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Rdsum4. Nous analysons
en

d4tail le r4gime de saut I port4e variable de Mott I
une

dimension, allant
au

deli d'un travail prdcddent dfi I Raihk et Ruzin. Nous montrons que les trbs

grandes fluctuations de conductance dans les isolants d4sordonn4s r4sultent d'une combinaison

subtile entre des ph4nombnes purement quantiques et des fluctuations gdomdtriques dues
aux

positions et aux
4nergies des impuretds- Nos rdsultats

se comparent trbs favorablement I la fois

I des rdsultats expdrimentaux et I des simulations numdriques-

Abstract We analyse in detail Mott's variable range hopping in
one

dimension, expanding

on
earlier work by Raikh and Ruzin. We show that the large conductance fluctuations in

disordered insulators result from
a

subtle interplay between purely quantum phenomena and

geometrical fluctuations arising from the energies and locations of the impurities. Our results

compare very well with both experiments and numerical simulations.

In recent years, theoretical and experimental works have underlined the importance of
con-

ductance fluctuations in disordered conductors iii. While the situation is rather well under-

~2
stood in the metallic phase, where "universal conductance fluctuations" bg

m are observed,

less is known in the strongly localized regime. On the experimental side, sev/~al
groups have

observed reproducible conductance fluctuations
on quasi one

dimensional (insulating) wires [2,

3]. These fluctuations have been argued to be of quantum origin [4] the transmission coefficient

of
a

disordered bar is known to depend sensitively on the energy (I.e. the gate voltage in the

experiments) and
on

the configuration of the impurities. The size of these (zero temperature)

fluctuations have been computed within the random matrix theory, [5] and the result is that

var
In g = < In g > e L If, where L is the length of the sample and ( the localisation length.

Another theory, based
on

the "directed path approximation" predicts somewhat smaller fluc-

tuations [6] var In g oc
CL~W, where

w
is an exponent close to 1/5 (in three dimensions) and
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C a prefactor independent of < In g > in other words, in this theory
var

In g and < In g > may

evolve differently with e.g. magnetic field
or gate voltage. For non-zero temperatures, how-

ever, the inelastic collision time is much shorter than the time needed for the electron to cross

the sample, and activated energy jumps between impurities come into play:
one enters Mott's

variable range hopping regime [7, 8], where phase coherence is only preserved at length scales

shorter than the typical jump size To Lee [9] has argued,
on

the basis of numerical simulations

(see also [10)], that the "geometrical fluctuations" in the location and energies of the impurities

were sufficient, in the one-dimensional Mott regime, to induce large, reproducible conductance

fluctuations. These fluctuations would thus be unrelated to the quantum, I-e- interference,

effects depicted in [4] which have been shown to be relevant only at very low temperature [11].

Comparison with the experiments, however, show that the size of the fluctuations obtained in

reference [9] is too large [3].

The aim of the article is twofold. We first show how to solve analytically Mott's problem in

one
dimension. This provides

a
clear interpretation of the conductance of

a
finite disordered

wire, which is limited by the "weakest link" in the sample, and allows us to characterize

the fluctuations and discuss their dependence
on the length of the sample. These results are

however almost identical to those of Raikh and Ruzin [12] although these authors relied
on

a
simplified analysis. As already discussed [12], one

reaches quantitative agreement with the

numerical data [9, 10] To be able to describe all the features of the experiments, we then show

that quantum fluctuations governing the fluctuations of the weakest link's conductivity must

be taken into account. However, due to the presence of other links, these fluctuations cannot

develop fully they are "truncated" by geometrical effects. Details concerning the experiments

are
published in the companion paper [3].

We thus start with Mott's problem in one
dimension. We

assume
that the energy levels

are
independent and randomly scattered with

a
density of states p per unit length and energy.

The resistance between two sites (xz, Ei), (xj, Ej) is given by (see [13])

~ ~~ ~~~

lEzl + lEjl + lEz Ejl
~

lrz rjl
~~~

" 2kT j

where R* is a typical (metallic) resistivity at scale (, which will be set to I in the following,
and E

=
0 corresponds to the Fermi level. Note that equation (I) completely neglects the

fluctuations of quantum origin, which
can be seen as giving

a
(Gaussian) distribution to I If

[5]. These quantum fluctuations will be considered later.

The problem is thus to determine from equation (I) the total resistance between (x
=

0, E
=

0) and (x
=

L,E
=

0) of
a #ven sample, knowing the distribution of (xz, Ez). Even

though the problem is one-dimensional, this is not trivial since each site is connected to every

other site. As usual for this problem [13], in view of the exponentially fast variation of Rzj,

we approximate the end-to-end resistance with that of the less resistive path. Furthermore,

equation (I) shows that the "optimal" path cannot wander arbitrarily far from the Fermi

level. We shall thus make the assumption that the optimal path
can

be constructed by always

choosing locally the least resistive link. We will discuss later the validity of this assumption

and show that it leads to the exact asymptotic result. [It is, in any case, an upper bound for

the resistance]. Now, let
us

call P(n(m) the probability that, at a given point of the optimal

path, the electron makes
a

hop of resistance R e e", having started from
a site of energy

E e mkT. In order to calculate P(n(m) let us first
answer

the following question: what is

the probability Jf dnP(n(m) that the least resistive link from this site of energy mkT has

a
resistance greater or

equal to R e e" ? For this to occur, no energy level must be found
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in the hatched
area

shown in figure 1. This
occurs

with probability(~)
oc exp

-'~~'~
~

~~

,no

where n(
+ exp no is thus the usual Mott resistance, and To + no is the typical

pkT( 2

jump size (which
we assume to be much smaller than the sample length:

we neglect the

possibility of resonjnt tunnelling). The tojal probability to find
a given value of

n e lnR

is thus P(n)
=

dmP(n(m)Q(m)
=

~~~~~
~~

exp
-'~~'~

~

~~
Q(m). Q is the

n~ no
probability to find the electron at energy mkT along the best conducting path. [Note that it is

not given by the Boltzmann weight !]. A closed equation for P
can

be obtained by noticing that

n can
only increase when

m
increases, and hence Jf dn'P(n'(m)

=

J/ dm'P(m'(n). (P(m(n)

is the probability to find the electron at energy m
after crossing a resistance e"). From this

we
obtain

our
central result for P:

j" dm(2n m) In(n )j
j°°

dn'n' n'(n' m)
,P(n)"

2
~~P

2
i~~P

2

l'(n) (2)

o no no
m

no no

This equation has been solved numerically:
we

show in figure I (insert) P
versus

the rescaled

variable j =
n/no. One may show in particular that P(y)

m y~ for small y, and P(y)
ci

a
exp[- ~ (a

+~

2) for large y(~). Note that -due to the self-consistent expression of Q(m),P(n)
2

equation (2) takes explicitly into account the correlations existing between consecutive hops

of the optimal path through the value
m

of the intermediate energy level. These correlations

are
neglected by Raikh and Ruzin [12]. Thus, comparison between both theories will enlighten

on
the importance of correlations of hops.

Before going further in our
analysis, let

us note that
our

hypothesis of neglecting quantum

fluctuations is only valid when the width of their distribution wq is small enough compared to

the width wgea of geometrical distribution P studied here. As shown by equation (2),
one

has

wgeo ci no, whereas one may estimate that wq ci n$ ,with
w =

1/2 in the barely insulating

regime and
w +~

1/5 in the strongly localised regime. Therefore,
our

model -will be valid when

no > I, I.e. it will not hold very close to Anderson's transition.

The end-to-end resistance is then given by the following
sum

R
=

£$o Rz, where N
=

~

=

~~
is the total number of jumps, and In Rz

are
distributed according to P. The simple

ro not
addition of resistances amounts to neglecting resonant tunnelling which is justified when N is

large. Let
us now

distinguish two cases:

I) Very long wires. In this case, the usual central limit theorem applies and
one

finds that

the resistance is equal to N J°° dnP(n)e". From this, we
find that lnR

m 1.sno for no ~

l

~2
(Mott's law), but that due to the slowly decreasing tail of P, lnR

ci
°

oc
T~~ for no » 1.

2

This result
was

first obtained by Kurkijarvi [15] and then by Raikh and Ruzin [12]. Note that

this value of resistance is roughly the largest possible
one in a wire of given To at a given T

(since y < no and that occurrence
of such hops is unavoidable provided that the wire is long

(~) We neglect Wigner correlations between the energy levels, which is justified
as soon as

e" » n(

[14].

(~) Although the whole calculation only makes
sense

if y < no, beyond which P(y) % 0.

JOURNAL DE PHYS)QUE ) -T 3 N'll NOVEMBER 1991 84
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Fig. 1- Starting from
a

site with energy mkT,
no

sites must be present in the hatched region of the

(x, E) plane for the resistance to be larger than e". Insert: Numerical determination of P(y)
versus

y =
)- The most probable value of y is 1.3, and the average of y is 1.5.

enough. Agreement of
our result with [12] is thus not surprising since for such "extremely

resistive hops" correlations
are

obviously irrelevant.

ii) Finite wires with no » 1. One should however notice that the largest
n

drawn from

P in N trials is typically of order nmax m no 21n(aN). The central limit theorem certainly

does not apply
as

long
as nmax <

lnR (the
mean cannot be larger than the largest element !).

In this case, the end-to-end resistance is entirely governed by the weakest link, I.e., by nmax.

This
can

also be understood by noting that for intermediate values of R
=

e", the distribution

P(R) behaves
as a power law P(R)

ci
R~l~+~)

,

with an
effective exponent p =

~~ ~. For
2no

p < 1, the
sum giving R is a

"Ldvy sum" which is well-known to be given by its few largest

terms [16]. From the above results, one may see that /tmax =
I coincides with the condition

nmax m
2n(: the "anomalous", weak link dominated regime thus prevails for samples shorter

than N*
m

e~"~, while for longer wires, one reaches the self-averaging regime.
a

Experimentally [3], no is in the range 2-5, L m 5 pm, ( ci 20 50 nm, and thus N is between
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Fig. 2. Evolution of lnln R with lnT (schematic) For sufficiently long samples,
one

should
see

three regions: A: Mott, with slope 1/2, B: Self-averaging regime, with slope 1, and finally weak link

dominated region, with
a

succession of plateaus (slope 0) and activated (slope 1) regions, around
an

effective Mott law (dotted line).

25 and 100, which is smaller than N* at low temperatures (T < 1 K)(3). In the numerical

simulations of Lee [9], n( varied between 5 and 40, and N between 12 and 143, again smaller

than N*- Definite theoretical predictions in this regime are thus of great interest. We have

seen
that the resistance of the sample is given by In R ci nmax. The average over

disorder W

is thus given by:

nmax m no
@@. (3a)

We then conclude that for
a given N < N*, lnR behaves as no oc

T~~/~, i-e as Mott would

predict, but that the slope of W
versus

T~~/~ increases with N as
21n(aN). Let

us now

turn to the fluctuations: their order of magnitude is governed by the width of the distribution

y~2
of nmax, which can be shown (using the asymptotic shape of P) to be

m
° One then finds:

nmax

61nR 1
(3b)

inn
~2lnaN'

The full distribution of lnR was
investigated numerically in [10] and analytically in [12].

Equation (3a) and (3b)
are in excellent agreement with [10], [12]. However a

detailed comparison

with [12] reveals a
slight change in the length dependence: while here

a
is a constant (a

m
2), in

[12] a =
In

~.
Qualitatively, this

means
that for

a #ven L, neglecting correlations leads to a

~

(3) A numerical calculation shows that
'~'~~~

varies between 2.1 for N
=

5 to 3-2 for N
=

100 and

n0

3.8 for N
=

1000.
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small increase of W. In other words, self-consistent expression of Q enhances the importance

of hops between levels close to the Fermi energy. Equation (1) shows that this leads to a

decrease of In R. However this effect is too small (it goes as
In /1)

to be numerically tested.

It is noteworthy that Lee used
a

"percolation" method to obtain the best global conducting

path, I-e- the assumption of local optimization is not made. Nevertheless, his numerical results

[9] show all the features reported above, in particular equations (3a) and (3b). However, if
a

very detailed analysis of Lee's results is carried out, small differences with our model appear:

we
performed numerical simulations using the

same assumptions as Lee, except that
we

used

our
local optimization procedure instead of the percolation method. We noted two differences:

a) first, the percolation method gives values of W slightly lower than those predicted

by equation (3a)(~). However, this difference goes to zero
when N increases: for the lowest

temperature and the shortest system (N
=

12) the difference is of 20 %, whereas for the highest

temperature and the longest system (N
=

143) it is only 12 %;

IT
lucLuuLtuns v~rsus

Cli~iitcul jJoL~iiLtul

30 O 0.U0t

-T 0.002

25

w
,f

c ,

~ , ,
'

20

~ '
,

c , ,

u ,
~

,
cr

,

oc
15

lo

5
-o. lo -o. 05 o o. 05 o. lo

Chemical potential lKalvinsl

Fig. 3- Simulation of geometrical fluctuations
versus

Fermi energy, using the
same parameters as

in [9]: L/(
=

1000, (
=

501, density of states
=

1 per Kelvin. Comparison with [9] reveals differences

between the shape of fluctuations obtained by the percolation method and by local optimization. Note

that the vertical slopes which
are

responsible for the crossings of
curves at different temperatures

are
artefacts of the local optimization procedure.

b) the second point is that the conductance fluctuations (see Fig- 3) as
the Fermi energy is

varied are
often not symmetric. Indeed,

as
shown in figure 3, one can see

that
some

fluctua-

tions have vertical slopes
on one

side. We checked that at these points the local optimization

(~) To make this comparison, due to differences of notation in [9], one
has to take: To

"
0.04 and

not
~°

4
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procedure fails, I-e- the optimal path cannot be obtained by optimizing at each "step". Nev-

ertheless, this does not change much the overall size of the fluctuations: for N of order 50, the

difference between the results of reference [9] and equation (3b) is less than 10 To, and goes to

zero as N increases.

Fluctuations
versus chemical potential

' 6 0z3 t~"

13fl P
~~ ~ [o/ZL'_' ~n~~wt' St W_

15 Sit i l~A~ ~lzzii l~lL

iiiiiz~ooinir+[°Wr~i&..
W

~

z 4

~

g

t3

o

#

c~
t2

11

lo

5 10 15 20 25 30

Chemical potantial lKalvinsl

Fig. 4- Simulation of the wire of [3] with
our

model. L /(
=

100, (
=

21, To
#

6.0 K. Predictions of

our
theoretical model

are
in good agreement with numerical results. "<Correlation energy>"

means

the average energy width of fluctuations.

Therefore,
we

conclude that our assumption of local optimization is only exact asymptoti-

cally but gives quite good predictions for the sizes
we are interested in. For the sample studied

in reference [3], and in the regime where our model holds, ( is estimated to be of the order of,

or slightly larger than, I, the distance between impurities. This contrasts strongly with Lee's

simulations where ( extends over 50 localized sites. Since To
~

f~~,
we expect much larger

values of To for this sample than in reference [9] (5). Figure 4 shows the result of
a simulation

adapted to sample of reference [3]:
~

=
100, (

=
21. Experimental values of In R are

typically
f

+~

9 at T
=

0.45 K (see the most resistive set of curves
of Fig. 4 in Ref. [3]). In order to take

into account the fact that our
local optimisation method overestimates lnR by

+~

20 %,
we

adjusted To value so that lnR (as given by (3a))
m 11.5 at T

=
0.45 K and found To

"
6.0 K.

To is found to vary between 2 K and 10 K from the barely insulating to the strongest insulating

regime observed.

We shall
now

discuss in more detail the nature of these fluctuations for
a given sample,

as

the temperature or the gate voltage (I.e. the Fermi level) is varied.

I) Temperature. The main point of the above analysis is that the resistance of the sample

is entirely governed by
a certain pair of impurities, between which transport is most difficult

(~) As
a consequence, the temperature range where Variable Range Hopping holds should also be

much larger than in reference [9].
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~

0
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< Lnl R*a~/h1>

Fig. 5. in R
versus

W
as

experimentally determined (see [3]); the dotted line shows
our

prediction

for the typical fluctuations.
,

[9, 12]. Crudely speaking, the large resistance arises either because the distance between the

sites is large
m

nmax(, but their energies are
rather small (Type I),

or because they
are

close

in space but require a
large energy m

nmaxkT from the thermal bath (Type II). Suppose at

a
given temperature Ti, the weak link is of type II. Its resistance thus quickly increases as

T

decreases. It becomes
more

and
more

probable that this link will be "shunted" by a
longer but

less energetic type I link. It is relatively easy to show, using excluded
area arguments much

as

above, that this will
occur at a temperature T2 such that, typically,

~~ ~~
ci

T2 In(aN)
Conversely,

a
low energy type I link will

soon loose its "weak link status" as the second

largest resistance grows. The temperature at which the switch
occurs is given by the

same

expression. The temperature dependence of
a given sample is summarized in figure 2: at low

temperatures, it is given by
a succession of plateaus and activated regions, oscillating around

the mean
(Mott) behaviour no

@@. The size of these regions is roughly constant in In

scale, and goes to zero with the length of the sample (as ).
ln(aN)

it ) Gate Voltage. Following the discussion of Lee [9] (see also [12]), one sees
from equation

(I) that
as

the Fermi energy EF is varied, two cases may occur:
either both sites are on

the

same side of the Fermi level, and In R varies as

+~~,
or they

are on opposite sides and lnR
kT

~

is constant. Since the fluctuations of In R are
of order

'~°
and assuming that varying EF is

nmax

tantamount to changing the disorder, the peak-to-peak distance 6Ef is found to be of the order

of
"~ ~"~~~

~

~"°~~
~

0.5 1.0 K for the experimental data. This value is, in fact, roughly
1 /2kT 2 In aN

the mean
level spacing in energy within

a
box of length rmax. But,

as very recent simulations

at T
=

0 K [17] showed, the typical width in energy of quantum fluctuations is given by the

mean
level spacing within the considered coherent system: intuitively, the transmission changes

abruptly around every resonance.
Assuming,

as
usual, that quantum coherence is preserved
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on
the scale of each hop,

we
find that quantum fluctuations within the dominant link must be

taken into account since their typical energy scale is also the
mean

level spacing within the box

of length rmax. Indeed, since the resistance of a given sample is that of the most resistive link,

quantum fluctuations could only be neglected if they varied much
more slowly with energy

than the "geometrical" fluctuations, which, typically, is not true. Of course, these arguments

deal only with average energy scales. Therefore, the precise origin (geometrical
or

quantum)
of fluctuations

versus Fermi energy will depend
on

each particular case. Experimentally, if
an

observed fluctuation is strongly temperature dependent, one will say that this fluctuation is

of geometrical origin. Indeed, if
a

fluctuation is only due to moving Fermi energy in equation

(1),
one sees

easily that shifting temperature will change it strongly (see Fig. 1 of [9], and Fig.

3)- On the contrary, a
fluctuation of quantum origin will be temperature independent, in the

whole range of temperatures where the dominant link remains the same [3]-

Let
us now

consider the
case

of
a

fluctuation purely of quantum origin. One should realize

that this fluctuation cannot develop fully, for
reasons similar to those mentioned above: imagine

that as the Fermi energy is varied, one encounters a resonance which considerably enhances

the transmission coefficient
across the weak link. In this case, this link will simply disappear

from the game, and the second largest resistance will become the largest (the probability for

simultaneous resonances being negligible). One
can

shown that the difference between the In

~2
of the largest and the second largest resistance is also of order @ Similarly, if interference

nmax
effects

cause
the transmission across the "weak link" to be considerably less than its most

~2
probable value, a better site will be found, again limiting the drop to ° We thus conclude

nmax
that

one
directly observes (due to the dominance of

a
single link) quantum fluctuations only

~2
when they

are
smaller than ° For larger fluctuations, these quantum fluctuations

are
self

nmax
consistently truncated because of the presence of the other links. In particular, contrarily to

the ideas of [4], one never
observes true resonances except at very low temperatures or

for short

samples (see below). The latter point was
first established in [11].

We have thus reached the conclusion that "truncated quantum fluctuations"
occur when

~2

wgeo » wq >
° As mentioned above,

one may estimate quantum fluctuations
as wq =

nmax
~

(6 In R)~uant
m Cw

~

ci
n$~~, with

w =
1/2 in the barely localised regime [5] or w +~

1/5~f~
~

in the directed path regime. Comparing with
"°

,
one

finds that quantum fluctuations
are

nmax

truncated for long samples or
sufficiently high temperatures, more precisely when In(aN) >

~
n(+". (For simplicity,

we set Cw
=

I). Note that, since the dominant link is characterized

by the absence of energy levels around the energy of the electron,
one could ask whether the

results of [5] are
directly relevant to our case or not. A specific numerical study of this point

would be interesting:
one

could expect that the localization length and the fluctuations
are

somewhat reduced compared to their typical values (I.e. without any restrictions
on

the energy

levels) However, quantum fluctuations cannot be smaller than those predicted by
a

directed

path approximation [6]. Indeed, the whole justification of this model is the very absence of

nearby
resonances

between initial and final sites and one of the results is that amplitude of

fluctuations is independent of the separation W in energy between the electron energy and

intermediate levels. Though interesting, a precise calculation of the amplitude of the quantum

fluctuations within the dominant link is not required here, since for both
w =

1/5
or

1/2

we find that quantum fluctuations are truncated in our experiments (except perhaps for the
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lowest temperatures) and we expect equation (3b) to hold. This prediction is compared with the

experiments in figure 5, where In R is plotted
versus

the smoothed W (we took 2 In(aN)
=

9).

Agreement is reasonably good. Note in particular that the experimental sample is longer than

those used in the numerical simulations: this is why (see Eq. (3b)) the observed fluctuations
are

substantially smaller than those reported by Lee (Fig. 1 of Ref. [9]). Finally, the fluctuations

seem to depart somewhat from equation (3b) for the highest resistances. This may be
a sign

that
one enters the purely quantum regime, with

a
small value of

w.

In conclusion,
we

have shown, through a detailed analysis of the Mott conduction mechanism

in one
dimension, that the large conductance fluctuations in disordered insulators result from

a
subtle interplay between purely quantum phenomena and geometrical fluctuations arising

from the energies and locations of the impurities. Our results
are in agreement with previous

investigations and
are

successfully compared to both experiments (see the companion paper)

and numerical simulations.
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