spin-dependent transport properties in atom-sized mate-

rials. In the long term, by simultaneously manipulating

the resistance states and the ordered/disordered magnetic

states, we might construct novel functional nanoscale

electronic devices.

Conclusions

In this paper, we explained the resistive switching mechan-

ism and operating principles of filamentary RRAM and an-

alyzed their connection with the conductance quantization

effect. Then, we introduced some typical researches on the

conductance quantization effect of RRAM. The device

structures, switching material system, and the operating

methods of RRAM related to conductance quantization ef-

fect were summarized in detail. Next, the theory and mod-

eling of quantum transport in the atomic CF of RRAM

ascribing to the conductance quantization effect were dis-

cussed. Finally, we evaluated the opportunities and chal-

lenges of the quantized CF system in RRAM devices for the

multi-level storage and any other applications in the future.
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